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A fully classical limit of the recently published quantum-classical approximdi#om. Neufeld, J.

Chem. Phys119 2488(2003] is obtained and analyzed. The resulting kinetic equations are capable
of describing the evolution of an open system on the entire time axis, including the short-time
non-Markovian stage, and are valid beyond linear response regime. We have shown, that proceeding
to the classical mechanics limit we restrict the class of allowed correlations between an open system
and a canonical bath, so that the initial conditions and the relaxation operator has to be appropriately
modified(projected. Disregard of the projection may lead to unphysical behavior, since mechanism
of the decay of some correlations is essentially of quantum-mechanical nature, and is not correctly
described by classical mechanics. The projecteqprantum correction to the kinetics particularly
important for the non-Markovian regime of relaxation towards canonical equilibrium. The
conformity of the developed method to the conventional approaches is demonstrated using a model
of Brownian motion (heavy particle in the bath of light onesfor which the obtained
non-Markovian equations are reduced to the standard Fokker-Planck equation in phase space.

© 2004 American Institute of Physic§DOI: 10.1063/1.1769353

I. INTRODUCTION schemé % The drawbacks of these approaches are well
known, mean-field approximation fails to describe properly
The concept of open systef®S) plays an important the situation of considerably distinct exit channels of reac-
role in the consideration of complex many-body dynamicstion, while surface hopping is aad hocscheme with un-
In many situations one can define OS as a relatively smalknown accuracy and applicability limits.
subsystem of interest, weakly coupled to the remaining part  Quantum-classicalQC) approaches, which treat both
of the systentbath. In this case interactions between the OSquantum and classical subsystems on a similar probabilistic
and the bath can be accounted for by means of perturbatio@oting, are better balanced and do not suffer from the afore-
theory, which appreciably facilitates an analysis of the cormentioned problems. There exist two general schemes for
responding dynamical properties. The meaning of weak couthe derivation of kinetic equations for the reduced density
pling alters in accordance with the theoretical approach inmatrix (RDM) of quantum subsystem. One scheme relies
use, while the so-called linear response th&atys most  upon partial Wigner transforth!2 over classical degrees of
successful to present days as it provides an unified treatmeffeedom and vyields the quantum-classical Liouville
of the kinetics at small deviations from the equilibrium. equatiod® " (QCLE), while the others approachés®®start
However, processes of quantum nature and/or far from equiyith an equivalent integrodifferential representation of the
librium require different kind of approaches, which stimu- guantum Liouville—von Neumann equation.
lated the development of alternative treatments. The QCLE is probably the simplest quantum-classical
Direct solution of Newton’s equations for many-body theory for the RDM of quantum subsystem. Its appealing
system with a finite, but large number of constituents, as geature is a formal similarity both to the Liouville—von Neu-
prototype of a system in the thermodynamic limit, forms themann equatiorifor quantum subsystenand to the Liouville
basis of the nonequilibrium molecular dynami@$EMD)  equation for the reduced distribution functigior classical

the frameworks of classical mechanics. Considerable effortgy,yma| expansion of partial Wigner transform in termsfof

were put to add effegtli of quantum transitions directly to the_, o with the subsequent replacement of quantum operators
classical trajector|g§. ‘There are, however, some funda- (positions and momenian Poisson brackets with their clas-
mental problems in this type of approaches. In particulargica| counterpartéphase space coordinatesiowever, the
equations of classical mechanics are deterministic, whilgyst step is rather suspicious, and cannot be justified. In par-
guantum subsystems are intrinsically probabilistic. As a reticular, one can point out two associated defects of QCLE.

sult, the deterministic feedback of quantum subsystem on g@jyst supstitution of quantum operators by the corresponding
classical trajectory, necessary to propagate classical degrelgﬁase space coordinates means elimination of many vari-

of freedom, can be qbtain;SYleJgt in two ways, either invokind,pes the detailed picture of the distribution over quantum
a mean-field approximatiof,”*or using a surface hopping |g,g|s is omittedl As it follows from the Nakajima-Zwanzig

projection formalism® any rigorous elimination of variables
dElectronic address: aneufel@gwdg.de unavoidably leads to memory-type of equations. The subse-
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guent approximations to a memory kernel may sometimeig the Smoluchowski equatidiiffusion in position spage
lead to the differential equations, and the conditions for thastarting directly from the Fokker-Planck treatment is outlined
(applicability limits) are also obtained at this step. This stagein Sec. VII and Appendix B. The results are briefly summa-
is apparently missed in the derivation of QCLE, which isrized in the Conclusion.
immediately obtained in the differential form. As a result, the
applicability limits of QCLE are unknown.

Another drawback of QCLE is more substantial. The re- . BASIC EQUATIONS OF NON-MARKOVIAN
placement of quantum operators by the phase space coor¢dyaNTUM-CLASSICAL APPROXIMATION
nates in the framework of partial Wigner transforms of the
quantum Liouville—von Neumann equation also leads to the A quantum-classical approximatigtrequires matrix el-
replacement of true cross coherences, which drive the energyments of the system-bath coupliig(q) to satisfy the con-
flow between the subsystems, by direct coherences insidgtion
guantum subsystem, as it was well explained in Ref. 26 on
the basis of a simple four-level system. This defect is inher- Wik(9)] <l (1)
ent to all QC treatments, which model the true interactions fi b

between subsystems by a time-dependent external fieldperes is the Planck constant, denotes a generalized set of
within the framework of the Schadinger or Liouville e phase space coordinates of the bath, and the characteristic

equation. _ _ lifetime 7, of cross correlations between open quantum sub-
Recently, a novel non-Markovian quantum-classmalsystem and heat reservoir is

approximatio”® (NQCA) was suggested, which does not
suffer from the aforementioned drawbacks peculiar to o h )
QCLE. The approach is based on a short coherence time of '° wkgT"

