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A fully classical limit of the recently published quantum-classical approximation@A. A. Neufeld, J.
Chem. Phys.119, 2488~2003!# is obtained and analyzed. The resulting kinetic equations are capable
of describing the evolution of an open system on the entire time axis, including the short-time
non-Markovian stage, and are valid beyond linear response regime. We have shown, that proceeding
to the classical mechanics limit we restrict the class of allowed correlations between an open system
and a canonical bath, so that the initial conditions and the relaxation operator has to be appropriately
modified~projected!. Disregard of the projection may lead to unphysical behavior, since mechanism
of the decay of some correlations is essentially of quantum-mechanical nature, and is not correctly
described by classical mechanics. The projection~quantum correction to the kinetics! is particularly
important for the non-Markovian regime of relaxation towards canonical equilibrium. The
conformity of the developed method to the conventional approaches is demonstrated using a model
of Brownian motion ~heavy particle in the bath of light ones!, for which the obtained
non-Markovian equations are reduced to the standard Fokker-Planck equation in phase space.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1769353#

I. INTRODUCTION

The concept of open system~OS! plays an important
role in the consideration of complex many-body dynamics.
In many situations one can define OS as a relatively small
subsystem of interest, weakly coupled to the remaining part
of the system~bath!. In this case interactions between the OS
and the bath can be accounted for by means of perturbation
theory, which appreciably facilitates an analysis of the cor-
responding dynamical properties. The meaning of weak cou-
pling alters in accordance with the theoretical approach in
use, while the so-called linear response theory1–3 is most
successful to present days as it provides an unified treatment
of the kinetics at small deviations from the equilibrium.
However, processes of quantum nature and/or far from equi-
librium require different kind of approaches, which stimu-
lated the development of alternative treatments.

Direct solution of Newton’s equations for many-body
system with a finite, but large number of constituents, as a
prototype of a system in the thermodynamic limit, forms the
basis of the nonequilibrium molecular dynamics~NEMD!
methods,4 and allows for nonperturbative simulations within
the frameworks of classical mechanics. Considerable efforts
were put to add effects of quantum transitions directly to the
classical trajectories.5–10 There are, however, some funda-
mental problems in this type of approaches. In particular,
equations of classical mechanics are deterministic, while
quantum subsystems are intrinsically probabilistic. As a re-
sult, the deterministic feedback of quantum subsystem on a
classical trajectory, necessary to propagate classical degrees
of freedom, can be obtained just in two ways, either invoking
a mean-field approximation,5–7,10or using a surface hopping

scheme.7–10 The drawbacks of these approaches are well
known, mean-field approximation fails to describe properly
the situation of considerably distinct exit channels of reac-
tion, while surface hopping is anad hoc scheme with un-
known accuracy and applicability limits.

Quantum-classical~QC! approaches, which treat both
quantum and classical subsystems on a similar probabilistic
footing, are better balanced and do not suffer from the afore-
mentioned problems. There exist two general schemes for
the derivation of kinetic equations for the reduced density
matrix ~RDM! of quantum subsystem. One scheme relies
upon partial Wigner transform11,12 over classical degrees of
freedom and yields the quantum-classical Liouville
equation13–17 ~QCLE!, while the others approaches18–25start
with an equivalent integrodifferential representation of the
quantum Liouville–von Neumann equation.

The QCLE is probably the simplest quantum-classical
theory for the RDM of quantum subsystem. Its appealing
feature is a formal similarity both to the Liouville–von Neu-
mann equation~for quantum subsystem! and to the Liouville
equation for the reduced distribution function~for classical
degrees of freedom!. Mathematical background of QCLE is a
formal expansion of partial Wigner transform in terms of\
→0 with the subsequent replacement of quantum operators
~positions and momenta! in Poisson brackets with their clas-
sical counterparts~phase space coordinates!. However, the
last step is rather suspicious, and cannot be justified. In par-
ticular, one can point out two associated defects of QCLE.
First, substitution of quantum operators by the corresponding
phase space coordinates means elimination of many vari-
ables~the detailed picture of the distribution over quantum
levels is omitted!. As it follows from the Nakajima-Zwanzig
projection formalism,18 any rigorous elimination of variables
unavoidably leads to memory-type of equations. The subse-a!Electronic address: aneufel@gwdg.de
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quent approximations to a memory kernel may sometimes
lead to the differential equations, and the conditions for that
~applicability limits! are also obtained at this step. This stage
is apparently missed in the derivation of QCLE, which is
immediately obtained in the differential form. As a result, the
applicability limits of QCLE are unknown.

Another drawback of QCLE is more substantial. The re-
placement of quantum operators by the phase space coordi-
nates in the framework of partial Wigner transforms of the
quantum Liouville–von Neumann equation also leads to the
replacement of true cross coherences, which drive the energy
flow between the subsystems, by direct coherences inside
quantum subsystem, as it was well explained in Ref. 26 on
the basis of a simple four-level system. This defect is inher-
ent to all QC treatments, which model the true interactions
between subsystems by a time-dependent external field
within the framework of the Schro¨dinger or Liouville
equation.

Recently, a novel non-Markovian quantum-classical
approximation25 ~NQCA! was suggested, which does not
suffer from the aforementioned drawbacks peculiar to
QCLE. The approach is based on a short coherence time of
cross correlations between the quantum subsystem and the
canonical bath, due to an energy dispersion of the bath de-
grees of freedom. It is of differential form, but fully accounts
for arbitrary long memory of the bath. NQCA also has
known applicability limits, and properly handles cross corre-
lations between quantum and classical subsystems, including
an initial time period, when a differential description is not
valid. On the other hand, NQCA is quite different from
QCLE, and is not reduced to the Liouville equation for the
partial distribution function in the full classical limit, i.e.,
when the subsystem of interest~which is treated quantum-
mechanically within QC approaches! is also described by
means of classical mechanics.

