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1. Introduction

Spin counting is the name given to a group of nuclear

magnetic resonance (NMR) experiments which assess the
0079-6565/$ - see front matter q 2004 Elsevier B.V. All rights reserved.
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number of nuclear spins present in an interacting network.

The direct correlation to atom counting means that spin

counting presents a method by which NMR can establish

molecular forms and interactions, although rarely in a

manner from which detailed structural information can be

independently obtained. The somewhat qualitative nature of
Progress in Nuclear Magnetic Resonance Spectroscopy 45 (2004) 301–313
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Nomenclature

czz
(i,j), cG

(i,j), cC
(i,j) coefficients for the Iz

(i)Iz
(j), IC

(i)IK
(j), IC

(i)IC
(j)

Hamiltonian terms

H0Q Hamiltonian containing terms which do not

change the coherence order

H1Q Hamiltonian containing terms which change the

coherence order by G1

H2Q Hamiltonian containing terms which change the

coherence order by G2

I spin quantum number

Ix
(i), Iy

(i), Iz
(i) spin operators for spin i

IC
(i), IK

(i) raising and lowering operators for spin i

I(p) intensity of p-quantum filtered signal

n number of spins involved in a given magneti-

zation state

mc, mt pre-exponential factors in a two-Gaussian model

for the signal intensities

N number of spins in a cluster

Nt, Nc coefficients in a two-Gaussian model for the

signal intensities

p coherence order of a given magnetization state

p(y) coherence order with respect to the y-axis

s time domain signal

z any integer

zg any even integer

zu any odd integer

Z(p) number of p-quantum states in a given spin

system

Df increment in the phase of a pulse

t duration of a delay

f phase of a pulse

c flip angle of a pulse

ADRF adiabatic demagnetization in the rotating frame

ARRF adiabatic remagnetization in the rotating frame

fpRFDR finite pulse radio frequency driven recoupling

REDOR rotational echo double resonance

RFDR radio frequency driven recoupling

SEDOR spin echo double resonance
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many spin counting results might imply that such methods

are only of limited use in a research community equipped

with an array of methods for measuring internuclear

distances and other structural restraints. Nevertheless, spin

counting has been implemented in a number of cases to

provide highly important, fundamental structural

information.

The origins of spin counting lie in solution-state

experiments, where J-coupling networks can be examined,

leading to conclusions regarding molecular connectivity [1].

This has since been augmented with solid-state applications,

in which spatial proximity is probed via dipolar interactions

[2,3]. It is these solid-state applications which will form the

bulk of the material covered by this review. Most spin

counting methods rely upon the observation of multiple-

quantum coherences and much effort has been spent

developing and assessing multiple-quantum excitation

schemes within the context of spin counting, along with

developing methods for the efficient observation of

multiple-quantum coherences. One other important aspect

of spin counting is the method by which the results should

be interpreted.

This review will examine the basic principles of spin

counting, looking at the different ways in which it has been

carried out, as dictated by the nature of the samples being

studied. One section will examine the various multiple-

quantum excitation methods, with a view to identifying the

advantages and disadvantages of the various classes.

Another section is devoted to the analysis of spin counting

results, examining the means by which a seemingly simple
result has been treated. Finally, a review of the various

applications of spin counting is given.

The name spin counting is also given to experiments

which make an analytical measurement of the relative

concentrations of particular nuclear species in a sample,

particularly samples of natural organic matter such as

soils. These experiments are not the subject of this review

and readers are directed to Refs. [4,5] and references

therein.
2. Basic principles

A magnetization state of multiple-quantum coherence

with order Gp in a system of nuclei with spin I is

indicative of the presence of at least p/(2I) spins in a

coupled network. Thus, by establishing what is the

maximum possible multiple-quantum coherence order

that can be excited, a count of the number of spins in

a coupled network may be made. However, because the

excitation of a magnetization state of multiple-quantum

coherence with order Gp does not exclude the presence

of more than p/(2I) spins, such a count can only be

considered to place a minimum bound on the number of

spins present, unless it may be established that higher

coherence orders cannot be excited and are not absent

purely due to experimental deficiencies or restrictions.

It is often the goal of spin counting experiments to excite

and observe a state of total coherence [6], in which the

coherence order is the maximum allowed for the coupled



Fig. 1. Schematics of spin counting experiments. The taller rectangles

indicate 908 pulses. (a) A zero-quantum scheme, in which transverse

magnetization evolves under a zero-quantum operator to generate anti-

phase magnetization from which multiple-quantum states may be excited.
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spin network. Such states have unique properties among all

the possible magnetization states, properties which may be

exploited to verify their presence [7,8] (see Section 4.3).

However, spin counting may also be applied to differentiate

between small, isolated spin systems and extended networks

of spins. In the latter case, total coherence may be

unattainable but the observation of very high coherence

orders will still carry important information. Furthermore,

systems with known extended networks can also be studied

using spin counting, as the speed of build up of multiple-

spin states will depend upon the nature of the network, such

as the dimensionality.

Most spin counting experiments rely upon the corre-

lation between the coherence order of the state and the

minimum number of spins that must be involved in the

state. However, magnetization states can involve more

spins than their coherence order demands. Consider, for

example, states such as Iz
(i)Iz

(j) and IC
(i)IK

(j), both two-spin

states with zero coherence order. By changing the

quantization axis against which the coherence order is

measured (i.e. switching from the z-axis to the x- or y-

axis), multiple-spin states which do not have a coherence

order relative to the z-axis which is indicative of the

number of spins present can be used for spin counting [9]

(see Section 3.6).

