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The capture rate coefficients of homonuclear diatomic moleculega(d N,) in the rotational state

j=1 interacting with ions (Af and He') are calculated for low collision energies assuming a
long-range anisotropic ion-induced dipole and ion—quadrupole interaction. A comparison of
accurate quantum rates with quantum and state-specific classical adiabatic channel approximations
shows that the former becomes inappropriate in the case when the cross section is dominated by few
partial contributions, while the latter performs better. This unexpected result is related to the fact that
the classical adiabatic channel approximation artificially simulates the quantum effects of tunneling
and overbarrier reflection as well as the Coriolis coupling and it suppresses too high values of the
centrifugal barriers predicted by a quantum adiabatic channel approach.,fot H+Ar" and
N,(j=1)+He" capture, the rate constants Bt-0 K are about 3 and 6 times higher than the
corresponding values for Jj=0)+Ar* and N(j=0)+He" capture. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1724822

I. INTRODUCTION tical to the rotational angular momentum of the diatom
(quantum numbey). A detailed treatment of state-specific

Complex formation(capturg in low-temperature colli- | e L .
h|on—molecule capture within the AC approximation, for ion—

sions of an ion and a diatomic molecule usually occurs wit q | d by Smith and Tirede
participation of molecules that occupy only low rotational qua rupqgsystems, was presentg y .m|t and'n >!
states. If the temperatuf@is noticeably lower tha/kg (B the condition of classicalCl) relative motion(we call this

is the rotational constant of the molecule in energy units and*C classical approximation, ACClwho calculated state-
kg is the Boltzmann constanthe largest contribution to the s_pecmc low temperature rate constants in the perturbed rotor

capture rate constafCRC) comes from the ground rota- fimit. _ _
tional state of the diatom. If this state is not degenerate, and N this work we consider the cross section and the rate
if the ion is in a nondegenerate electronic state, the dynamicgonstant for capture, by an ion, of a homonuclear diatom in
of the capture assumes a particularly simple form since théhe first excited rotational staje=1. This problem is of spe-
interaction between the colliding partners is isotropic. If, incial interest for two reasons: first, it represents the main cor-
addition, the relative motion can be considered as classical€ction to the capture cross section of ground-rotational state
the calculation of the CRC becomes a standard textbookhe more so since the interaction in a system “ion—diatom
problem. Recently, the classical results have been extendauth j>0" is of longer range than that for a system “ion—
down to lower temperatures, where the relative motion igliatom withj=0"), and second, the staje-1 is the ground
quantal* rotational state for a specific total nuclear spin of the diatom.
If the states of the colliding partners are degenerate, théhis is the reason why we decided to study in detail the
problem of calculating CRC becomes more complicated. Arcapture dynamics for a system “ion-homonuclear diatom” in
economic approach to attack this problem is the adiabatithe state j=1 in the energy range between the
channel(AC) approximation which simplifies the dynamical Bethe—Wignet® and ACCI regimes. We assume that the ro-
problem by assuming that the projection of the intrinsic an+tor statej=1 is adiabatically isolated from other rotational
gular momenta of the collision partners on the collision axisstates, and we calculate the capture cross section within three
R is conserved throughout of the collision evéAtin what  different approximations: an accurate quantum treatment, a
follows we assume that the electronic state of the ion is nonguantum version of ACACQ) and the ACCI approximation.
degenerate such that the intrinsic angular momentum is idete intend to derive a suitable analytical approximation for
the capture cross section similar to that suggested for ion-
3Author to whom correspondence should be addressed. Electronic maiifduced dipole capture in Ref. 1. We have especially consid-
shoff@gwdg.de ered the two systems, Ax-H, and He +N,, for which
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ACCI results are availableAs in Ref. 3, instead of discuss- not possess a definite parity, but it can be made so, if the

ing the energy-dependent capture cross sectionse con-  quantities(), are replaced by their absolute valu@s=|Q|
sider the energy-dependent rate coeffici¢htnce the latter  and the parityp. Since the transformatiofp¢J« jQpJ is
show simpler limiting behavior at high and low energies.unitary, Eq.(1) can be rewritten as
Then we converK into the temperature-dependent rate con- 1
stantsk. o k)= 52 o2P(k),

The outline of the presentation is the following. In Sec. &.p
Il we review the theoretical background for calculating cap-with
ture cross sections and rate coefficients in different approxi- -
mations. Section Il describes the calculation of accurate and 08’p=p2 (23+1)P5P(K). (2
approximate capture probabilities. In Secs. IV and V we J
present results for quantal and classical rate coefficientsiereagP(k) are the partial quantum cross sections specified
Thermal rate constants are presented in Sec. VI. Secs. VRY the asymptotic quantum numbér and the conserved

and VIII contain discussion and conclusion. quantum numbep. In our case, there are three different par-
tial cross sections P, o 2P, o@P wherep andp are the
Il. THEORETICAL BACKGROUND opposite parities.