In the present paper we obtain and analyze the full clas-
sical limit of NQCA to clarify the physical meaning of basic
ingredients of the theory in the domain of classical mechan-
ics. The outline of the paper is following: Basic equations of
NQCA are reproduced in Sec. II, and serve as a starting point
for the subsequent consideration. The full classical limit is
obtained in Sec. III using a standard procedure. Basic prop-
erties of the resulting kinetic equations~applicability crite-
rion, direct incorporation of the canonical equilibrium!, and a
physical origin of projected dynamics~quantum corrections!
are discussed ibidem. The latter prevents from the violation
of positivity of the reduced distribution function within the
applicability limits of the approach, as it is explicitly dem-
onstrated in Sec. IV using a simple model of harmonic os-
cillator bilinearly coupled to a single correlation time canoni-
cal bath. The conformity of the obtained non-Markovian
kinetic equations with the traditional approaches is revealed
for a Brownian dynamics model~heavy particle in the bath
of light ones!, for which in the Markovian limit one gets a
standard Fokker-Planck equation in phase space, see Sec. V
and Appendix A. Extended capabilities of the approach and
importance of quantum corrections for a short-time dynamics
are demonstrated in Sec. VI considering non-Markovian re-
laxation in the momentum space. A simple method of deriv-

ing the Smoluchowski equation~diffusion in position space!
starting directly from the Fokker-Planck treatment is outlined
in Sec. VII and Appendix B. The results are briefly summa-
rized in the Conclusion.

II. BASIC EQUATIONS OF NON-MARKOVIAN
QUANTUM-CLASSICAL APPROXIMATION

A quantum-classical approximation25 requires matrix el-
ements of the system-bath couplingŴ(q) to satisfy the con-
dition

uWik~q!u
\

tb!1, ~1!

where\ is the Planck constant,q denotes a generalized set of
the phase space coordinates of the bath, and the characteristic
lifetime tb of cross correlations between open quantum sub-
system and heat reservoir is

tb5
\

pkBT
. ~2!

In order to reduce the number of notations we set the Boltz-
mann constantkB51, thus measuring absolute temperatureT
in energy units. At timest@tb NQCA reduces to the set of
differential equations25

ds~ t !

dt
52

i

\
@Ĥ,s~ t !#2

i

\ E @Ŵ~q!,h~q;t !#dq ~3!

]h~q;t !

]t
52

i

\
@Ĥ,h~q;t !#2

i

\
@Ŵ~q!,s~ t !#

1
1

\
@Û~q!,s~ t !#11

1

\ F Ŷ~q!,
ds~ t !

dt

1
i

\
@Ĥ,s~ t !#G

1

1Lqh~q;t !, ~4!

whereĤ is a Hamiltonian of open system,s(t) andh(q;t)
are RDM of quantum subsystem and auxiliary matrix, re-
spectively, whileLq is a linear functional operator defining
motion of the bath in its phase space. Here also@ . . . , . . .# and
@ . . . , . . .#1 denote commutator and anticommutator, corre-
spondingly,

Û~q!5E
2`

`

f b~t! e2 ~ i /\!Ĥt Ŵ~q!e~ i /\!Ĥtdt, ~5!

and

Ŷ~q!52E
2`

`

t f b~t!e2 ~ i /\!ĤtŴ~q!e~ i /\!Ĥtdt, ~6!

where the generalized memory kernel, describing the decay
of cross correlations between open quantum subsystem and
thermal bath, and its Fourier transform are

f b~ t !52
1

ptb

1

sinh~ t/tb!
, f̃ b~v!5 i tanhS \v

2T D . ~7!

The initial conditions for Eqs.~3! and~4! are of the form
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s~ t50!5s0 , h~q;t50!5
1

\
@Ŷ~q!,s0#1 , ~8!

where the nonzero initial conditions for auxiliary matrix ac-
count for the correlations created during the initial short-time
(t&tb) evolution of quantum subsystem, see Ref. 25 for
more details. To the end of this section we also note, that the
approach requires renormalization of the Hamiltonians of the
form

Ĥ→Ĥ1Trb~Ŵrb!, Ŵ→Ŵ2Trb~Ŵrb!, ~9!

to eliminate long lasting source term in the general master
equation. Here Trb denotes the trace over the bath variables,
while rb is the equilibrium density matrix of the bath.

III. THE CLASSICAL LIMIT

First of all we find the classical limit of operators, de-
fined by Eqs.~5! and ~6!. Substituting the short-time expan-
sion of the interaction between open system and thermal bath
in the Heisenberg representation

e2 ~ i /\!ĤtŴ~q!e~ i /\!Ĥt.Ŵ~q!2
i

\
@Ĥ,Ŵ~q!#t1¯ ,

~10!

in Eqs.~5! and~6!, and taking into account thatf b(t) decays
fast, being an antisymmetric function of time, we get

Û~q!.
\

2T

i

\
@Ĥ,Ŵ~q!#, Ŷ~q!.

\

2T
Ŵ~q!. ~11!

Then, the classical limit of Eqs.~3! and ~4! is obtained as
usual, via the standard correspondence relations

i

\
@Ĥ,s~ t !#→$H~Q!, f ~Q;t !%,

@Ĥ,s~ t !#1→2H~Q! f ~Q;t !, ~12!

i.e., the RDMs(t) is replaced by the reduced distribution
function ~RDF! f (Q;t), depending on the phase space coor-
dinates of open systemQ, the auxiliary matrix becomes the
auxiliary function, the Hamiltonian operatorĤ is substituted
by the Hamilton functionH(Q), the anticommutator reduces
to the product of the corresponding classical analogs, while
commutators are replaced by Poisson brackets of the form

$H~Q!, f ~Q;t !%5
]H~P,X!

]P

] f ~P,X;t !

]X

2
]H~P,X!

]X

] f ~P,X;t !

]P
, ~13!

whereX and P denote arbitrary sets of generalized coordi-
nates and canonically conjugate momenta, correspondingly.
Application of relations~12! to Eqs.~3!, ~4!, and~11! yields

] f ~Q;t !

]t
52$H~Q!, f ~Q;t !%

2E $W~Q,q!,h~Q,q;t !%dq, ~14!

]h~Q,q;t !

]t
52$H~Q!,h~Q,q;t !%2$W~Q,q!, f ~Q;t !%

1
1

T
$H~Q!,W~Q,q!% f ~Q;t !

1
W~Q,q!

T S ] f ~Q;t !

]t
1$H~Q!, f ~Q;t !% D

1Lqh~Q,q;t !, ~15!

with the initial conditions

f ~Q;t50!5 f 0~Q!, h~Q,q;t50!5
W~Q,q!