Of particular importance in solution-state studies are

experiments which make use of multiple-quantum fil-

tration to simplify and analyse spectra of complex

molecules [10,11]. These methods rely upon the same

basic principle as spin counting, namely that a p-quantum

magnetization state can only come from a spin system

of at least p/(2I) interacting nuclei. This has been

used to filter for the signal from specific molecular

moieties [12].
The phases of the shaded 908 pulses are chosen to select particular parities

of the coherence order. (b) A spin counting experiment commencing from

longitudinal magnetization, using single- or double-quantum operators to

directly excite multiple-quantum states. (c) A spin counting experiment

commencing from transverse magnetization, using single- or double-

quantum operators to excite multiple-quantum states. In all three

experiments, the hatching indicates those parts of the pulse sequence to

which a phase, f, is applied. This phase can be cycled to achieve multiple-

quantum filtering or incremented to generate a single data set showing all

excited coherence orders.
3. Experimental methods

3.1. Multiple-quantum filters

The basis of most spin counting techniques is a filtration

experiment, consisting of an excitation sequence and a

reconversion sequence between which a multiple-spin state

exists. With the exception of methods utilising dipolar order

(see Section 3.6), the experiments are multiple-quantum

filters. Three generic sequences are shown in Fig. 1. They

differ in the way in which hard 908 r.f. pulses are combined

with periods during which zero-quantum (0Q), single-

quantum (1Q) or double-quantum (2Q) Hamiltonians are

applied. Other possible sequences are, of course, possible,

such as those which commence with cross-polarization

rather than a simple 908 pulse.

The classification of Hamiltonians as zero-quantum,

single-quantum or double-quantum indicates the change in

coherence order between the states of magnetization they

interconvert. For a system of spins IZ1/2, a typical
zero-quantum Hamiltonian would have the general form

H0Q Z
X
iOj

cði;jÞzz IðiÞz IðjÞz Cc
ði;jÞ
G IðiÞC IðjÞK Cc

ði;jÞ�
G IðiÞK I

ðjÞ
C ; (1)

where the sum is over spin pairs (i, j). A single-quantum

Hamiltonian will have a form such as

H1Q Z
X
iOj

cði;jÞxz IðiÞx IðjÞz Ccði;jÞzx IðiÞz IðjÞx ; (2)

whilst a double-quantum Hamiltonian will have the general

form



Table 1

Selection rules for exciting total coherence in a system of spins IZ1/2,

using different multiple-quantum excitation methods

Evolution

Hamiltonian

Method Selection rule

Zero-quantum 908 pulses in phase zg

908 pulses p/2 out of phase zu

Single-quantum Initial Zeeman magnetization –

Initial transverse magnetization z

Double-quantum Initial Zeeman magnetization 2zu

Initial transverse magnetization zu

z is any integer, zg is any even integer and zu is any odd integer. Note that the

combination of longitudinal magnetization and a single-quantum Hamil-

tonian can generate a state with coherence one below total coherence for

any number of spins.
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H2Q Z
X
iOj

c
ði;jÞ
C IðiÞC I

ðjÞ
C Cc

ði;jÞ�
C IðiÞK IðjÞK : (3)

The terms czz
(i,j), cG

(i,j), cxz
(i,j), czx

(i,j) and cC
(i,j) will be functions of

the various nuclear interactions, with the through-bond

J-coupling and the through-space dipolar coupling being the

most significant.

All the individual terms shown above involve two-spins.

Such terms will induce transitions between magnetization

states which increase or decrease the number of spins

involved in the state by one. Most multiple-quantum

excitation sequences make use of Hamiltonians consisting

of such two-spin terms but operators involving more spins

can also be exploited in multiple-quantum filtration

experiments [13,14]. For quadrupolar nuclei (IO1/2),

there will also be one-spin, multiple-quantum terms present

in the Hamiltonian, resulting from the quadrupolar inter-

action [15]. These terms will induce changes in coherence

order without changing the number of spins involved in the

magnetization state.

Fig. 1a shows the use of a zero-quantum Hamiltonian,

bracketed between two 908 pulses, to excite multiple-quantum

coherences. A similar sequence is used to reconvert the

multiple-quantum coherences to observable single-quantum

coherences [7]. A zero-quantum Hamiltonian cannot cause a

change in the coherence order of the magnetization state.

Consequently, the zero-quantum Hamiltonian is applied to a

state of transverse magnetization (created by the first 908

pulse), transforming in-phase terms such as Ix
(i) into anti-phase

terms such as Iy
(i)Iz

(j), from which multiple-quantum coherences

may be excited by the second 908 pulse. The phases of the two

908 pulses before and after the filtration point (shaded grey in

Fig. 1a) determine the parity of the coherence orders which are

excited and observed (see Section 3.2).

Fig. 1b shows the use of a single- or double-quantum

Hamiltonian to excite multiple-quantum coherence from

Zeeman magnetization. The reconversion proceeds in two

steps; first a single- or double-quantum Hamiltonian is

applied to generate Zeeman magnetization, then a 908 pulse

generates observable single-quantum coherences. In this

case, the single- or double-quantum Hamiltonian can

directly excite multiple-quantum coherences, as these

Hamiltonians induce changes in the coherence order of

the magnetization state by one or two orders, respectively.

In Fig. 1c is shown a third variant, where a single- or

double-quantum Hamiltonian is applied to directly excite

multiple-quantum coherences from transverse magnetiza-

tion (single-quantum coherences), generated by a 908 pulse.

To reconvert the signal, the single- or double-quantum

Hamiltonian is again applied to generate transverse magne-

tization. At the end of this sequence, two 908 pulses may be

applied, between which Zeeman magnetization is selected, in

order to combine the signals from the different pathways.