Cross _correlanons between the qua_ntum _subsystem and HIW order to reduce the number of notations we set the Boltz-
canonical bath, due to an energy dispersion of the bath d hann constarits= 1, thus measuring absolute temperatlire

fgrees t()).zfreedlom. Itis of dlfferfer:::al ft()) r?;], bltljt fg'g’ a<|:courr]1ts in energy units. At time$> 7, NQCA reduces to the set of
or arbitrary long memory of the bath. NQ also has o antial equatiorﬁsr’

known applicability limits, and properly handles cross corre-
lations between quantum and classical subsystems, including do(t) i. i -

an initial time period, when a differential description is not gt 7H.o]- %J' [W(a),7(a;0)]dg  (3)
valid. On the other hand, NQCA is quite different from

QCLE, and is not reduced to the Liouville equation for the  97(d;t) _
partial distribution function in the full classical limit, i.e., ot
when the subsystem of intere@thich is treated quantum-

mechanically within QC approaches also described by +
means of classical mechanics.

In the present paper we obtain and analyze the full clas- i
sical limit of NQCA to clarify the physical meaning of basic + g[H,a(t)]
ingredients of the theory in the domain of classical mechan-
ics. The outline of the paper is following: Basic equations of\\here is a Hamiltonian of open system(t) and 7(q;t)
NQCA are reproduced in Sec. ll, and serve as a starting poin{,e RDM of quantum subsystem and auxiliary matrix, re-
for the subsequent consideration. The full classical limit isspectively, whileL, is a linear functional operator defining
obtained in Sec. Ill using a standard procedure. Basic propygtion of the bath in its phase space. Here &lso, ...] and

erties of the resulting kinetic equatiotiapplicability crite- ...,...]. denote commutator and anticommutator, corre-
rion, direct incorporation of the canonical equilibriyrand a spondingly.

physical origin of projected dynami¢guantum corrections

are discussed ibidem. The latter prevents from the violation O(q) = f“’ fo(r) e (i/ﬁ)ﬁ.TW(q)e(i/h)gTdT (5)
of positivity of the reduced distribution function within the — '
applicability limits of the approach, as it is explicitly dem-
onstrated in Sec. IV using a simple model of harmonic os-

cillator bilinearly coupled to a single correlation time canoni- -

cal bath. The conformity of the obtained non-Markovian Y(a)
kinetic equations with the traditional approaches is revealed

for a Brownian dynamics modéheavy particle in the bath Where the generalized memory kernel, describing the decay
of light ones, for which in the Markovian limit one gets a of cross correlations between open quantum subsystem and
standard Fokker-Planck equation in phase space, see Seciiermal bath, and its Fourier transform are

and Appendix A. Extended capabilities of the approach and 1 1 5 heo

importance of quantum corrections for a short-time dynamics fy(t)=— — —+~+—, fp(w)=i tan)‘(—) . (N

are demonstrated in Sec. VI considering non-Markovian re- ™7y SN 7) 27

laxation in the momentum space. A simple method of deriv-  The initial conditions for Eqs.3) and(4) are of the form

— AL 7(@i0] -+ [Wa),o(0)]

do(t)

\A((Q),T

[0<q>,a<t>]++%

N

+ Lom(ait), @

- f rfy(re” I Hdr,  (6)

Downloaded 24 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



2544 J. Chem. Phys., Vol. 121, No. 6, 8 August 2004 A. A. Neufeld

_ 1 In(Q,q;t) _ .
o(t=0)=09, 7(q;t=0)=[Y(q) 0]+, (8 — o~ HQ)7(Q.a 1) —{W(Q,q),F(Q;1)}
where the nonzero initial conditions for auxiliary matrix ac- 1
count for the correlations created during the initial short-time + f{H(Q),W(Q,Q)}f(Q:t)
(t=m,) evolution of quantum subsystem, see Ref. 25 for
more details. To the end of this section we also note, that the W(Q,q) [ 9f(Q;t) _
approach requires renormalization of the Hamiltonians of the + T at HH(Q), QD)
form
L. - I . +Lym(Q,q5t), (15
H—H +Trb(pr), W—-W-— Trb(pr), (9)

to eliminate long lasting source term in the general masteYV'th the initial conditions

equation. Here Trdenotes the trace over the bath variables,

while py, is the equilibrium density matrix of the bath. f(Q:;t=0)=14(Q), 7(Q,q;t=0)= W((_ﬁ,q) fo(Q),
(16)
IIl. THE CLASSICAL LIMIT readily obtained from Eq(8). The canonical form of Egs.

(14) and(15) allows to obtain non-Markovian kinetic equa-

First of all we find the classical limit of operators, de- .. ; ; -
' tions for the arbitrary set of phase space coordinates imme-
fined by Eqs(5) and(6). Substituting the short-time expan- t?Ii rary P P ! !

. fthe int tion betw N dth b iately, since Poisson brackets3) are invariant with respect
sion of the interaction between open system and thermal bayy .5nonical transformations. In particular, the use of the
in the Heisenberg representation

customary coordinates and momenta is convenient at high
A T\ [N friction, while the action-angle variables are preferable in the
e "W(q)e =W(a)— #[H.W(@)]7+:--, low friction limit (energy diffusion regime
(10) The obtained kinetic equations of the full classical limit
differ from the existing approaché%?’~?°based on the sto-
chastic models. Specifically, the generalized Langevin equa-
tion (GLE) is an equation for the particular realization of the
N i . - ho. driving stochastic process. The statistical properties of the
U(q)=57 7 [HW(@)],  Y(q)=53W(q). (1) thermal reservoir enter the theory when the obtained solution
] o ) ) is averaged over the initial states of the bath, sampled from
Then, the classical limit of Eqg3) and (4) is obtained as  he corresponding distribution. As a result, the GLE does not

in Egs.(5) and(6), and taking into account thét(7) decays
fast, being an antisymmetric function of time, we get

usual, via the standard correspondence relations explicitely involve the temperature of the bath, but incorpo-
i rates it via a proper relation between the autocorrelation
7 [H,o(O]=1H(Q),f(Q;1)}, function of the fluctuating external force and the memory
(friction) kernel. The required connection is given by famous