T
f 0~Q!,

~16!

readily obtained from Eq.~8!. The canonical form of Eqs.
~14! and ~15! allows to obtain non-Markovian kinetic equa-
tions for the arbitrary set of phase space coordinates imme-
diately, since Poisson brackets~13! are invariant with respect
to canonical transformations. In particular, the use of the
customary coordinates and momenta is convenient at high
friction, while the action-angle variables are preferable in the
low friction limit ~energy diffusion regime!.

The obtained kinetic equations of the full classical limit
differ from the existing approaches,19,27–29based on the sto-
chastic models. Specifically, the generalized Langevin equa-
tion ~GLE! is an equation for the particular realization of the
driving stochastic process. The statistical properties of the
thermal reservoir enter the theory when the obtained solution
is averaged over the initial states of the bath, sampled from
the corresponding distribution. As a result, the GLE does not
explicitely involve the temperature of the bath, but incorpo-
rates it via a proper relation between the autocorrelation
function of the fluctuating external force and the memory
~friction! kernel. The required connection is given by famous
fluctuation-dissipation theorem~FDT!, which provides a link
between fluctuations and the linear response.

We employed a considerably different approach. In par-
ticular, the small parameter of the theory is directly related to
the statistical properties of the heat reservoir, and is indepen-
dent of the bath dynamics. In other words, the GLE is
founded on the dynamical properties of the system under
consideration, while our approach is based on the statistical
properties of the bath, and is valid beyond the linear response
regime. As the result, our equations incorporate the canonical
equilibrium directly, and the FDT is not required at all. In-
deed, the stationary solution of Eqs.~14! and ~15! is deter-
mined from the conditions] t f (Q,q;t)50 and h(Q,q;t)
50, which gives@ f `(Q)5 limt→` f (Q;t)#

$H~Q!, f `~Q!%50,
~17!

$W~Q,q!, f `~Q!%5
1

T
$H~Q!,W~Q,q!% f `~Q!.

It is readily seen, that the static contour

f `~Q!5e2H(Q)/T ~18!
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satisfies both conditions~17!, which is proved directly by
using Eq.~13!, and is the stationary solution of the kinetic
Eqs.~14! and ~15!.

The transition from the quantum-classical to the purely
classical treatment of an open system deserves additional
discussion. The characteristic timetb of thermal fluctuations
~2! plays the central role in our quantum-classical
treatment.25 However, this characteristic time does not exist
in the classical limit, since\→0 leads totb→0 as well.
None the less, specific correlations between open system and
thermal bath, which are formed on the time scale oftb ,
survive in the classical limit, see Eq.~16!, for instance.
Mathematically this fact is explained by a close look on Eq.
~5!. It is readily seen, that at\→0 the memory kernelf b(t)
decays instantaneously, but, at the same time, exponentials in
the integrand oscillate infinitely fast as well. The resulting
value is actually independent on\, see the first of Eqs.~11!.
The small parameter~1! can also be written in the form

uW~Q,q!u
pT

!1, ~19!

which is independent on\. In particular, Eq.~19! means, that
one can neglect the influence of the interaction between the
open system and the bath on equilibrium, otherwise the open
system would relax to an equilibrium state, which is different
from that given by Eq.~18! and were dependent on the
system-bath coupling.

In statistical physics based on classical mechanics, the
Liouville equation for the distribution function of the total
system in its phase space usually serves as the starting point
for the derivation of various kinetic equations. The associ-
ated problem of a proper choice of the initial conditions is
well known, a many-body system has an infinite number~in
the thermodynamic limit! of ‘‘pathologic’’ initial states ~or
correlations!, for which the evolution of the system is not
ergodic at all. Although the probability of realization of such
initial states is negligibly small, the very existence of them
produces considerable mathematical problems in statistical
mechanics. The reduced description of many-body system in
terms of kinetic equations is valid only for specific initial
correlations, as it was clearly demonstrated by the concept of
subdynamics.30

In our case, however, the physical origin of the modified
~projected! initial conditions seems to be different. Accord-
ingly to the picture, provided by NQCA,25 some of the cross
correlations between open system and the bath decay on the
time scale oftb , which vanishes when passing to the limit of
classical mechanics.~The uncorrelated state is actually a spe-
cific superposition of all correlation patterns30 by analogy
with the resolution of identity, so that the formation of cor-
relations may alternatively be viewed as the decay of some
of them.! In other words, the mechanism of their decay is of
quantum-mechanical nature, and can not be properly de-
scribed classically. Exactly such correlations are eliminated
from the initial state by setting the corresponding nonzero
initial conditions for the auxiliary functionh, see Eq.~16!.

Within the framework of NQCA,25 the modified initial
conditions were obtained in a systematic way, through the
expansion of the non-Markovian memory kernel to next or-

ders using the fast decay off b(t). Such a procedure leads not
only to a change of the initial conditions, but modifies the
relaxation operator as well. In other words, Eq.~15!, which
is responsible for a proper treatment of correlations between
open system and thermal bath, also accounts for a nonclas-
sical decay of some correlations in the course of relaxation to
equilibrium, thus leading to the quantum corrections to the
kinetics.@The corresponding term contains a time derivative
on the right-hand side of Eq.~15!.# A close look at Eqs.~14!
and ~15! shows, that the quantum corrections do not appear
in the dynamics of the isolated subsystem@W(Q,q)50#,
and at thermal equilibrium. This means, that the obtained
nonclassical corrections concern thenonequilibriumenergy
flow between the subsystems, which appears to have both the
classical and the quantum components. The latter is of in-
creasing importance at moderate values of the parameter
~19!, and may prevail, if the condition~19! is not fulfilled.
Nevertheless, the MD methods, which neglect the quantum
effects, can be used for theab initio simulation ofequilib-
rium bath. The nonclassical~or quantum! corrections may
substantially influence the kinetics in the non-Markovian re-
gime, see Secs. IV and VI. Another closely related subject is
the so-called quantum correction factor in the theory of high-
frequency spectra of liquids.31–33

To the end of this section we would like to emphasize,
that taking the static contour~18! as the initial condition for
the open system may lead to transient kinetics, since the
initial conditions for the auxiliary functionh ~16! are non-
zero in this case. This is because the initial condition for the
total system was taken as the uncorrelated product of the
states of the open system and of the bath. On the other hand,
the true equilibrium state is characterized by the specific cor-
relations not only inside the open system and inside the bath,
but also between them. Thus, the transient kinetics in the
above case corresponds to the formation of the proper corre-
lations between the subsystems, despite the fact that the sta-
tionary solution for the state of open system is the static
contour again.