In the ACQ version of the capture theory one assumes
that the projection quantum numbrof j onto the collision
axis remains a good quantum number for arbitf@ignd one

rc:jtgt;)ongl ﬁtat_q T 1 gnfder thehassumpnor;\that th||s stae 'Sconsiders one-dimensional radial motion along effective AC
adiabatically isolated from other states. A complexAB potentialsUj{;’(R). The ACQ version of Eq(2) reads
assumed to be formed when partners approach each other at

a certain distancR.. The dynamics of complex formation is ACQ(k) = l 2 O_ACQ,Z)(k)
characterized by the wave function which is the solution of 35 '

the Schrdinger equation describing the coupled translationalyjth

and rotational motion of the partners. The boundary condi-

tions for the wave function are the incoming plane wave and ;ACQ (k)= 12 > (23+1)PPe(k), (3)
the outgoing spherical wave at larBeand complete absorp- k=%

tion at the surface of the complex. The asymptotics of theyhere P’ are the transmission probabilities through and
wave function furnishes the complex formatidoapturé  over the centrifugal barriers of the effective radial potential
probabilitiestI which are labeled by the quantum numbersyo(R) and ¢*°2“(k) are the partial cross sections speci-
of the total angular momentud the relative angular mo- fjed by the assumed conserved quantum nur@beBince in
mentum{ and the intrinsic angular momentunof the dia-  this approximatiorP?!=P? 1, there are two different par-
tom. For a rotationally unpolarized molecule, the state+ig| cross sectiongr”20 oASQ*1 Of course, instead of

specific complex formation quanturfQ) cross section is  quantum number®, one can label the partial cross sections

given by the standard formula for an inelastic cross sectioqby quantum numbers, p, introducing the cross sections
(see, e.g., Ref.)in which the absolute values of the squared ;ACQ..p \jithin this nomenclature, one hag”C20

matrix elements of the scattering matrix are replaced by the. ;ACQop  ACQ=1_ ;ACQLp_ ;ACQlp Though asymp-
capture probabilities,

We consider the collision of a structureless particl@A
atomic ion in a closed statevith a rigid rotor B, in the

totically Q=w, the cross sectionse”“Q®P(k) and
T 2J+1 o2P(k)|o-, are not equal to each other since the AC ap-
o (k)= pE mpf,e(k)- (1) proximation does not account for the rotational asymptotic
€3 <l coupling between differeni» AC state€ Nonetheless, the
Herek is the wave vector which is related to the colli- ACQ cross sectionr"“9(k) is expected to provide a good
sion energyE, the relative velocityy and the relative linear approximation to the accurate quantum cross seatiogk)
momentump as E=7%2k?/2u = p?/2u= uv?/2 with u being  if the region of rotational coupling lies substantially outside
the reduced mass of the collision partners. Since we are digentrifugal barrier§.
cussing the cas¢=1 the subscripfj will be dropped and Finally, the ACCI counterpart of the quantum cross sec-
only replaced by unity where necessary. tion can be presented as an integral o¥easf the classical
Following Ref. 7 we adhere to the convention that thecapture probabilitie®“(k,J),
guantum numbers of those dynamical quantities that are con- 1 ~
served during the collision appear as superscripts, while oth- ~ ACCl(k)= = > gACClo(k),
ers, corresponding to the asymptotic states, appear as sub- 3%
scripts. A wave function in€¢J representation possesses a Al T
definite parityp which is conserved; however, for a given set o (k) =

K2
1€, itis reduhdant and, thergfore, appears in pargfthese.?his nomenclature Q and ACCI corresponds to the nomen-
Instead of thej¢J representation, one can also usg(aJ

~ clature Q and Cl in Ref. 1, where only one adiabdtie.,
representation witl) being the quantum number of the pro- AC) potential was considered.

jection ofj ontoR atR— (the so-callecR-helicity repre- The state-specific quantum cross sections for capture
sentation. A wave functions in thgJ representation does leads to the energy-dependent state specific rate coefficients

w

f Pe(k,J)2J dJ. (4
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KQ(E) and the temperature-dependent specific rate constants The scattering equations should be solved with absorb-
EQ(T) which are related to the cross section8(k) in a ing boundary conditions on the surface of the complex. In

standard way. general, this can be done by introducing a negative imagi-
_ nary potential in the complex region. There exists, however,
KAE)=vo k), KUT)=(KAE))r, (5  an alternative approach if the motion of partners approaching

where (---); denotes averaging over the Maxwell- the surface of the complex is quasiclassical. Since any qua-

Boltzmann distribution in relative velocities at translational Siclassical functions can be represented as a superposition of
temperatureT. incoming and outgoing waves, the absorbing boundary con-