In all filtration experiments, best results will be obtained

if the reconversion sequence carries out the reverse

transformation to that carried out by the excitation
sequence, thus ensuring that the signals from different

molecules have the same phases. In the solution state this

was achieved by using symmetric excitation and reconver-

sion, as illustrated in Fig. 1a [7]. Under static conditions in

the solid state, the problem was solved using so-called time-

reversible sequences [16], whereby the average Hamil-

tonian during the excitation sequence can be reversed in

sign for the reconversion sequence, so as to bring the signals

from different parts of the sample with different dipolar

couplings together with the same phase so that they add

coherently. Under magic angle spinning (MAS) conditions,

the problem is solved by the time periodicity of the

spinning, necessitating only some form of synchronization

between the sample rotation and either the timing or the

phase of the reconversion sequence.
3.2. Selection rules

From the perspective of spin counting, the differences

between the three schemes in Fig. 1 lie largely in the

coherence orders which can be excited. More than one

transition can occur in succession during a time period in

which a particular Hamiltonian is acting. Hence, the overall

changes which can occur in the coherence order and the

number of spins involved in the magnetization state depend

upon the cumulative effect of the possible changes. Selection

rules have been derived [17–19] which illustrate the

accessibility of particular magnetization states in spin

systems of a particular size when particular multiple-

quantum excitation schemes are used. Multiple-quantum

excitation schemes may be categorized according to the

initial state, the relative phases of certain pulses and the

nature of the Hamiltonian acting during the excitation period

(zero-, single- or double-quantum). Table 1 summarizes

the accessibility of total coherence states for different

combinations.

Figs. 2–4 show diagrammatically the coherence orders

which can be exited in systems of spins IZ1/2 by the

schemes given in Fig. 1. The vertical scale is the coherence

order of the magnetization state, p, whilst the horizontal



Fig. 2. Selection diagrams for spin counting experiments utilising a zero-

quantum Hamiltonian, as in Fig. 1a. The circles mark those combinations of

the coherence order, p, and the number of spins involved in the

magnetization state, n, which are accessible. The grey lines mark the

positions of states of total coherence, nZGp. (a) If the two 908 pulse have

the same phase, all even coherence orders are accessible. (b) If there is a

p/2 phase shift between the two 908 pulses, all odd coherence orders are

accessible.

Fig. 4. Selection diagrams for spin counting experiments with an initial

state of transverse magnetization, as in Fig. 1c. The circles mark those

combinations of the coherence order, p, and the number of spins involved in

the magnetization state, n, which are accessible. The dashed lines show the

pathways by which the magnetization states are excited. The grey lines

mark the positions of states of total coherence, nZGp. (a) A two-spin

single-quantum Hamiltonian can excite all possible states of total

coherence. (b) A two-spin double-quantum Hamiltonian can only excite

states of total coherence with odd values of N.
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scale is the number of spins involved in the state, n. For a

cluster of N spins IZ1/2, all accessible states with n%N will

be possible. The grey lines mark the bound pZGn, which is

the position of states of total coherence.

Zero-quantum schemes, as in Fig. 1a, are restricted to

observing only one parity of coherence orders. Which parity

is observed depends upon the relative phases of the 908

pulses before and after the filtration point (shaded grey)

to those at the beginning and end of the pulse sequence.
Fig. 3. Selection diagrams for spin counting experiments with an initial

state of Zeeman magnetization, as in Fig. 1b. The circles mark those

combinations of the coherence order, p, and the number of spins involved in

the magnetization state, n, which are accessible. The dashed lines show the

pathways by which the magnetization states are excited. The grey lines

mark the positions of states of total coherence, nZGp. (a) A two-spin

single-quantum Hamiltonian cannot generate total coherence but can excite

all states with NZGðpK1Þ: (b) A two-spin double-quantum Hamiltonian

can only generate total coherence for values of NZ2,6,10,..
A two-spin zero-quantum Hamiltonian will generate single-

quantum states involving all possible combinations of spins

in a cluster. The 908 pulse which follows will excite

magnetization states with even coherence orders if it has

the same phase as the first 908 pulse (Fig. 2a), whilst odd

coherence orders will result if there is a p/2 shift in the phase

between the two pulses (Fig. 2b). The phase difference

between the third and fourth 908 pulses must fulfil the same

condition. There is no additional restriction upon the

accessibility of coherence orders caused by the number of

interacting spins, in contrast to some of the cases described

below.

Two-spin single-quantum Hamiltonian terms, such as

those in Eq. (2), will induce changes of G1 in the coherence

order, p, and of G1 in the number of spins involved in the

state of magnetization, n, causing the parity of the sum pCn

to be constant. Hence, the availability of a given

magnetization state depends upon the initial magnetization

state. If a single-quantum mixing scheme is applied to a

state of longitudinal magnetization (Fig. 3a), states for

which the sum pCn is odd will result, thus excluding any

total magnetization state, for which pCn is even. Such a

mixing scheme can therefore only be used to assess the

value NK1 rather than N, allowing an estimate of the cluster

size to be made [17]. However, an initial state of transverse

magnetization (Fig. 4a) results in states for which pCn is

even, allowing all total coherence states to be accessible.