Below we give an example, demonstrating the physical
importance of the proper initial correlations~16!, on the ba-
sis of a simple model of one-dimensional harmonic oscillator
bilinearly coupled to a bath.

IV. ROLE OF THE INITIAL CORRELATIONS

A bilinear coupling is frequently used to model interac-
tion between an open system and a thermal reservoir. Physi-
cally it corresponds to the linear expansion of the true
system-bath potential, and, therefore, assumes the space re-
stricted motion of open system. One of the simplest models
of this type is a one-dimensional harmonic oscillator with the
Hamiltonian

H~p,x!5
p2

2m
1

1

2
mv0

2x2, ~20!

where m and v0 are the effective mass and angular fre-
quency of oscillator, respectively. The coupling to the bath is
assumed to have a bilinear form, i.e.,

W~Q,q!5xB~q!, ~21!
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while the bath will be characterized by a single correlation
time tc , so that

Lq52
1

tc
, ~22a!

and

B~q!5B, ~22b!

which is equivalent to the bath correlation function of the
form

B@q~ t !#B@q~0!#5B2e2t/tc, ~23!

where an overline denotes ensemble average.
The applicability criterion~19! yields for this case the

following estimate:

L25
B2

mTv0
2 !

p2T

2E
, ~24!

where E is the energy of the oscillator. The relation~24!
comes from considering the maximum oscillator displace-
ment asxmax5A2E/(mv0

2). Thus, the applicability limits for
the model under consideration actually depend on the state of
the open system. For instance,L2!p2/2 guarantees the va-
lidity of the approach at energies lower or near equilibrium
(E;T). On the other hand, when using initial conditions
with the energies considerably larger than the mean heat en-
ergy, condition~24! becomes more restrictive.

In the following we use dimensionless variables, and
measure the time, momentum, and displacement in units of
1/v0 , Amv0, and 1/Amv0, respectively. To reduce the num-
ber of notations, we denote these dimensionless units by the
same symbols. Then, the Hamiltonian~20! takes the simple
form

H~p,x!5 1
2 ~p21x2!. ~25!

The corresponding set of kinetic equations, describing
energy relaxation, is readily obtained from Eqs.~14!–~16!,
~20!–~22!, and is~using the dimensionless units!

d

dt
^x2~ t !&52^px~ t !&, ~26!

d

dt
^p2~ t !&522^px~ t !&22m~ t !, ~27!

d

dt
^px~ t !&5^p2~ t !&2^x2~ t !&2z~ t !, ~28!

and

dm~ t !

dt
52~11L2!z~ t !1L2@^p2~ t !&2T#2

m~ t !

tc
, ~29!

dz~ t !

dt
5m~ t !1L2^px~ t !&2

z~ t !

tc
, ~30!

where the parameterL2 was defined in Eq.~24!, and the
average of any dynamic variablea(Q) is defined as

^a~ t !&5E a~Q! f ~Q;t !dQ. ~31!

The initial conditions for Eqs.~26!–~30! are

^x2~0!&5^x2&0 , ^p2~0!&5^p2&0 , ^px~0!&5^px&0 ,

~32!
and

m~0!5L2^px&0 , z~0!5L2^x2&0 , ~33!

where nonzero initial conditions for the auxiliary functions
m(t) andz(t) account for the initial correlations in the sys-
tem. The modification of the initial conditions, caused by the
evolution during neglected time scales, is frequently called
‘‘slippage,’’ and we also use this terminology here. The ana-
lytic solution of the kinetic Eqs.~26!–~30! is rather cumber-
some, and, therefore, we solve them numerically to demon-
strate the physical importance of the slipped initial
conditions~33!.

Figures 1~a! and 1~b! show the evolution of the potential
energy@^x2(t)&/2 in the reduced units# at moderate strength
of the interaction between the open system and the bath. The
parameters used are:L250.5, tc510, andT50.5. In the
first case~a! the initial conditions werêp2&051, ^x2&051,
and ^px&051. In the second case~b! they were^p2&052,
^x2&050, and^px&050, and the initial energies are equal in
both cases. In the first case the initial conditions for the aux-
iliary functions ~33! are nonzero, and their neglect leads to
the unphysical result of temporary negative potential energy,
which also means positivity violation of partial distribution

FIG. 1. Evolution of the potential energy of a harmonic oscillator at mod-
erate strength of linear coupling with a bath. The parameters areL250.5,
tc510, andT50.5. In the case~a! ~upper panel! the initial conditions were
^p2&051, ^x2&051, and ^px&051, while the corresponding initial condi-
tions for the auxiliary functions were either taken from Eq.~33! ~solid line!,
or set to zero~dashed line!. In the case~b! ~lower panel! the initial condi-
tions werê p2&052, ^x2&050, and^px&050, for which Eq.~33! gives zero
initial conditions for the auxiliary functions. It is seen, that neglecting the
initial correlations one gets unphysical behavior of temporary negative po-
tential energy.
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function, see Fig. 1~a!. Similar unphysical behavior can be
observed for the kinetic energy, if the slippage was ne-
glected. In the second case~b! the initial values for auxiliary
functions are naturally zero, but at the same time the kinetics
does not exhibit unphysical features, see Fig. 1~b!.

Thus, the role of the slipped initial conditions is similar
to those in the corresponding quantum-classical treatment,26

where they remove the breakdown of the positivity of the
RDM within the applicability limits of the approach. In the
full classical limit the slippage preserves positivity of the
RDF, and is particularly important for the non-Markovian
stage in the kinetics and at moderate strength of the system-
bath interaction, in the sense of the critical parameter~19!.
On the other hand, methods like NEMD,4 which essentially
rely upon the appropriate sampling of the initial state, slip
away of this problem. Nevertheless, despite the fact that
NEMD methods intrinsically preserve positivity of the re-
duced distribution function at any circumstances, the ques-
tion about adequacy of the short-time kinetics, obtained by
NEMD calculations without taking care of quantum correc-
tions is wide open.