[|3| o) ], —2H(Q)f(Q;t), (12 fluctuation-dissipation theoreffDT), which provides a link

between fluctuations and the linear response.

i.e., the RDMo(t) is replaced by the reduced distribution We employed a considerably different approach. In par-

fL_mct|on (RDF) 1(Q:1), dependlng_ on the phase Space COO0Meyjar, the small parameter of the theory is directly related to
dinates of open syste, the auxiliary matrix becomes the o siatistical properties of the heat reservoir, and is indepen-
auxiliary function, the Hamiltonian operatét is substituted  gent of the bath dynamics. In other words, the GLE is
by the Hamilton functiorH(Q), the anticommutator reduces founded on the dynamical properties of the system under
to the product of the corresponding classical analogs, whilgonsideration, while our approach is based on the statistical
commutators are replaced by Poisson brackets of the formprgperties of the bath, and is valid beyond the linear response

IH(P,X) af(P,X;t) regime. As the result, our equations incorporate the canonical
{H(Q),f(Q;t)}= P X equilibrium directly, and the FDT is not required at all. In-
deed, the stationary solution of Eq44) and (15) is deter-
IH(P,X) 9f(P,X;t) mined from the conditions),f(Q,q;t)=0 and 7(Q,q;t)
TTX (13 —o0, which giveq f..(Q) =lim,_... f(Q;1)]
whereX and P denote arbitrary sets of generalized coordi-  [H(Q),f..(Q)}=0,
nates and canonically conjugate momenta, correspondingly. (17)
Application of relationg12) to Egs.(3), (4), and(11) yields 1
(0D {W(Q.0).f(Q)} = F{H(Q).W(Q.0)}f-(Q).
= {HQ).f(Qt)}

It is readily seen, that the static contour

_f {W(Q,Q),W(Q,QJt)}dqy (14) fm(Q):e_H(Q)/T (18)
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satisfies both condition§&l7), which is proved directly by ders using the fast decay ff(t). Such a procedure leads not
using Eq.(13), and is the stationary solution of the kinetic only to a change of the initial conditions, but modifies the
Egs.(14) and(15). relaxation operator as well. In other words, E#5), which

The transition from the quantum-classical to the purelyis responsible for a proper treatment of correlations between
classical treatment of an open system deserves additionapen system and thermal bath, also accounts for a nonclas-
discussion. The characteristic timg of thermal fluctuations sical decay of some correlations in the course of relaxation to
(2) plays the central role in our quantum-classicalequilibrium, thus leading to the quantum corrections to the
treatment® However, this characteristic time does not existkinetics.[The corresponding term contains a time derivative
in the classical limit, sincéi—0 leads tor,—0 as well. on the right-hand side of Eq15).] A close look at Eqs(14)
None the less, specific correlations between open system amahd (15) shows, that the quantum corrections do not appear
thermal bath, which are formed on the time scalerpf in the dynamics of the isolated subsyst¢W(Q,q)=0],
survive in the classical limit, see E@16), for instance. and at thermal equilibrium. This means, that the obtained
Mathematically this fact is explained by a close look on Eqg.nonclassical corrections concern thenequilibriumenergy
(5). It is readily seen, that d@— 0 the memory kernel,(7) flow between the subsystems, which appears to have both the
decays instantaneously, but, at the same time, exponentials @assical and the quantum components. The latter is of in-
the integrand oscillate infinitely fast as well. The resultingcreasing importance at moderate values of the parameter
value is actually independent dn see the first of Eq411). (19), and may prevalil, if the conditiofil9) is not fulfilled.

The small parametdil) can also be written in the form Nevertheless, the MD methods, which neglect the quantum
effects, can be used for thab initio simulation ofequilib-
IW(Q,q)| <1 (199  rium bath. The nonclassicabr quantun corrections may
mT ’ substantially influence the kinetics in the non-Markovian re-

which is independent oh. In particular, Eq(19) means, that gime, see Secs. IV and VI. Another closely related subject is

one can neglect the influence of the interaction between th%‘e so-called quantum. Co.”e‘igifn factor in the theory of high-
open system and the bath on equilibrium, otherwise the ope eq_LIJ_ent(r:]y sp%ctr?t?]f I|qU|cf§. Id like t hasi
system would relax to an equilibrium state, which is different 0 the end of this section we would Tike fo émphasize,
from that given by Eq.(18) and were dependent on the that taking the static conto8) as the initial condition for
system-bath coupling the open system may lead to transient kinetics, since the
In statistical physics based on classical mechanics, th'g]itial_con.ditions for Fh(_e auxiliary func’Fiqr_n (16 are non-
Liouville equation for the distribution function of the total zero in this case. This is because the initial condition for the
. ' ﬁqltal system was taken as the uncorrelated product of the

for the derivation of various kinetic equations. The associ>tates of the open system and of the bath. On the other hand,

ated problem of a proper choice of the initial conditions iSthe true equilibrium state is characterized by the specific cor-
well known, a many-body system has an infinite numier relations not only inside the open system and inside the bath,
the thermodynamic limjtof “pathologic” initial states (or but also between them. Thus, the trf_m5|ent kinetics in the
correlation, for which the evolution of the system is not ab_ove case corresponds to the formatl_o n of the proper corre-
ergodic at all. Although the probability of realization of such lations between the subsystems, despite the fact that the sta-

initial states is negligibly small, the very existence of themtonary soluyon for the state of open system is the static
produces considerable mathematical problems in statisticgontour again. . .
mechanics. The reduced description of many-body system in Below we give an exqmple, demoqstratlng the physical
terms of kinetic equations is valid only for specific initial importance of the proper initial correlationst), on the ba-

correlations, as it was clearly demonstrated by the concept 'S of a simple model of one-dimensional harmonic oscillator
subdynamic ilinearly coupled to a bath.