Two-spin double-quantum Hamiltonian terms, such as

those in Eq. (3), induce changes of G2 in the coherence

order and of G1 in the number of spins involved. This

makes for more complicated selection rules. For an initial

state of longitudinal magnetization (Fig. 3b), states are

allowed with even values of p and values of n whose parities
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do not match that of p/2. The combination of double-

quantum mixing with an initial state of longitudinal

magnetization is often called ‘even-quantum spin counting’,

since all accessible states have even coherence order, but it

should be noted that only every other even p total coherence

state is accessible (i.e.GpZNZ2; 6; 10;.). For an initial

state of transverse magnetization (Fig. 4b), states are

allowed with odd values of p and no restriction upon n,

making the name ‘odd-quantum spin counting’ appropriate,

since all states of total coherence with odd values of p can be

excited.
Fig. 5. (a) Simulated signal from a phase incremented spin counting

experiment on a system of four interacting spins IZ1/2. (b) The signal from

(a) repeated 16 times. (c) The Fourier transform of (b), showing the signal

from pZ0 to 4.
3.3. Separating the multiple-quantum signals

The pulse schemes in Fig. 1 will all generate several

different multiple-quantum magnetization states in between

the excitation and reconversion sequences if a sufficient

number of interacting spins are present. These can all

contribute to the final signal and these contributions must

therefore be separated. In each of the schemes shown in

Fig. 1, the pulses before the point of filtration have a phase,

f, indicated by the hatching. Cycling of this phase can be

used to separate out the different contributions to the final

signal according to their coherence order at the filtration

point.

This can be achieved in two ways. Standard phase

cycling [20,21] can be used to select each coherence order in

separate experiments, whilst a second method, introduced

by Shykind et al. [22], enables the different signals to be

acquired separately in a single experiment. Both methods

rely upon the fact that the phase of the different

contributions to the final signal is dependent upon the

phase of the excitation sequence, f, and the coherence

order, p, between the excitation and reconversion

sequences. The addition of signals acquired with varying

values of f and with the receiver phase set to Kpf for each

signal acquisition will result in the constructive adding up of

signals passing through coherence order p. Appropriate

choice of a cycle for the phase f can ensure that all other

signals add up destructively, allowing only the signal from

magnetization states with coherence order p to appear in the

final spectrum.

Alternatively, the phase f can be incremented between

successive elements of a two-dimensional experiment.

Successive points in the indirect dimension will be

modulated by this phase, such that the signal, s, which has

passed through coherence order p will be given by

sðp;fÞ Z expfKifpgsðp; 0Þ: (4)

Fourier transformation in the f dimension produces a

spectrum with peaks at the values of p. The signal generated

by such a method, as shown in Fig. 5a, is periodic over 2p
radians. This signal is then processed in two steps. First, the

signal is concatenated with itself to form a longer,

repetitious signal (Fig. 5b). This is then Fourier transformed
to give the final spectrum (Fig. 5c) which is composed of

delta-function lineshapes. Alternatively, the concatenated

data may be apodized before Fourier transformation to give

Lorentzian lineshapes. The amount by which f is

incremented, Df, determines the spectral width and,

therefore, the highest value of p which may be measured.

This is given by
pmax Z p=Df: (5)
For the simulated data shown in Fig. 5a, the increment in f

is p/8, resulting in a value of eight for pmax, as shown in

Fig. 5c. The spectrum consists of lines whose intensity is

proportional to the integral of a spectrum selective for the

corresponding coherence order.
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3.4. Multiple-quantum methods in the solution state

Spin counting was first carried out in solution-state NMR

by Piantini et al. [1], with multiple-quantum filtered two-

dimensional experiments revealing the J-coupling network

between 1H spins. The experiments used fall into the general

class shown in Fig. 1a. The J-couplings between spins

generate a zero-quantum Hamiltonian during a period of

free precession. The chemical shifts may be refocused

during the free precession periods with 1808 pulses without

refocusing the J-couplings. The effect of this zero-quantum

Hamiltonian is to create anti-phase transverse magnetiza-

tion which can be converted into various multiple-quantum

coherences by a 908 pulse. As described above, the relative

phases of the 908 pulses determines the parity of the

coherence orders excited.

3.5. Multiple-quantum methods in the solid state

With the development of solid-state NMR techniques for

multiple-quantum excitation, spin counting experiments

could be carried out which revealed the dipolar coupling

network between spins [2]. With the extension to solids

undergoing MAS [3], spin counting was available for

application to a wide range of problems [23].

Under static conditions, Pines and co-workers [2,13,24,

25] developed several different pulse sequences for the

generation of multiple-quantum coherences in solids. In

particular, they addressed the problem of selective exci-

tation, developing methods for generating average Hamil-

tonians containing only Gp-quantum operators for a single

value of p, leading, in particular, to the development of

methods for generating double-quantum Hamiltonians. This

work was supplemented by Suter et al. [18], who developed

sequences for generating single-quantum Hamiltonians.

These pulse sequences consist of combinations of groups

of discrete r.f. pulses and delays to which supercycles are

applied to generate the desired average Hamiltonian. A key

property of these sequences is their so-called ‘time

reversibility’ [25] described in Section 3.1.

These techniques, initially developed for 1H NMR, were

later modified for application to 13C NMR [19,26], creating

multiple-pulse sequences which take into account the

chemical shift anisotropies which are much larger for 13C

than are the dipolar interactions. Whilst these methods are

restricted to multiple-quantum filters on spins IZ1/2, there

are also techniques which have been developed for

application to quadrupolar nuclei, specifically the IZ3/2
7Li nucleus, under static conditions [15,27], for use in spin

counting experiments. These made use of a magic echo,

with a spin lock being applied during excitation (rotating-

frame defocusing) followed by an echo sequence during

detection (laboratory-frame refocusing). During the spin

lock there are dipolar two-spin Hamiltonian terms and one-

spin zero- and double-quantum terms arising from the

quadrupolar coupling. Together, these two parts of
the Hamiltonian ensure excitation of magnetization states

involving several spins and all the possible coherence orders

on each spin IZ3/2 nucleus. The entire Hamiltonian,

dipolar and quadrupolar, is reversed in sign and doubled in

magnitude during the echo, ensuring refocusing of the

signals.