V. KINETIC EQUATION
FOR DELTA-CORRELATED BATH

The non-Markovian kinetic equations, obtained in Sec.
III, provide an accurate description of open systems interact-
ing with a thermal bath in the full classical limit. The ap-
proach has wide applicability limits, but must reproduce
known results, at least under more restricted conditions. To
demonstrate such a conformity we consider the Markovian
limit for the model consisting of a particle in an external
field, and coupled to the canonical bath. Then, the Hamil-
tonian of open system takes the form

H~p,r !5
p2

2m
1u~r !, ~34!

where u(r ) is the potential of the external field, which is
independent on the bath coordinates. In turn, Poisson bracket
~13! becomes

$H~Q!, f ~Q;t !%5S p

m
•“ r2“ ru~r !•“pD f ~p,r ;t !, ~35!

where“ r and“p are gradient operators in position and mo-
mentum spaces, respectively, while the centered dot denotes
a scalar product of the two vectors. Here and afterwards the
vector quantities are shown by bold symbols.

In the simplest case of ad-correlated canonical bath, the
non-Markovian kinetic Eqs.~14!–~16! reduce to the standard
Fokker-Planck equation~FPE!

S ]

]t
1

p

m
•“ r2“ ru~r !•“pD f ~p,r ;t !

5jmT“p•S“p1
p

mTD f ~p,r ;t !, ~36!

wherej is the friction constant, see Appendix A. Note, that
the d-correlated bath corresponds to the model of Brownian
motion ~heavy particle immersed in a bath of light ones!,

where the time scales of the particle motion and of the reor-
ganization of the bath are strongly separated. In reality, how-
ever, the bath has a short, but finite characteristic correlation
time tc . The analysis of the associated effects is done in the
following section.

VI. NON-MARKOVIAN EFFECTS
IN THE MOMENTUM RELAXATION

In order to simplify the analysis of non-Markovian ef-
fects, we setu(r )50, and consider the process of relaxation
in momentum space. Evolution of the distributionf (p;t) can
alternatively be characterized by considering the evolution of
the probability momenta

pn~ t !5E pnf ~p;t !dp, p̃n~v!5E
2`

`

pn~ t !e2 ivtdt,

n51,2,. . . , ~37!

where tilde denotes the Fourier transform. Then we derive
the following equation for the Fourier transform of the aver-
age momentum:

p̃~v!5
p0

iv1jn~v!
, ~38!

where

jn~v!5S 11v
d

dv D J̃~v!

mT
~39!

is the nonstationary or frequency-dependent friction. Here

J̃~v!5E
2`

`

J̄~ t !e2 ivtdt ~40!

is the Fourier transform of the force-force correlation func-
tion ~A19!.

The kinetics in the non-Markovian regime is sensitive to
the functional form of the correlation function, and, for the
sake of simplicity, we take its monoexponential form, given
by Eq. ~A23!. This leads to

J̃~v!

mT
5

j

11 ivtc
, ~41!

and

jn~v!5
j

~11 ivtc!
2 . ~42!

Reconstruction of the kinetics of the average momentum
in the time domain calls for the solution of a cubic equation,
which is of rather cumbersome form. Therefore, we give
expressions for several limiting cases, depending on the
value of the characteristic parameterjtc . First of all, ex-
panding the roots of the cubic equation, we obtain in the
Markovian limit

p~ t !.p0~112jtc!e
2j(112jtc)t, jtc!4/27, t@tc .

~43!

Figure 2 shows the kinetics for the component of the average
momentum atjtc50.02, calculated both from Eq.~43!
~dashed line! and via the inverse Fourier transform of Eq.
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~38! ~solid line!. Some deviation between the results appears
on the time scale oftc , while at longer times the kinetics is
accurately reproduced by Eq.~43!. It is seen, that at short
times the average momentum relaxes slower than exponen-
tially, but proper modification of the initial conditions for the
Markovian limit eliminates the difference for longer times.

Increasing the value of the characteristic parameter we
arrive to the situation wherejtc54/27, when the exact ki-
netics takes simple form

p~ t !.p0

e2t/(3tc)

9
~814t/tc1e2t/tc!, jtc54/27.

~44!

At even larger values ofjtc an oscillating contribution ap-
pears. Figure 3 shows the evolutions of the average momen-
tum for jtc54/27, jtc51/2, andjtc51. It is seen, that the
frequency of oscillations increases when increasing the fric-
tion. The origin of these oscillations can be explained by
noting, that at finite reorganization time of the bath of;tc

and sufficiently large interaction force the scattering on bath
molecules is essentially elastic, and the particle is dynami-
cally reflected several times before it completely loses the
initial momentum. We pay heed to the restriction~A24! on
the value of the friction due to the employed linear expan-

sion of the interaction potential, while the use of realistic
~nonexpanded! interaction potentials requires more general
non-Markovian kinetic Eqs.~14!–~16!.

As it was stated above, quantum corrections may signifi-
cantly affect the non-Markovian part of the kinetics. Indeed,
neglecting the corresponding term in Eq.~39! ~it contains
derivative!, we obtain Eq.~38!, but with different nonstation-
ary friction jn(v)5j/(11 ivtc). Both forms ofjn(v) yield
asymptotically identical results for the Markovian limit
(jtc!1, t@tc), but produce considerable deviations if the
relaxation is of non-Markovian character, see Fig. 4.

Similar effects may be observed in the kinetics of the
energy relaxation, and we briefly present the corresponding
results. The Fourier transform of the second probability mo-
mentum~scalar value! is

p̃2~v!5
p20

16J̃~v!/~ iv!

iv12jn~v!
, ~45!

wherejn(v) and J̃(v) were defined earlier, see Eqs.~39!
and~40!. Note, that starting from the second probability mo-
mentum the quantum corrections do not simply change the
form of the non-stationary friction, but also affect the struc-
ture of the solution in the Fourier domain. Using Eqs.~41!
and ~42! we obtain, that the Markovian limit requiresjtc

!2/27 andt@tc , which yields exponential kinetics for the
relaxation to the nonzero equilibrium value of 3mT with the
characteristic rate constant

k252j~114jtc!, ~46!

while for jtc.2/27 the kinetics gets an oscillatory contribu-
tion.