In our case, however, the physical origin of the modified
(projected initial conditions seems to be different. Accord- V. ROLE OF THE INITIAL CORRELATIONS

ingly to the picture, provided by NQCA some of the cross A bilinear coupling is frequently used to model interac-

correlations between open system and the bath decay on t%n between an open system and a thermal reservoir. Physi-
time scale ofr,, which vanishes when passing to the limit of cally it corresponds to the linear expansion of the true
classical mechanicgéThe uncorrelated state is actually a SP€-gystem-bath potential, and, therefore, assumes the space re-
cific superposition of all correlation patteffisby analogy stricted motion of ope,n sys:tem. One ’of the simplest models

with .the resolution of !dent|ty, SO that the formation of cor- of this type is a one-dimensional harmonic oscillator with the
relations may alternatively be viewed as the decay of SOME,1 miltonian

of them) In other words, the mechanism of their decay is of )
guantum-mechanical nature, and can not be properly de- _ P 1 2 2
scribed classically. Exactly such correlations are eliminated H(p.x)= 2m + 2 MaweX™, (20

from the initial state by setting the corresponding nonzero .
o . Iy . where m and g are the effective mass and angular fre-
initial conditions for the auxiliary functior, see Eq(16).

Within the framework of NQCA® the modified initial quency of oscillator, respectively. The coupling to the bath is

conditions were obtained in a systematic way, through theassumed to have a bilinear form, i.e.,
expansion of the non-Markovian memory kernel to next or-  W(Q,q)=xB(q), (21
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while the bath will be characterized by a single correlation
time 7., so that

1.0 initial conditions: (a)
I — slipped

'''' non-slipped

1
R gy,
and NE
B(q)=B, (22b)
0

which is equivalent to the bath correlation function of the
form

Blq(t)]B[q(0)]=B% "™, (23) 1.0 4 (b)

where an overline denotes ensemble average.
The applicability criterion(19) yields for this case the

X ) g
following estimate: D
52 . g 0.5
A?= <—= 24
mTwg 2E° (24)
where E is the energy of the oscillator. The relatid@4)
comes from considering the maximum oscillator displace- 0 . . '

ment asX .= \/ZE/(mwoz). Thus, the applicability limits for 0 d tl/'ic o 20

the model under consideration actually depend on the state of

the open system. For instanc/le?< w22 guarantees the va- FIG. L. Evoll:]tiofnlof the potelntial enherg)l/J ofha hr.‘armonic oscilslstéor at mod-
" . ... erate strength of linear coupling with a bath. The parameters\are0.5,
“dlty of the approach at energies Iowe_r Or,n_e,ar equ'“,b,”umrczlo, andT=0.5. In the caséa) (upper panelthe initial conditions were
(E~T). On the other hand, when using initial conditions n2) —1 (x?),=1, and(px),=1, while the corresponding initial condi-
with the energies considerably larger than the mean heat eriens for the auxiliary functions were either taken from E2@) (solid line),
ergy, Condition(24) becomes more restrictive. or set to zerddashed ling In the casdgb) (lower panel the initial condi-

. . . . i 2y _ 2y _ _ ) .
In the following we use dimensionless variables, andio" Wer&(P“)o=2,(x*)o=0, and{px)o=0, for which Eq.(33) gives zero
itial conditions for the auxiliary functions. It is seen, that neglecting the

measure the time, momentum, and displacement in units cI?zitial correlations one gets unphysical behavior of temporary negative po-
1wy, VMwq, and 1A/mw,, respectively. To reduce the num- tential energy.

ber of notations, we denote these dimensionless units by the

same symbols. Then, the Hamiltonié20) takes the simple

form The initial conditions for Eqs(26)—(30) are
H(p,x)= 3(p?+x?). (25 (x*(0)=(x*)o, (P*(0))=(P*)o, (PX(0))=(PX)o,
The corresponding set of kinetic equations, describing q (32)
energy relaxation, is readily obtained from E§$4)—(16), an
(20)—(22), and is(using the dimensionless units w(0)=A%px)y, £(0)=A%(x?),, (33

d , where nonzero initial conditions for the auxiliary functions
E(x (1))=2(px(1)), (26 ,(t) and£(t) account for the initial correlations in the sys-
tem. The modification of the initial conditions, caused by the
evolution during neglected time scales, is frequently called
“slippage,” and we also use this terminology here. The ana-
q Iytic solution of the kinetic Eqs(26)—(30) is rather cumber-
el —n2(H) 20+ some, and, therefore, we solve them numerically to demon-
dt(DX(t» (p() —(x*(1)) = £(v), (28 strate the physical importance of the slipped initial
conditions(33).
Figures 1a) and Xb) show the evolution of the potential

m(t) (29) energy[(x?(t))/2 in the reduced unitsat moderate strength

of the interaction between the open system and the bath. The

parameters used ar&:?=0.5, 7.=10, andT=0.5. In the
as _ () + A2(px(1)) — {0} (30)  first case(a) the initial conditions werdp?)o=1, (x?)y=1,

e * T and (px)o=1. In the second casgp) they were(p?),=2,
(x2)o=0, and({px)o=0, and the initial energies are equal in
both cases. In the first case the initial conditions for the aux-
iliary functions (33) are nonzero, and their neglect leads to

) the unphysical result of temporary negative potential energy,
(a(t)>=f A(QF(Q;1)dQ. 3D which also means positivity violation of partial distribution

d
a(pz(t»:—2<IOX(t)>—2M(t), (27)

and

du(t)

— =~ (L AR+ AZ(pA() ~T] -

L
Tc

where the parametek? was defined in Eq(24), and the
average of any dynamic variabé€Q) is defined as
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function, see Fig. (B). Similar unphysical behavior can be where the time scales of the particle motion and of the reor-
observed for the kinetic energy, if the slippage was neganization of the bath are strongly separated. In reality, how-
glected. In the second cad® the initial values for auxiliary ever, the bath has a short, but finite characteristic correlation
functions are naturally zero, but at the same time the kineticime 7.. The analysis of the associated effects is done in the
does not exhibit unphysical features, see Fig).1 following section.