Most spin counting studies in the solid state have been

performed under static conditions rather than under MAS.

This is not because of a lack of pulse schemes for generating

the required Hamiltonians under MAS but because of the

greater difficulty the schemes have in generating high orders

of multiple-quantum coherence. MAS removes the effect of

dipolar couplings and, hence, sequences are required which

recouple this interaction. Recoupling may be achieved by

introducing a second modulation to the spins, in addition to

the spinning, which is synchronized with the spinning. In

most cases, this second modulation is a radiofrequency

pulse, giving rise to r.f. driven dipolar recoupling tech-

niques. A second alternative is rotational resonance, where

the matching of the isotropic chemical shift difference to the

MAS frequency induces dipolar recoupling.

For spin IZ1/2 nuclei, many multiple-quantum exci-

tation sequences are available for generating zero- and

double-quantum Hamiltonians using r.f. driven dipolar

recoupling. The first were double-quantum dipolar recou-

pling schemes proposed by Meier and Earl [3]. These are

sequences of discrete r.f. pulses and delays modified from

the earlier, static sequences. Other dipolar recoupling

sequences followed, including schemes built from discrete

r.f. pulses applied at certain time points during the rotor

period, such as RFDR [28] (which generates a zero-quantum

Hamiltonian), and schemes with continuous r.f. irradiation

whose phase is varied in a manner in synchrony with the

sample rotation, such as C7 [29] (which generates a double-

quantum Hamiltonian). Reviews covering this topic include

Refs. [30–32].

Of particular note are dipolar recoupling sequences (such

as C7) based upon the symmetry principles developed by

Levitt and co-workers [29,30]. These allow the generation

of many different average Hamiltonians, including zero-,

single- and double-quantum dipolar Hamiltonians, with

applicability to spin counting, in particular for conditions of

fast MAS [33]. Additionally, Oyler and Tycko [34] have

shown that the methods designed for the static case may be

employed under MAS using the fpRFDR recoupling

sequence [35] in place of periods of free precession. The

recent development of three-spin triple-quantum recoupling

schemes [14] carries with it the promise of further advances

in solid-state multiple-quantum excitation methods.

3.6. Other methods for spin counting

Most magnetization states do not have a coherence order

which is equal to the number of spins involved in the state.

However, any magnetization state in which several spins are

involved could, in principle, be used as indication for
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the presence of spin clusters. By considering the coherence

order of a state relative to the x- or y-quantization axis (p(x),

p(y)), rather than to the z-quantization axis (simply

termed p), as is normally the case, other magnetization

states can be exploited for the purpose of spin counting

[9,36]. Of particular importance in this context are states of

dipolar order, such as Iz
(i)Iz

(j), Iz
(i)Iz

(y)Iz
(k), etc. also known as

multiple-spin order.

Under both static and MAS conditions, dipolar echoes

[37] can be used for spin counting. The applications which

have been performed [9] have been heteronuclear methods

(see also below) where the number of spins of one species

coupling to an individual spin of another species is

measured. However, the dipolar echo itself is carried out

on a single nuclear species. During a dephasing period,

multiple-spin magnetization states develop in clusters of

interacting spins. In a refocusing period the effect of the

homonuclear dipolar interactions is reversed, leading to the

echo. Between the two time periods is a pulse whose flip

angle, c, is varied. This causes modulation of the signals by

a factor exp(icp(y)). Fourier transformation with respect to c

results in a spectrum composed of peaks representing the

efficiency of excitation and detection of each coherence

order p(y), analogously to the method described in Section

3.3. As with the zero-quantum excitation schemes described

earlier, exclusively odd or exclusively even values of p(y)

are generated, dependent upon the relative phases of certain

pulses.

Under static conditions, the Jeener–Broekaert [38] and

ADRF/ARRF [39] sequences have been implemented on

single crystals to generate dipolar order [36]. These

methods, developed for the solution state, make use of the

fact that in a static single crystal, the dipolar couplings to

chemically identical nuclei are equal and constant and can

therefore be utilised in the same manner as J-couplings. In

these experiments, the coherence orders relative to both the

z- and x-quantization axes can be encoded by the variation

of two phases in the pulse sequence.

3.7. Heteronuclear methods

Three methods have been developed for heteronuclear

spin counting, i.e. the counting of one species of nuclei

which are coupled to a particular nucleus of a different

species. The first was the dipolar echo method mentioned

above. This was performed on 1H and 13C nuclei. Before the

dipolar echo is performed, two cross-polarizations are

carried out, the second with short duration, preparing a

state in which only 1H nuclei close to a 13C nucleus are

polarized. After the dipolar echo, a short cross-polarization

is again performed to transfer signal to the closest 13C

nuclei, enabling the measurement of the number of 1H

nuclei near a particular 13C nucleus.

In the second method [40], a variant of the spin echo

double resonance (SEDOR) experiment was used. The

original SEDOR experiment [41] allowed for the presence
of a second nuclear spin species to be identified. A spin echo

(908Kt to 1808Kt) is performed on one nuclear species

with and without a pulse applied to a second nuclear species

at the same time as the 1808 pulse. If the two nuclear species

are interacting with one another, the additional pulse will

cause the refocusing of the heteronuclear interaction,

increasing the magnitude of the echo signal. The variant

of the SEDOR experiment allowed the number of the

second spin species to be measured, by varying the flip

angle of the pulse applied to these spins. This modulates the

echo amplitude in a manner dependent upon the number of

spins, allowing this number to be measured by comparison

to a theoretical model.

In a third approach [42], the same kind of information is

obtained by using REDOR. Magnetization is transferred

from one nuclear species into states of multiple-quantum

coherences on a second, the coherence order being a

measure of the number of spins as it is for most

homonuclear spin counting experiments.
4. Interpreting the result

4.1. The problem

One might consider that the result of a count is simple to

interpret, perhaps with allowance for any margins of error.