VII. DIFFUSION IN POSITION SPACE

We now turn to the case of nonzero potential of the
external forcesu(r ) and obtain kinetic equations for long
times, exceeding the time scale of momentum relaxation.
The change to the reduced description by means of diffusion
in the position space is possible in the so-called overdamped
limit, when the potential of external forces does not change
significantly the equilibrium distribution in momentum
space.

FIG. 2. Kinetics of the average momentum relaxation~for its component,
i 5x,y, or z) under conditions of the applicability of the Markovian limit,
jtc50.02. The numerical result is obtained via the inverse Fourier trans-
form of Eq. ~38! and is plotted by the solid line. Analytic result of the
Markovian limit, Eq.~43! is shown by the dashed line.

FIG. 3. Kinetics of the relaxation of average momentum component for
jtc54/27 ~dotted line!, jtc50.5 ~dashed line!, and jtc51.0 ~solid line!.
The numerical result were obtained via the inverse Fourier transform of
Eq. ~38!.

FIG. 4. Effect of quantum corrections on the kinetics of non-Markovian
relaxation of average momentum. Full kinetics is calculated forjtc54/27
~dotted line!, jtc50.5 ~dashed line!, while the corresponding kinetics ne-
glecting quantum corrections are plotted by solid lines.
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Traditionally, a so-called adiabatic elimination of the
momentum is carried out in the framework of the Langevin
approach, which is equivalent to FPE. However, in the case
of the partial classical limit, the kinetic equations of the
method contain quantum variables as well, and the corre-
sponding equivalent stochastic differential equations can
hardly be obtained. Therefore, we propose a simple alterna-
tive procedure to obtain the Smoluchowski equation starting
directly from FPE, which can be extended to more compli-
cated situations, as mentioned above. Besides, the presented
technique allows to account for the modification of initial
conditions during the preliminary stage of the relaxation of
initial momentum.

The mathematical derivation of the Smoluchowski equa-
tion is given in Appendix B, which yields for the RDF in
coordinate spaceg(r ;t) the following kinetic equation:

]g~r ;t !

]t
5D“ r•S“ rg~r ;t !1g~r ;t !

“ ru~r !

T D , ~47!

with the modified initial condition

g~r ;0!5E e2“r "p/(jm) f 0~r ,p!dp

5E f 0@r2p/~jm!,p#dp. ~48!

HereD is the usual diffusion coefficient in the position space

D5
T

jm
. ~49!

The modified initial condition~48! accounts for the
transformation of the initial distribution during the prelimi-
nary stage of momentum relaxation. This effect may be im-
portant for the geminate recombination in the condensed
phase, if the pair of reactants originates from a highly excited
parent molecule. In the case of a simple initial distribution of
the form

f 0~r ,p!5g0~r !d~p2p0!, ~50!

we obtain from Eq.~48! that

g~r ;0!5g0@r2p0 /~jm!#, ~51!

i.e., the initial distribution is shifted. The value of the shift is
determined by the initial velocity multiplied by the charac-
teristic time 1/j of relaxation in momentum space.

VIII. CONCLUSION

We presented the full classical limit of the recently pro-
posed quantum-classical approximation.25 The obtained ki-
netic equations for the reduced distribution function in phase
space have wide applicability limits and are capable of de-
scribing the non-Markovian evolution of an open system
coupled to a canonical bath. They incorporate detailed bal-
ance directly, rather than through the use of the fluctuation-
dissipation theorem, and are valid beyond the linear response
regime. The presented form of the kinetic equations allows to
use arbitrary canonically conjugate coordinates in phase
space.

The original quantum-classical treatment is based on a
short coherence timetb of cross correlations between quan-

tum subsystem and canonical bath due to the energy disper-
sion of bath degrees of freedom. This underlying physical
process is of quantum-mechanical nature and is eliminated
from the explicit consideration when passing to the classical
limit. Nonetheless, the specific correlations between the open
system and the bath, created during the neglected timescale
of tb , enter the classical limit via the modified initial condi-
tions and the projected dynamics. In other words, the classi-
cal mechanics treatment of the open system is allowed only
in the particular subspace of correlations, while the decay of
correlations in the complementary subspace is essentially of
quantum-mechanical nature and, therefore, cannot be cor-
rectly described classically. We have shown, that the projec-
tion ~quantum correction! may significantly affect the non-
Markovian kinetics, and is required to preserve positivity of
the reduced distribution function within the applicability lim-
its of the approach.

Non-Markovian effects in the dynamics of open system
are generally important on the time scale, comparable or
shorter than the characteristic correlation time of the bath.
On the other hand, the long time behavior is well described
by considerably simplified kinetic equations, and their form
is known for many cases of interest. Needless to say, that the
obtained equations must correctly reproduce corresponding
asymptotic behavior. Using the simple model of a heavy par-
ticle in an external field coupled to a bath of light solvent
molecules, we obtained in the Markovian limit the standard
Fokker-Planck equation. This example cannot serve as a
proof for the general case, but we believe that the non-
Markovian equations of the classical limit provide the cor-
rect description of the kinetics on the entire time axis for all
other systems, where the applicability criterion of the ap-
proach is fulfilled.

Although nonequilibrium molecular dynamics simula-
tions seem to be a more natural way to study the non-
Markovian evolution of open systems in the classical limit,
they do not account for quantum corrections in the short-time
dynamics, and do not allow for a consistent incorporation of
quantum transitions. On the other hand, the recently sug-
gested quantum-classical approximation25 treats open system
quantum mechanically, which can be prohibitively expensive
for reactive systems with multidimensional reaction coordi-
nates and/or small splittings between energy levels~rota-
tional motion at high temperatures, etc.!. The problem may
frequently be overcome by taking the partial classical limit
for several degrees of freedom of the open system, keeping a
quantum-mechanical treatment for the most important ones.
This can hardly be done applying partial Wigner transforms
directly to the quantum Liouville–von Neumann equation for
the density matrix of the total system as the resulting
quantum-classical Liouville equation suffers from internal
inconsistencies~see Introduction for more details!, but seems
to be permissible in the framework of the novel quantum-
classical approach.25 The corresponding kinetic equations,
combining classical mechanics description of the motion
along the reaction coordinate and a nonphenomenological
treatment of quantum transitions between them will be ob-
tained and analyzed in the subsequent articles.
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APPENDIX A: REDUCTION TO FOKKER-PLANCK
EQUATION

We introduce generalized variables for the arbitrary
function a(t) using the stepwise Heavisideu function as

ā~ t !5u~ t !a~ t !. ~A1!