Thus, the role of the slipped initial conditions is similar
to those in the corresponding quantum-classical treatfient,y; NON-MARKOVIAN EEEECTS
where they remove the breakdown of the positivity of thejN THE MOMENTUM RELAXATION
RDM within the applicability limits of the approach. In the o ) )
full classical limit the slippage preserves positivity of the ~ In order to simplify the analysis of non-Markovian ef-
RDF, and is particularly important for the non-Markovian fects, we seti(r)=0, and consider the process of relaxation
stage in the kinetics and at moderate strength of the systerHf! mMomentum space. Evolution of the distributibgp;t) can
bath interaction, in the sense of the critical paramétéy. alternatlvel.y. be characterized by considering the evolution of
On the other hand, methods like NEMDyhich essentially ~the probability momenta
rely upon the appropriate sampling of the initial state, slip % ,
away of this problem. Nevertheless, despite the fact that Pn(t):f p"f(p;t)dp, ﬁn(w):f pn(t)e™'“'dt,
NEMD methods intrinsically preserve positivity of the re- o
duced distribution function at any circumstances, the ques- n=1,2,..., (37

tion about adequacy of the short-time kinetics, obtained b)(/vhere tilde denotes the Fourier transform. Then we derive
NEMD calculations without taking care of quantum correc- . ; . . ]
the following equation for the Fourier transform of the aver

tions is wide open.
age momentum:

V. KINETIC EQUATION P(w)= %, (38
FOR DELTA-CORRELATED BATH lo+&n(w)
The non-Markovian kinetic equations, obtained in Sec.Where
[ll, provide an accurate description of open systems interact- d\ Jo)
ing with a thermal bath in the full classical limit. The ap- ~ én(@)=| 1+ o q~|— = (39)

proach has wide applicability limits, but must reproduce

known results, at least under more restricted conditions. Té the nonstationary or frequency-dependent friction. Here

demonstrate such a conformity we consider the Markovian © __ A

limit for the model consisting of a particle in an external ﬂw)=J J(tye™'“dt (40

field, and coupled to the canonical bath. Then, the Hamil- o

tonian of open system takes the form is the Fourier transform of the force-force correlation func-
2 tion (A19).

H(p,r)= 2p_+u(r)’ (34) The kinetics in the non-Markovian regime is sensitive to

m the functional form of the correlation function, and, for the

where u(r) is the potential of the external field, which is sake of simplicity, we take its monoexponential form, given

independent on the bath coordinates. In turn, Poisson brackey Ed. (A23). This leads to

(13) becomes

J(w
p r$1T) - 1+i§w7 ' (41)
{H(Q), HQD}={ -V, =V.u(r)-V, [f(p,r;t), (39 ¢
and

whereV, andV , are gradient operators in position and mo- ¢
mentum spaces, respectively, while the centered dot denotes ¢ ()= : 5. (42)
a scalar product of the two vectors. Here and afterwards the (1t+iwr)
vector quantities are shown by bold symbols. Reconstruction of the kinetics of the average momentum

In the simplest case of &correlated canonical bath, the in the time domain calls for the solution of a cubic equation,
non-Markovian kinetic Eqg14)—(16) reduce to the standard \which is of rather cumbersome form. Therefore, we give

Fokker-Planck equatio(FPE) expressions for several limiting cases, depending on the
i p value of the characteristic parametér,. First of all, ex-
EJFE~Vr—VrU(r)‘Vp)f(p,r:t) panding the roots of the cubic equation, we obtain in the

Markovian limit
p - — g1+ 287t
= . — : p(t)=po(l+2&7,)e ot ET.<<4AI27, t>71..
EMTV,, (Vp+ m_l_)f(p,r,t), (36 c c (23)

where¢ is the friction constant, see Appendix A. Note, that Figure 2 shows the kinetics for the component of the average
the &-correlated bath corresponds to the model of Browniarmomentum atér.=0.02, calculated both from Eq43)
motion (heavy particle immersed in a bath of light opes (dashed ling and via the inverse Fourier transform of Eq.
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FIG. 2. Kinetics of the average momentum relaxatior its component,  FIG. 4. Effect of quantum corrections on the kinetics of non-Markovian
i=X,y, or z) under conditions of the applicability of the Markovian limit,

relaxation of average momentum. Full kinetics is calculatedéfqe 4/27
£7.=0.02. The numerical result is obtained via the inverse Fourier trans{dotted ling, £7.=0.5 (dashed ling while the corresponding kinetics ne-

form of Eq. (38) and is plotted by the solid line. Analytic result of the glecting quantum corrections are plotted by solid lines.
Markovian limit, Eq.(43) is shown by the dashed line.

o o sion of the interaction potential, while the use of realistic
(38) (solid ling). Some deviation between the results appeargnonexpandedinteraction potentials requires more general

on the time scale of., while at longer times the kinetics is non-Markovian kinetic Eqs(14)—(16).

accurately reproduced by E@3). It is seen, that at short As it was stated above, quantum corrections may signifi-
times the average momentum relaxes slower than exponegantly affect the non-Markovian part of the kinetics. Indeed,
tIaIIy, but proper modification of the initial conditions for the neg|ecting the Corresponding term in H@Q) (|t contains
Markovian limit eliminates the difference for longer times. derivative, we obtain Eq(38), but with different nonstation-

Increasing the value of the characteristic parameter weyy friction ¢, (w) = &/(1+iwr,). Both forms of¢,(w) yield
arrive to the situation wherér.=4/27, when the exact ki-

asymptotically identical results for the Markovian limit
netics takes simple form (¢é7.<1,t>7.), but produce considerable deviations if the
e (37 relaxation is of non-Markovian character, see Fig. 4.
P()=po—g—(8+4t/ 7+ e V),  Er,=4027.