Unfortunately, spin counting by NMR has a weakness

which can necessitate, at best, careful consideration or, at

worst, a complicated analysis to understand the result. The

weakness of the technique is that the maximum coherence

order observed in a spin counting experiment only sets a

minimum bound on the number of spins present. The

simplest interpretation is therefore to take this minimum

bound as the number of spins present [17] but this carries

with it an unknown upper error margin.

When seeking to establish the number of molecules

forming a cluster, particularly when studying the distri-

bution of molecules which each contain several of the spins

being counted, an approximate count resulting from the

maximum coherence order detected can suffice. One

example was a study of hexamethylbenzene in NaY zeolite

[43]. Since hexamethylbenzene contains 18 H atoms, it was

concluded that a count of 16 H atoms was sufficient

evidence to exclude the loading of cavities in NaY with

more than one hexamethylbenzene molecule.

The principle cause of the problem is the fact that higher

quantum coherences are increasingly difficult to excite.

There are several reasons for this. First, higher coherence

orders require longer excitation times, leading to relaxation

becoming more significant. Second, the excitation efficien-

cies for higher coherence orders are often worse than for

lower orders. Third, the number of magnetization states

decreases with increasing coherence order. Consideration of

this third factor alone has led to a method for interpreting

spin counting results by fitting the signal intensities from
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the different coherence orders to statistical models.

Although doubt has been cast on the validity of these

models [44,45], their wide use [2,9,15,27,33,46–60]

necessitates a discussion in this review.
4.2. Statistical models

The number of p-quantum states in a spin system can be

determined by combinatorial theory. For example, for a

cluster of N spins IZ1/2, the distribution is binomial:

ZðpÞ Z
2N

N Kp

 !
(6)

where Z(p) is the number of p-quantum states. If it is

assumed that the excitation efficiency of all individual

magnetization states is equal, expressions such as Eq. (6)

also define the distribution of the signal intensities from the

different coherence orders, I(p), since I(p)fZ(p) under

such conditions. This assumption may be valid if a random

walk model [2] is applied and differential relaxation of the

magnetization states is ignored. The random walk model

was proposed to be applicable when multiple-quantum

coherences are directly excited by a single- or double-

quantum Hamiltonian which is applied for a period more

than three or four dipolar correlation times.

For a cluster of spins I and for large values of N and small

values of p, the distributions of states may be approximated

to a Gaussian distribution [2,15]. With the assumption that

I(p)fZ(p), this results in

IðpÞfexp K
p2

ð4I K1ÞN

� �
: (7)

Thus, a plot of ln {I(p)} against p2 should be linear with a

gradient equal to K((4IK1)N)K1, giving an estimate of N,

the number of interacting spins. For spin IZ1/2, this

simplifies to

IðpÞfexp K
p2

N

� �
; (8)

resulting in an expected gradient of KNK1 for a plot of

ln{I(p)} against p2. Commonly, the value of N derived from

such a fit is plotted against excitation time, with a levelling

off of N at long excitation times taken as a measure of the

complete cluster size.

More complex models have also been used, such as one

where the distribution of signal intensities is fitted to a two-

Gaussian model (for IZ1/2) [46,47,49],

IðpÞfmc exp K
p2

Nc

� �
Cmt exp K

p2

Nt

� �
; (9)

with Nc!Nt. The value Nc is interpreted as the cluster size

and that of Nt as the total number of interacting spins,

including interactions between clusters. In this way, signal

intensity distributions in which small coherence orders have
much higher efficiencies than a simple Gaussian distribution

would predict are explained. Again, plots of Nc and Nt against

excitation time are often given, with levelling off of the value

of Nc indicating the cluster size whilst Nt continues to

increase. Cho et al. [61] have proposed a model based on a

sum of many different terms representing clusters of differing

sizes for their study of quasi-one-dimensional spin clusters.

A second approach to overcoming the failure of the

simple Gaussian model has been to take into account the

known dipolar couplings between the spins, as first

proposed by Levy and Gleason [62]. This method can be

applied to systems for which sufficient local structural

information is already known and the goal is the elucidation

of the large-scale structure, such as the determination of

dimensionality. It has found particular use in the study of

one-dimensional spin chains [58,63].

4.3. Non-statistical methods

Unfortunately, there can be significant deviation from the

Gaussian distribution of signal intensities [44,45] in spin

counting experiments. This is largely because the assump-

tion upon which Gaussian fitting is based, that the excitation

efficiency of all magnetization states is equal (i.e.

I(p)fZ(p)), is open to serious question. The spin dynamics

of systems of coupled nuclei have been extensively studied

and shown to not always conform to the statistical

distributions predicted by the assumption I(p)fZ(p). It

has been shown that significant deviations from Gaussian

distributions are even observed in such ‘model’ systems as
1H nuclei in adamantane. Lacelle et al. [45] warned of

extracting quantitative data from a fit to these distributions

and put forward a more complex procedure, involving a

scaling analysis. However, they concluded that the ‘sensible

and cautious’ approach could simply be to take the largest

observable coherence order as indicative of the size of the

spin system.

Another alternative for solving the problem is to carry

out simulations of the system in question, with different

clustering arrangements, and to compare these simulations

to the distribution of intensities of the signals due to the

different coherence orders in the spin counting experiment.

Clearly, such a method can take into account (given

sufficient simulation time) the exact nature of the exper-

iment being performed but it obviously requires sufficient

knowledge of the possible clustering arrangements to be

available in order to provide a reliable result. Such a case is

that of amyloid fibrils [34,64], where a good estimate may

be made of the distance between the individual strands of

the b-sheets (see Section 5.5).