In the following the corresponding generalized variables will
be denoted by the bar accent. Then, Eqs.~14!–~16!, and~34!
give

] f̄ ~p,r ;t !

]t
5d~ t ! f 0~p,r !1A f̄ ~p,r ;t !

2E F~r ,q!•“ph̄~p,r ,q;t !dq, ~A2!

]h̄~p,r ,q;t !

]t
5~A1Lq!h̄~p,r ,q;t !2F~r ,q!

•S“p1
p

mTD f̄ ~p,r ;t !

1
W~r ,q!

T S ]

]t
2AD f̄ ~p,r ;t !, ~A3!

where we have defined differential operator

A52
p

m
•“ r1@“ ru~r !#•“p , ~A4!

and vector of the forces

F~r ,q![2“ rW~r ,q!, ~A5!

acting on the particle from the bath.
The formal solution of Eq.~A3! is expressed in terms of

the free Green’s function

Ḡ0~p,r ,qup0 ,r0 ,q0 ;t !5Ḡ0~p,r up0 ,r0 ;t !Ḡb~quq0 ;t !,
~A6!

describing the evolution of the open system and the bath in
the absence of their interaction. Here the free Green’s func-
tion of open system obeys

S ]

]t
2AD Ḡ0~p,r up0 ,r0 ;t !5d~ t !d~p2p0!d~r2r0!,

~A7!

while the Green’s function of the bath satisfy

S ]

]t
2LqD Ḡb~quq0 ;t !5d~ t !d~q2q0!. ~A8!

The solution of Eq.~A7! is readily obtained, and corresponds
to the motion of particle along the classical trajectory, speci-
fied by the Hamiltonian~34!

Ḡ0~p,r up0 ,r0 ;t !5u~ t !d@p2pt~p0 ,r0 ;t !#

3d@r2r t~p0 ,r0 ;t !#, ~A9!

wherept(p0 ,r0 ;t) andr t(p0 ,r0 ;t) are the phase space coor-
dinates, where the open system arrives after timet, starting
from the coordinates (p0 ,r0). The free dynamics~without
interaction with the bath! is reversible, and, therefore, Eq.
~A9! can also be written as

Ḡ0~p,r up0 ,r0 ;t !

5u~ t !d@p02pt~p,r ;2t !#d@r02r t~p,r ;2t !#. ~A10!

Using Eqs.~A6! and~A10! we rewrite Eq.~A3! as fully
equivalent integrodifferential one

h̄~p,r ,q;t !5
1

T E E
2`

`

Ḡb~quq0 ;t!W~r0 ,q0!

3S ]

]t
2A0D f̄ ~p0 ,r0 ;t2t!dq0dt

2E E
2`

`

Ḡb~quq0 ;t!F~r0 ,q0!

•F“p0
1

p0

mTG f̄ ~p0 ,r0 ;t2t!dq0dt, ~A11!

wherep05pt(p,r ;2t), r05r t(p,r ;2t), and

A052
p0

m
•“ r0

1@“ r0
u~r0!#•“p0

. ~A12!

For short times these sets of phase space coordinates are
related to each other by

p0.p1t“ ru~r !, r0.r2tp/m. ~A13!

Substituting Eq.~A11! in the right hand side of Eq.~A2!,
we get the fully equivalent integrodifferential equation for
the RDF of the open system

] f̄ ~p,r ;t !

]t
5d~ t ! f 0~p,r !1A f̄ ~p,r ;t !2

1

T E
2`

`

“p

•C~p,r ;t!S ]

]t
2A0D f̄ ~p0 ,r0 ;t2t!dt

1E
2`

`

“p"K̂ ~p,r ;t!•S“p0
1

p0

mTD
3 f̄ ~p0 ,r0 ;t2t!dt. ~A14!

Here the vector

C~p,r ;t!5E E F~r ,q!Ḡb~quq0 ;t!W~r0 ,q0!dqdq0

~A15!

specifies correlations between the force and the shifted po-
tential, while elements of the tensor

Ki j ~p,r ;t!5E E Fi~r ,q!Ḡb~quq0 ;t!F j~r0 ,q0!dqdq0 ,

i , j 5x,y,z ~A16!

contain information about correlations between components
of the shifted forces.
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The structure of the correlation functions~A15! and
~A16! depends on the properties of the bath and of the
system-bath coupling. Although it is not difficult to continue
with the more general case of an anisotropic bath, we as-
sume, for the clarity of presentation, that the bath is isotro-
pic. In this case C(p,r ;t)5C(p;t), and Ki j (p,r ;t)
5Ki j (p;t), i.e., the correlations do not depend on the posi-
tion of the open system.

The subsequent simplification of the structure of the cor-
relation functions~A15! and ~A16! is possible only when
assuming a sufficiently short correlation timetc of the bath
to expand the shifted interaction potential as

W~r0 ,q0!.W~r ,q0!1t
p

m
•F~r ,q0!. ~A17!

Due to symmetry reasons the first term of expansion~A17!
does not give contributions to Eq.~A15!, while the different
components of the force are uncorrelated. A similar expan-
sion can be written for the shifted force, but then the corre-
sponding linear term ont does not give contributions to Eq.
~A16! ~symmetry reasons again!. After that Eqs.~A15! and
~A16! are simplified to

C~p;t!.
p

m
tJ̄~t!, K̂ ~p;t!.1̂J̄~t!, ~A18!

where1̂ is the unity tensor, while the correlation function of
the bath

J̄~t!5E E Fi~r ,q!Ḡb~quq0 ;t!Fi~r ,q0!dqdq0 ,

i 5x,y, or z. ~A19!

For long times, the dynamical properties of the bath are
usually specified by the frictionj, which is expressed via the
force-force correlation function~A19! as

j5
1

mTE2`

`

J̄~t!dt. ~A20!

In the simplest situation of ad-correlated bath, when

J̄~t!5jmTd~t!, ~A21!