In the following it is expedient to introduce the scaled dition corresponds to the quasiclassical functions that contain
interparticle distance=R/R* and the scaled wave vector only the incoming parts of the waves just before they reach
«=kR* with R* to be defined by convenience. In addition the complex surface. Of course, at large distances, the
we use, instead of thé(k), a dimensionless rate coefficient complex-forming multichannel wave function conforms to

x(x). We relate the latter t& (k) as standard boundary conditions: outgoing waves in all the
channels and an incoming wave in a single state withp
KQk) = 277R*£ Y2 x), 6) =, p. In this way, we get three capture probabiliti@ép
Iz =P}, P3, PJI. We note in passing that the above boundary
where x9(«) assumes the form conditions close to the surface of the complex are identical to
1 those used in the theory of electron attachment to molecules
xAk)== E ngp(,(), in the framework of the so-called extended Vogt—Wannier
34, theory (see Ref. 10 and a review pap@r
with In what follows, we assume that the capture is deter-
1 mined by a special type of long-range anisotropic interaction,
QP N — — J,p i.e., by an anisotropic ion-induced dipole interaction and
Xa ()= 2k JZO (23+1)Pg7(x). @ ion—quadrupole interaction
The ACQ and ACCI counterparts of Eq$)—(7) are defined q’a g’Aa  qQ)\ (3cog y—1)
similarly. V(R y)==5ga+ —WJr?)f,
For a pure isotropic interaction, after simple algebra of (10)
angular momentum addition, this expression reduces to a for-
mula for the rate coefficient for the isotropic capture, whereq is the charge of the iony is the mean polarizability,
a=(ayt+2a,)/3, Aa=a—«,, and Q is the quadrupole
YIS ) = iE (20+1)P'(x) (8) momegt of the molecule. The AC quantym numbférand
2k 7 stated®) are defined as the result of a diagonalization of the

which, of course, is valid for any value ¢f This formula interaction matrix with the quantization axis taken to be the
with j=0 in Ref. 1 was used for discussion of rate coeffi- Collision axisR. In the perturbed rptor approximation, fpr
cients over wide energy ranges. Note that the normalization™ 1+ Ed-(10) generates the following AC potentidls:

of x2'is chosen in such a way that, with an ion-induced Pa PAe  qQ
dipole interaction, U*"YR)=—C/R* and R*=R-"9 Vu(R)==5ra +( BET--Uh W) (2-3w%. (11
= 2uCl#, the high-energy Langevin limit gf%'*°is equal
to unity?! The AC states are coupled by the rotational coupling; the
OB )] oy = x219=1. 9) latter is simplified when one passes from therepresenta-
A tion to the o, p representation. Let us define states
IIl. RELATIONS FOR ACCURATE AND APPROXIMATE |0),/1),/1) as those corresponding to the std@p), |1,p),
CAPTURE PROBABILITIES |1,p). Then the Coriolis interaction couples the std@sand
A Accurate treatment |1), while the statd1) remains uncoupled. We now choose

) . . o the length uniR* =R, = Vxg?a/# and introduce the energy
The scattering wave function can be written in different it Ex =42/ ,R?. Passing to the dimensionless scaled AC

representations. In order to achieve a simple relation withinygtentialsy, =V, /E*, we write the following expressions

the AC approach, for the wave functions of the relative Moo the effective AC potentials and the Coriolis interaction:
tion we use the AC angular basis. The radial parts of these

JUA+1H+2) 1 a b

=——F572 21 3/,

functions are;bﬂ;p(R) with w=0,1 andp assuming two dif- 3. AC,eff L
2p° 20" " \p* T p

ferent values for twav=1 states. For simplicity, we rewrite 0 (p)
. J Ry
the three functions agy=y®, ¥1=y1®, = y3® where

p andp are opposite parities. As described in Ref. 7 and vi,Acleff(p):UJ_(p): w_ i4_ l 24+ 33)
discussed in Ref. 94 andy] are coupled by Coriolis inter- ' 2p 20" 2\p" p
action, whileys - satisfies a single equation. Inputs into these I3+1)

equations are the effective AC potentials®" (channel po- vig “p) = v p) = o (12)

tentials plus the centrifugal tepnand the Coriolis coupling

%y The single effective AC potential fal=0 is
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1 AC.ef 1 1 a b =0.84"] and for v, [in the odd casep]'®=(1/6)(3b/4)*
p)=1p"" (P)|J=0:p7_2_p4+?+ sk =0.05%%], and, therefore, we will regard the at large dis-
(13)  tances repulsive potentials as purely repulsive. Note that all
wherea=2A a/15a, b=2,qQ/5R,#2. Here one termy® the effective AC potentials are repulsive at large distances.