One of the early developments in solution-state spin

counting was spin filtering [7], designed to selectively

observe total coherence states [6]. Here, the behaviour of a

magnetization state during a spin echo was observed. The

echo refocuses the chemical shifts but not the J-couplings.

Hence, because a total coherence state does not evolve
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under J-coupling, a lack of evolution indicates that the state

is total coherence.

One of the most recent developments in spin counting [8]

is the application of the same principle to solid-state spin

counting under MAS, using the SC14 sequence [65] to

excite multiple-quantum coherences and the SR44
1 sequence

[66] for zero-quantum recoupling. Zero-quantum recou-

pling is applied to the multiple-quantum coherences for a

variable time to allow measurement of the decay curve. This

is compared to a decay curve generated by applying a spin

echo to the multiple-quantum coherences for the same

times. For a state of total coherence, the two decay curves

match, whilst for any other state, the zero-quantum

recoupling experiment gives rise to much faster decay of

the magnetization state than the spin echo. In this way, total

coherence states may be identified without recourse to

calculations or simulations.
Fig. 6. (a) Trimethyl silane bound to silica, showing isolated trimethyl

silane groups, as indicated by spin counting [51]. (b) The components of a

liquid crystal on which Gerasimowicz et al. [50] carried out spin counting

studies.
5. Applications

Applications of spin counting have been made to a wide

variety of inorganic and organic solids, together with liquid

crystals and molecules in solution. They have provided

useful information in areas ranging from catalysis to

biomolecular structure elucidation. Whilst early appli-

cations concentrated on 1H and 19F nuclei, more recently,
13C and 7Li nuclei have become the focus of spin counting

studies. Adamantane and similar solid organic compounds

were examined by spin counting [2,46,56] and proved

useful in establishing the technique. Coherence orders

greater than 60 were observed and, using a simple Gaussian

model, cluster sizes were estimated to be growing to more

than 400 1H nuclei for the case of adamantane.

5.1. Distributions of atoms and small molecules

Spin counting has most frequently been used in the study

of individual atoms and small molecules distributed on

surfaces or throughout materials. By probing the arrange-

ment of these atoms or molecules through their clustering,

information can be obtained which is of great interest,

particularly in the field of catalysis. One of the earliest solid-

state applications of spin counting was to the adsorption of

ethyne on platinum [67]. In this study, the ratio of double-

quantum signal intensity to triple-quantum signal intensity

was used to distinguish between different models for the

nature of the adsorbed ethyne. Later studies examined

hydrocarbon fragments on ruthenium catalysts [68,69]. The

authors were able to put forward models for the deposition

consistent with the maximum coherence order observed but

they could not positively identify which fragments were

present.

The distribution of hydrogen atoms in various materials

has been investigated by spin counting. Two related studies

were carried out on hydrogenated amorphous silicon [47]
and silicon carbide [49]. A two-Gaussian model (Eq. (9))

was used to identify clusters of hydrogen atoms. Hydrogen

in various silica based catalysts has also been studied [17,

57], allowing the nature of the silica support to be

investigated and an assessment of the density of hydrogen

packing in the catalysts to be made. The deposition of

fluorine on the surface of diamond powder particles has also

been studied [54].

Bonded silica phases have been investigated using spin

counting [51]. These consist of silane groups (SiR3, R is an

alkyl group) bound through an Si–O linkage to a silica

surface (Fig. 6a). A Gaussian model was used to assess the

size of the 1H spin clusters in bound trimethyl silane (silica-

O-SiMe3). A cluster size of 10G1 was claimed to be

consistent with the nine hydrogen atoms in single trimethyl

silane units, implying that these groups are well separated

on the surface of the silica. In light of the deficiencies of the

Gaussian model (Section 4.3), it is perhaps not unsurprising

that an apparent over estimate was obtained.

Several studies have been performed on systems in which

small molecules are dispersed in a matrix. Two kinds of

matrices have been studied; polymers [53,55,59] and

zeolites [43,52,60,70]. In polymers, studies have included
19F spin counting on the photosensitive salts [Ph3S]C

[AsF6]K and [Ph3S]C[SbF6]K. A first study [53] demon-

strated the use of 19F spin counting for distinguishing

between samples in which the salt was dispersed throughout

the polymer and samples where the salt aggregates rather

than disperses. In a second study [55], 19F spin counting was

used to measure the degree of dispersion of the salt in the

polymer. The measurements were based on the relative

intensities of the different multiple-quantum filtered signals,

thus arriving at values for the degree of dispersion without

recourse to a fitting procedure to estimate spin cluster sizes.

In zeolites, the loading of supercages in NaY with

various organic molecules has been investigated [43,52,70].

In such studies, an approximate count of the number of

clustering spins is often sufficient, as in the study of

hexamethylbenzene in NaY zeolite [43] (see Section 4.1).

A spin counting study of different loading levels of benzene

in NaY [52] used the simple Gaussian model to analyse

the data. For low loading levels, the results indicated the

presence of different occupancies of benzene in the

supercages whilst, at higher loading levels, more uniform



Fig. 7. Three possible arrangements of protein strands in the b-sheet core of

an amyloid fibril. The arrows represent the direction of each protein strand.

These are arranged (a) parallel, (b) anti-parallel and (c) one possible

intermediate case, dimeric. The circles represent the positions of a 13C label

at a single site in the protein. The dashed lines represent the interactions

between those 13C nuclei in close proximity. Spin counting on Ab1–40 [73]

indicated a parallel arrangement (a), whilst this arrangement was excluded

for Ab16–22 [64].
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occupancy distributions were found, after allowances were

made in the spin counting data for inter-supercage

interactions between benzene molecules. The nature of

chemical vapour deposition of Si2H6 [60] into the a-cages in

NaY was also studied by 1H spin counting. Fitting of the

data to a Gaussian model gave a maximum 1H cluster size of

38G1, corresponding to the entrapment of seven disilane

molecules per a-cage.