Eqs. ~A14! and ~A18! yield the standard Fokker-Planck
Eq. ~36!.

Nevertheless, the bath has a short, but finite correlation
time tc , and at large frictions (jtc*1) relaxation in the
momentum space has strongly non-Markovian character. The
kinetics in this regime is sensitive to the form of the corre-
lation function~A19!, while the short time expansion of the
shifted potential~A17! becomes of limited use. Indeed, esti-
mating absolute value of the momentum asupi u;A2mEk,
whereEk is the kinetic energy of the solute, Eqs.~19! and
~A17! lead to the following restriction on the value of the
interaction force

uFu!
pmT

tcA2mEk

. ~A22!

In turn, the value of the friction for the exponential form of
the correlation function

J̄~t!5u~t!F2e2t/tc, j5F2tc /~mT!, ~A23!

which gives

jtc;
F2tc

2

mT
!

p2T

2Ek
. ~A24!

In other words, the validity of the linear expansion~A17! of
the shifted potential on the time scale of the correlation time
depends on the kinetic energy of the solute. Near equilibrium
Ek;T, and atjtc*1 Eq. ~A17! cannot be justified. The
restriction on the allowed frictionsjtc&1 is more severe, if
the initial kinetic energy of the solute considerably exceeds
its thermal value. On the other hand, the rejection of the
linear expansion~A17! leads to a nonlinear dependence of
the memory kernels on momentum. In that case we come
back to the more general non-Markovian equations of
Sec. III.

In a simple situation, when the potential of external force
is absent@u(r )50#, the non-Markovian FPE, suitable to
analyze the effects of finite correlation time at not too strong
frictions (jtc&1) is readily obtained. In that case one has
p05p, since the free evolution of the open system is a rec-
tilinear motion with a constant velocity. Then, taking account
for Eq. ~A18!, and integrating both sides of Eq.~A14! on
coordinates, we obtain for the RDF in the momentum space

f̄ ~p;t !5E f̄ ~p,r ;t !dr , f 0~p!5E f 0~p,r !dr ~A25!

the following kinetic equation:

] f̄ ~p;t !

]t
5d~ t ! f 0~p!

2
1

mTE2`

`

tJ̄~t!“p"p
] f̄ ~p;t2t!

]t
dt

1E
2`

`

J̄~t!“p•S“p1
p

mTD f̄ ~p;t2t!dt.

~A26!

Note, that Eq.~A26! should be applied with care, since it
may violate positivity at far tails of the distribution, because
in the situation of finite correlation time there exists some
finite value of the momentum, which already breaks down
the linear expansion~A17!. This is removed in the limittc

→0, so that the Fokker-Planck equation does preserve posi-
tivity. Therefore, we prefer using Eq.~A26! to obtain non-
Markovian kinetic equations for several low-order probabil-
ity momenta~37!, for which the above problem does not
appear.

APPENDIX B: DERIVATION
OF THE SMOLUCHOWSKI EQUATION

Assuming separation of time scales for the relaxation in
momentum and coordinate spaces, one can derive the equa-
tion for the reduced distribution function in the coordinate
space, which is defined as
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ḡ~r ;t !5E f̄ ~r ,p;t !dp, g0~r !5E f 0~r ,p!dp. ~B1!

Then, integrating Eq.~36! over momentum variables, we ob-
tain

]ḡ~r ;t !

]t
5d~ t !g0~r !2

ḡ1~r ;t !

m
, ~B2!

where

ḡn~r ;t !5E ~“ r"p!nf̄ ~r ,p;t !dp,

~B3!

gn0
~r !5E ~“ r"p!nf 0~r ,p!dp, n51,2, . . . .

In turn, Eq.~36! yields

]ḡ1~r ;t !

]t
5d~ t !g10

~r !2jḡ1~r ;t !

2F ḡ2~r ;t !

m
1“ r•@ ḡ~r ;t !“ ru~r !#G , ~B4!

wherej is the friction, see Eq.~A20!. This hierarchy can be
continued to give

]ḡn~r ;t !

]t
5d~ t !gn0

~r !2F ḡn11~r ;t !

m
1k̄n~r ;t !G

2nj@ḡn~r ;t !2mT~n21!“ r"“ rḡn22~r ;t !#,

~B5!

where

k̄n~r ;t !5nE ~“ r"p!n21
“ r•@ f̄ ~r ,p;t !“ ru~r !#dp. ~B6!

The Smoluchowski equation follows from Eq.~B4! as-
suming that after time of 1/j, the momentum relaxes to its
equilibrium value, while the potential of the external forces
u(r ) does not significantly change the resulting Maxwellian
velocity distribution~overdamped limit!. In that case one can
assume

f̄ ~r ,p;t !.
1

~2pmT!3/2expS 2
p2

2mTD ḡ~r ;t !, ~B7!

for the calculation ofḡ2(r ;t) ~closure approximation!, which
gives

ḡ2~r ;t !.mT“ r"“ rḡ~r ;t !. ~B8!

Then, the quasistationary solution of Eq.~B4! at times t
@1/j is

ḡ1~r ;t !.d~ t !g10
8 ~r !2

T

j
“ r•S“ rḡ~r ;t !1ḡ~r ;t !

“ ru~r !

T D ,

~B9!

which, upon substitution in Eq.~B2! and changing to non-
generalized variables, yields Eqs.~47!–~49!. Here the modi-
fied initial condition

g10
8 ~r !5 (

n51

` E ~21!n

n! jnmn21 ~“ r"p!nf 0~r ,p!dp. ~B10!

Note, that Eq.~B10! have appeared as the result of partial
summation of the contributions from the equations of higher
order correlationsḡn(r ;t), which gives in the quasistationary
regime (t@1/j)

ḡn~r ;t !;d~ t !
gn0

~r !

nj
2

ḡn11~r ;t !

njm
, ~B11!

and, taking into account Eq.~B3!, leads to Eq.~B10!. Such a
partial summation is required to prevent possible violation of
positivity of the modified initial distribution~48!.

Equation~B5! can serve as the basis to derive systematic
corrections to the Smoluchowski equation on the smallness
of the inverse friction 1/j. This is achieved by considering
more members of the hierarchy~B5!, which allows to repro-
duce known results.34–36
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