Similar effects may be observed in the kinetics of the
(44) energy relaxation, and we briefly present the corresponding
results. The Fourier transform of the second probability mo-
At even larger values of 7. an oscillating contribution ap- mentum(scalar valugis
pears. Figure 3 shows the evolutions of the average momen- _
tum for é7.=4/27, é7.=1/2, andér.=1. It is seen, that the B P2, T 6T w)/(iw)
frequency of oscillations increases when increasing the fric-  Pa(@)= w0t 26 (0) (49)
tion. The origin of these oscillations can be explained by "

noting, that at finite reorganization time of the bath-ef, ~ where £,(») and J(w) were defined earlier, see Eq89)

and sufficiently large interaction force the scattering on battfnd(40). Note, that starting from the second probability mo-
molecules is essentially elastic, and the particle is dynamimentum the quantum corrections do not simply change the
cally reflected several times before it completely loses thdorm of the non-stationary friction, but also affect the struc-
initial momentum. We pay heed to the restrictioh24) on  ture of the solution in the Fourier domain. Using E¢41)

the value of the friction due to the employed linear expan-and (42) we obtain, that the Markovian limit requiresr,

<2/27 andt> 7., which yields exponential kinetics for the

relaxation to the nonzero equilibrium value ah3 with the
LOTE characteristic rate constant
B i 4 kp=26(1+4¢T), (46)
Rk N — &, =10 while for £€7.>2/27 the kinetics gets an oscillatory contribu-
< tion.
=40 AT
L \/ ~ VII. DIFFUSION IN POSITION SPACE
We now turn to the case of nonzero potential of the
0.5 external forcesu(r) and obtain kinetic equations for long
0 10 20 30

times, exceeding the time scale of momentum relaxation.
The change to the reduced description by means of diffusion
FIG. 3. Kinetics of the relaxation of . in the position space is possible in the so-called overdamped
. O inetics of the relaxation of average momentum component fory; . H

£ro= 4127 (dotted g, £r,~0.5 (dashed ling and £7,~1.0 (solid fng. M WEN the potential of external forces does not change
The numerical result were obtained via the inverse Fourier transform ofignificantly the equilibrium distribution in - momentum
Eq. (38). space.

t/re
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Traditionally, a so-called adiabatic elimination of the tum subsystem and canonical bath due to the energy disper-
momentum is carried out in the framework of the Langevinsion of bath degrees of freedom. This underlying physical
approach, which is equivalent to FPE. However, in the caserocess is of quantum-mechanical nature and is eliminated
of the partial classical limit, the kinetic equations of the from the explicit consideration when passing to the classical
method contain quantum variables as well, and the correlimit. Nonetheless, the specific correlations between the open
sponding equivalent stochastic differential equations camystem and the bath, created during the neglected timescale
hardly be obtained. Therefore, we propose a simple alternaf ), enter the classical limit via the modified initial condi-
tive procedure to obtain the Smoluchowski equation startingions and the projected dynamics. In other words, the classi-
directly from FPE, which can be extended to more compli-ca| mechanics treatment of the open system is allowed only
cated situations, as mentioned above. Besides, the presenigtthe particular subspace of correlations, while the decay of
technique allows to account for the modification of initial -orelations in the complementary subspace is essentially of
pqnditions during the preliminary stage of the relaxation quuantum-mechanical nature and, therefore, cannot be cor-
initial momentum. o . rectly described classically. We have shown, that the projec-
~ The mathematical derivation of the Smoluchowski equasjgn (quantum correctionmay significantly affect the non-
tion is given in Appendix B, which yields for the RDF in y1arovian kinetics, and is required to preserve positivity of
coordinate spacg(r;t) the following kinetic equation: the reduced distribution function within the applicability lim-

ag(r;t) Vv.u(r) its of the approach.
ot =DV,-(V,g(r;t)+g(r;t) T /) (47) Non-Markovian effects in the dynamics of open system
are generally important on the time scale, comparable or
shorter than the characteristic correlation time of the bath.

with the modified initial condition

v, piem) On the other hand, the long time behavior is well described

g(r;0)=f e s fo(r,p)dp by considerably simplified kinetic equations, and their form
is known for many cases of interest. Needless to say, that the
:f fo[r — p/(£m),p]dp. (48) obtained _equatlons mus_t correc_tly reproduce corresponding
asymptotic behavior. Using the simple model of a heavy par-

HereD is the usual diffusion coefficient in the position spaceticle in an external field coupled to a bath of light solvent
- molecules, we obtained in the Markovian limit the standard

— (49) Fokker-Planck equation. This example cannot serve as a
&m proof for the general case, but we believe that the non-

The modified initial condition(48) accounts for the Markovian equations of the classical limit provide the cor-
transformation of the initial distribution during the prelimi- rect description of the kinetics on the entire time axis for all
nary stage of momentum relaxation. This effect may be imother systems, where the applicability criterion of the ap-
portant for the geminate recombination in the condense@roach is fulfilled.
phase, if the pair of reactants originates from a highly excited ~ Although nonequilibrium molecular dynamics simula-
parent molecule. In the case of a simple initial distribution oftions seem to be a more natural way to study the non-
the form Markovian evolution of open systems in the classical limit,
they do not account for quantum corrections in the short-time

D

fo(r,P)=go() 5(P~Po), (50 dynamics, and do not allow for a consistent incorporation of
we obtain from Eq(48) that quantum transitions. On the other hand, the recently sug-
9(r:0)=go[r—po/(ém)] (51) gested quantum-classical approximafiiimeats open system