5.2. Liquid crystals

Liquid crystals were an early target of spin counting [46,

50], partly because the motional properties of the molecules

should average out intermolecular dipolar interactions

whilst preserving intramolecular interactions, thus isolating

the spins in individual molecules, making them a good

model for isolated clusters. Indeed, simple Gaussian

analysis of results on p-hexyl-p 0-cyanobiphenyl indicated

the formation of 21-spin clusters, corresponding to the

number of 1H nuclei in the individual molecules [46].

A second study on a two component liquid crystal [50]

illustrated the possibility of distinguishing between separate

groups of spins in the same molecule. The two components,

shown in Fig. 6b, were combined in a 2:1 mixture. Both

comprised of an alkyl group joined to a chain containing

two aromatic rings, each of which contained two pairs of

hydrogen atoms on adjacent carbons. Using a two Gaussian

model with one cluster size set to two, a size was measured

for the other cluster size of 13G1, approximately the

weighted average of the number of hydrogens in the two

alkyl groups. The authors were unable to resolve separate

contributions from the different alkyl chains.

5.3. Dimensionality and orientation

Although generally used either to measure the sizes of

clusters or to distinguish between clusters and extended

networks, spin counting has also been shown to be able to

play a role in the study of samples known to contain

extended networks of spins. The dimensionality of a

network of spins has an effect upon the build-up rate of

multiple-quantum coherences during a spin counting

experiment. Levy et al. [62] showed that the build up of

cluster size, as determined by fitting to a Gaussian

distribution, is substantially different in two- and three-

dimensional distributions, once the average dipolar inter-

action between the nuclei was taken into account. This was

applied to study the distribution of hydrogen in chemically

vapour deposited (CVD) diamond films.

One-dimensional chains have also been studied by spin

counting [58,61,71]. In particular, apatites (Ca5X(PO4)3,

XZOH or F), which form chains with a hexagonal subunit

containing seven H or F atoms, were studied. The effect of

defects in the chains on the build up of multiple-quantum

coherences was investigated. In addition, Fel’dman and

Lacelle [63] carried out a detailed theoretical analysis of
multiple-quantum dynamics in such systems, showing the

deficiencies of the Gaussian model. In single crystals of

CaF2, 19F spin counting has been shown to give distinct

results dependent upon the orientation of the crystal with the

magnetic field [72].
5.4. Quadrupolar nuclei

Spin counting has not been restricted to spin IZ1/2

nuclei. The spin IZ3/2 7Li nucleus has also been the focus

of spin counting studies [15,27], with clusters of lithium in

LixC60 being studied. In addition to using a distinct method

for multiple-quantum filtration to those used for spin IZ1/2

(see Section 3.5), these studies also need a different method

for analysing their results, since the coherence order in such

systems is limited not to GN, where N is the number of

spins, but to G3N. A Gaussian distribution was used to

interpret the results, applying Eq. (7) with IZ3/2:

IðpÞfZðpÞfexp K
p2

5N

� �
: (10)

The study found Li clusters smaller than were expected

from stoichiometry. Two possible explanations were

discussed; structural disorder or a failure of the statistical

model, although the authors found no clear evidence of

deviations from their model.
5.5. Amyloid fibrils

The application of spin counting to biomolecular solid-

state NMR has been initiated by Tycko and co-workers, in

studies of amyloid fibrils [34,64,73,74]. In particular, spin

counting has been used to study the organization of the

protein strands within the b-sheets which form the core of

the fibrils, where a key question is whether the arrangement

of consecutive strands is parallel, anti-parallel or some

intermediate case, as shown in Fig. 7. The experiments have

been performed on fibrils formed from the full length

protein, Ab1–40 [73], and from a fragment of the protein,
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Ab16–22 [64]. In both cases, the proteins contained specific
13C labels.

In the study of fibrils formed by the full-length b-amyloid

fibril, four-quantum coherences were observed from

samples which contained a single 13C label at the methyl

position in one alanine residue. This information is strongly

suggestive of a parallel arrangement of consecutive strands

in the b-sheet (Fig. 7a), where the labelled residues line up

in the strands next to one another. This conclusion was

backed up by comparison with simulations, based on the

known inter-strand separation of 4.8 Å.

The study of the fibrils formed by Ab16–22, again

prepared with a single 13C label at the methyl position in

one alanine residue, gave different results. No coherence

orders greater than three were observed, immediately

suggesting that a parallel arrangement of the strands was

unlikely. Comparison with simulations was not able to

positively identify the nature of the arrangement but the

simulations were shown to be not inconsistent with an anti-

parallel arrangement (Fig. 7b). Tycko and co-workers have

since gone on to more detailed examinations of different

fibril forming peptides [75], demonstrating the value of spin

counting in providing important, fundamental structural

information which can act as the initial step of a full

structural study.
6. Future prospects

Spin counting experiments are not in themselves capable

of providing detailed structural information. However, in

combination with other information they are able to

complete the picture whilst, in other situations, they can

provide a starting point for more comprehensive studies.

Viewed in this way, and taking into account the increasing

number of methods for exciting and observing multiple-

quantum coherences (particularly under MAS), spin count-

ing can reasonably be expected to continue to play a

small but significant role in NMR. Given the example of the

recent work on amyloid fibrils, it is clear that the concept

of spin counting can follow NMR in whatever new

directions it takes.
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