] S ) ~_quantum mechanically, which can be prohibitively expensive
i.e., the initial distribution is shifted. The value of the shift is for reactive systems with multidimensional reaction coordi-
deFer.mlr)ed by the |n|t|al.veI.00|ty multiplied by the charac- \5tes and/or small splittings between energy levetta-
teristic time 1£ of relaxation in momentum space. tional motion at high temperatures, @tcThe problem may
VIIl. CONCLUSION frequently be overcome by taking the partial classical limit

We presented the full classical limit of the recently pro- for several degrees of freedom of the open system, keeping a
posed quantum-classical approximatfdriThe obtained ki- gquantum-mechanical treatment for the most important ones.
netic equations for the reduced distribution function in phasé Nis can hardly be done applying partial Wigner transforms
space have wide applicability limits and are capable of dedirectly to the quantum Liouville—von Neumann equation for
scribing the non-Markovian evolution of an open systemthe density matrix of the total system as the resulting
coupled to a canonical bath. They incorporate detailed balduantum-classical Liouville equation suffers from internal
ance directly, rather than through the use of the fluctuationinconsistenciegsee Introduction for more detajjsut seems
dissipation theorem, and are valid beyond the linear responde be permissible in the framework of the novel quantum-
regime. The presented form of the kinetic equations allows telassical approach. The corresponding kinetic equations,
use arbitrary canonically conjugate coordinates in phaseombining classical mechanics description of the motion
space. along the reaction coordinate and a nonphenomenological

The original quantum-classical treatment is based on &eatment of quantum transitions between them will be ob-
short coherence time, of cross correlations between quan- tained and analyzed in the subsequent articles.
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APPENDIX A: REDUCTION TO FOKKER-PLANCK

EQUATION Go(p,r[poro;t)
We introduce generalized variables for the arbitrary = (D) 0Po—Pup.r;—O]dlro—r(p,ri—t)].  (AL0)
function a(t) using the stepwise Heavisidefunction as Using Egs.(A6) and(A10) we rewrite Eq.(A3) as fully
alt)=o(H)a(t). (A1)  equivalent integrodifferential one
In the following the corresponding generalized variables will ~ _— e E — )
be denoted by the bar accent. Then, Etd)—(16), and(34) (P10 = T 7wa(q|qo,r)W(r0,qo)
give
_ d _
af(p,r;t) _ X| = Ao f(po,ro;t—7)dqedr
o~ 9Wfe(p.r)+Af(p.rit)
. _J J Eb(q|QO;T)F(ranO)
—f F(r,a)-Vpn(p.r,o;t)da, (A2) o
_ pO —
19 !rl 1t J— : V +_f ,I’ ;t_ d d y All
TIPS _ (At Lomipr,at—F(ra { & mT} (Po-foit=nddocdr, (ALY
Wherepoz pt(p!ry - T)! rO: rt(piry - T)a and
p )—
| Vot+—=|f(p,r;t)
p p
mT Ao=— EO-VrO—F[V,Ou(rO)]VpO. (A12)
T |7 AP, (A3)  For short times these sets of phase space coordinates are
related to each other by
where we have defined differential operator
pPo=p+7V.u(r), ro=r—7p/m. (A13)
p
A==V +[Vun]-v,, (A4) Substituting Eq(A11) in the right hand side of EqA2),
we get the fully equivalent integrodifferential equation for
and vector of the forces the RDF of the open system
F(r,g)=—-V,W(r,q), (A5) JF(p,rit) B 1 (=
acting on the particle from the bath. o oWWfe(p.r)+Af(p,rit) — ?LWVp
The formal solution of Eq(A3) is expressed in terms of
’ H J .
the f_ree Green'’s function B B 'C(D,F;T)(E—Ao)f(po,ro;t—T)dT
Go(P.T,a|Po,T0,d0:t) =Go(P,rPo,ro;t) Gp(algo;t),
(49) +FVR : V+p°)
describing the evolution of the open system and the bath in e P (p.r7): Po- mT
the absence of their interaction. Here the free Green’s func- _
tion of open system obeys Xf(po,ro;t—m)dr. (A14)
d — Here the vector
E‘A Go(p,r|po.ro;t)=6(t) 8(p—po) 8(r —ro),
(A7) C(p,r:r)=J f F(r,a)Gp(aldo; /W(ro,00)dqd
while the Green'’s function of the bath satisfy (A15)

d — _ specifies correlations between the force and the shifted po-
5t~ La| Goldldoit) = 8(t) 8(a—do). (A8) tential, while elements of the tensor

The solution of Eq(A7) is readily obtained, and corresponds L — )
to the motion of particle along the classical trajectory, speci- Kij(p,r;7)= Fi(r,a)Gp(aldo; 7)Fj(ro,q0)dada,
fied by the Hamiltoniar(34)

GolP.r|Po.ro; )= 6(t) lp—Pu(Po.Foi1)] contain information about correlations between components
X O[r—ripo,ro:t)], (A9)  of the shifted forces.

i,j=X,Y,z (Al6)
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The structure of the correlation function®15) and j(T)Ze(T)er—T/TC £=F27,/(mT) (A23)
(A16) depends on the properties of the bath and of the = ’ ¢ '
system-bath coupling. Although it is not difficult to continue Which gives

with the more general case of an anisotropic bath, we as- F2.2 o7
sume, for the clarity of presentation, that the bath is isotro- ¢ ~ ‘e (A24)
pic. In this case C(p,r;7)=C(p;7), and K;;(p,r;7) mT  2E

=K;j(p;7), i.e., the correlations do not depend on the posiyn other words, the validity of the linear expansithl7) of

tion of the open system. the shifted potential on the time scale of the correlation time
The subsequent simplification of the structure of the corgepends on the kinetic energy of the solute. Near equilibrium

relation functions(A15) and (A16) is possible only when g T and at¢r,=1 Eq. (A17) cannot be justified. The

assuming a sufficiently short correlation timg of the bath  restriction on the allowed frictiongr.<1 is more severe, if

to expand the shifted interaction potential as the initial kinetic energy of the solute considerably exceeds
p its thermal value. On the other hand, the rejection of the
W(rg,00)=W(r,qo)+ T F(r,qo). (A17)  linear expansior(A17) leads to a nonlinear dependence of

the memory kernels on momentum. In that case we come
Due to symmetry reasons the first term of expangidh7) back to the more general non-Markovian equations of
does not give contributions to EGA15), while the different  Sec. IIl.
components of the force are uncorrelated. A similar expan-  In a simple situation, when the potential of external force
sion can be written for the shifted force, but then the correis absent[u(r)=0], the non-Markovian FPE, suitable to
sponding linear term om does not give contributions to Eq. analyze the effects of finite correlation time at not too strong
(Al16) (symmetry reasons agairAfter that Eqs.(A15) and  frictions (é7.=<1) is readily obtained. In that case one has

(A16) are simplified to po=p, since the free evolution of the open system is a rec-
0 tilinear motion with a constant velocity. Then, taking account
C(p;r)=—r1J1), K(p;r)=141), (A18)  for Eq. (A18), and integrating both sides of EGA14) on
m

coordinates, we obtain for the RDF in the momentum space

wherel is the unity tensor, while the correlation function of o o
the bath f(p;t):J f(p,r;t)dr, fo(p):j fo(p,r)dr (A25)
7(7.):f j Fi(r,a)Gy(aldo; 7 Fi(r,qo)dqdcy, the following kinetic equation:
. af(p;t
i=x,y, orz (A19) (Ft) ):5(t)f0(p)
For long times, the dynamical properties of the bath are o
usually specified by the frictiog, which is expressed via the 1 (= — v af(p;t—7) q
force-force correlation functiofA19) as mT _wTj( VpPp—¢ T
1 (= — o D\
s I (A20) +f_xj(r>vp- Vot —|f(pit=mn)dr.
In the simplest situation of &correlated bath, when (A26)
?(r)=§mT5( 7), (A21) Note, that Eq.(A26) should be applied with care, since it

Egs. (A14) and (Al18) yield the standard Fokker-Planck may vio!ate positivit_y at far tails .Of th(_e distribution,. because
Eq. (36). in _the situation of finite correlatloq time there exists some
- ._finite value of the momentum, which already breaks down
Nevertheless, the bath has a short, but finite correlatlor,[1he linear expansiofA17). This is removed in the limit:
time 7., and at large frictions §7.=1) relaxation in the . c

momentum space has strongly non-Markovian character. The O so that the Fokker-Planck equation does preserve posi-

kinetics in this regime is sensitive to the form of the corre-t'V'ty' Theref_ore,_ we pre_fer using EGA26) to obtain non- .
lation function(A19), while the short time expansion of the MarkOV|an Kinetic equations for several low-order probabil-
shifted potentialA17) becomes of limited use. Indeed, esti- ity momenta(37), for which the above problem does not
mating absolute value of the momentum |ag ~ y2mE,, appear.
where E, is the kinetic energy of the solute, Eq4.9) and
(A17) lead to the following restriction on the value of the
interaction force APPENDIX B: DERIVATION
T OF THE SMOLUCHOWSKI EQUATION
mm
—amE. (A22) Assuming separation of time scales for the relaxation in
¢ momentum and coordinate spaces, one can derive the equa-
In turn, the value of the friction for the exponential form of tion for the reduced distribution function in the coordinate
the correlation function space, which is defined as

Fl<
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ﬁ(r;t)=ff_(r.p;t)dp. go(r)=J fo(r,p)dp.  (B1)

Then, integrating Eq.36) over momentum variables, we ob-
tain

0g(r )_5(t) S )_7/1( ), (B2
where
7n(r:t)=J (V,-p)"f(r,p;t)dp,
(B3)
Yno(r):f(Vr‘p)”fo(l’,p)dp, n=12,... .
In turn, Eq.(36) yields
J r;t
PATY _ 5ty yagn)- it
- yzg;t)+v,-[§(r;t)v,u(r)] . @9

where¢ is the friction, see EqA20). This hierarchy can be
continued to give

dyn(r;t Joo(tt)
% O(t) 7ny(1) = %HJrKn(r;t)}
—NnE ya(r;t) —mT(N—=1)V -V, 5, _»(r;t)],
(B5)
where

R0 =0 [ (Vep 9, (f(rp0 V) ldp. (86)

The Smoluchowski equation follows from E@4) as-
suming that after time of %/ the momentum relaxes to its
equilibrium value, while the potential of the external forces
u(r) does not significantly change the resulting Maxwellian
velocity distribution(overdamped limijt In that case one can
assume

_ 1 p?
f(r'p;t):(Z’]TmT)yzex _2mT

for the calculation ofy,(r;t) (closure approximationpwhich
gives

Y2(r;)=mTV -V, g(r;t). (B8)

Then, the quasistationary solution of E@4) at timest
>1/¢ is

g(r;t), (B7)

_ , T _ _ Vv.u(r)

yl(r;t)=5(t)710(r)—gvr~ Vg +9(nt) ——/,
(B9)

which, upon substitution in EqB2) and changing to non-

generalized variables, yields Eq4.7)—(49). Here the modi-
fied initial condition

y10<r>—2 f

= 1(V p)"fo(r,p)dp.  (B10)

n'§”
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Note, that Eq.(B10) have appeared as the result of partial
summation of the contributions from the equations of higher
order correlationg/,(r;t), which gives in the quasistationary
regime ¢>1/¢)

'yno(r)

né

_7n+1(r;t)
ném

a(rit)~6(t) , (B11)

and, taking into account E¢B3), leads to Eq(B10). Such a
partial summation is required to prevent possible violation of
positivity of the modified initial distributior(48).

Equation(B5) can serve as the basis to derive systematic
corrections to the Smoluchowski equation on the smallness
of the inverse friction 1. This is achieved by considering
more members of the hierarclig5), which allows to repro-
duce known result¥!~36
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