is the scaled isotropic ion-induced dipole interaction. The )
other term 2" contains two interaction parameters: param-B- AC calculations
etera encompasses the scaled anisotropic ion-induced dipole  Within the standard AC approximation, the rotational
interaction and the parametemresults from first-order ion—  coupling is neglected completely such that the AC capture
quadrupole interaction. The values of these parameters fg§ropabilities P*“ are simply the transmission probabilities
the two systems considered are listed in Table I. through the centrifugal barriers of the effective potentials
If ais zero or very smal(such as this is the case here ;2ACefl The transmission probabilities are found from the
the potentialv, is attractive, and potential, at large dis- respective AC wave functiong,Ac,J,Zu that satisfy the un-

tances is repulsive for the calse-0, while the potentiaby at  oupled scattering equations similar to those of Ref. 1.

large distances is attractive ang is initially repulsive for

the caséh<0. These two cases are called conventionally the .
) C. ACCI calculations

even and odd cases, see Ref. 4. In this paper we only con-

sider the collision energies that are noticeably below the po- ~ Within the ACCI approximation, the transition probabili-

tential barriers fory, [in the even caseyy®=(1/6)(30b/2)*  ties P“(«,J) are Heaviside step functions,

Ug,AC,ef'f(

2
- oli_ max v A% p)) |, for attractive AC potentials,
P(k,J)= 2 (14

0, for repulsive AC potentials,

where®(x) is the Heaviside step function. Note that for the even easel, and for the odd case=0.
IV. CLASSICAL AC RATE COEFFICIENTS
The capture rate coefficient within the ACCI approach reads

(15

Accl 1 [JS(K), for attractive AC potentials withiw=0, in the odd case,
X (k)=
6k

2J§(K), for attractive AC potentials witho==*1, in the even case,

where thel ,(«) are found from the solutions of the equation r=R/R;, P=PRy/A, m.=M_./A. (18

K? With this scaling, the unit of energy EO=A2/,uR(2), and the

ma){vi'ACYEﬁ(p)h:Jm}:? 18 gimensionless energy is=E/E,. We then introduce the
reduced rate coefficierXr(p)zmﬁ(p)/Zp which is related

with o =0, for the odd case, and=1, for the even case. toK, as

One can express quasiclassical AC rate coefficients
through the rate coefficients for a certain reference potential _2mARy
V,(R), provided that the latter has a structure similar to that ) Xi(p).
for AC potentials. For this purpose we consider the classical
capture in the field of a certain potenti&l(R). The standard Up to this point, the two parametef®, and A remained
equations for the capture yield the angular momentum for th@rbitrary and they could be defined as a matter of conve-
orbiting trajectory,M., as a function of the initial linear hience. We consider two possible choices.

(19

momentum of relative motiorP. In terms of these quanti- (i) Ry and A can be chosen in order to decrease the
ties, the capture cross secti8pand the capture rate coeffi- number of parameters entering into the potertiaR) by
cientK, for the reference potential are two. For the interaction containing two inverse-power terms
(such as—C,/R* and — C3/R?), the scaled potentiak(r)
M2 m M2 can be written in a the formy(r)=—1/2r*—1/2r>. The
Sr:”?v Kr:;?- (17 function X, (ro) in Eg. (19 will contain no parameters. The

scaling parameters do appear, however, when one passes to
The calculation ofS, andK, can be simplified if one intro- the rate coefficienK, and when one expresses the collision
duces scaling parameters, a unit of lenghand a unit of energyE through dimensionless energy This choice of
actionA. Then the initial variableR, P, M can be expressed parameters was also adopted in Ref. 4 where the ratio of the
via the scaled dimensionless variabiep, m; as thermally averaged classical capture rate to the Langevin
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capture rate was discusséske Fig. 4 in Ref. ¥ However, ol T ] LN~
this choice appears inconvenient when the relation betweer
classical and quantum rates is discussed. 5 1

(i) Ry and A can be chosen in order to provide a quasi-
classical correspondence between the classical angular mc 4r 1

mentumM and its quantum number counterpditi.e., A < bzs?;:‘s
=#; Ry can be chosen in such a way that the isotropic part 3r b 10 _5‘ ' .
of the ion-induced dipole term in the AC potential takes the ’
form —1/2r%. With this choice ofR, andA, the dimension- 2 b=20,-10 .
. i ) . ) . b=-20
less distancea coincides withp, the dimensionless linear
momentump coincides withk, and the classical function 1
X,=X,(p) represents the quasiclassical counterpart of the
AC quantum function"“C= y/°Q(x) for the AC potential o
which coincides with the reference potential. In other words, 0 2 4 6 8 10 12 14 18
X (p)=x"““(x). Of course, in this caseX,(p) and K
.XFACO(K) depend additionally on .the parame_ters that el’]te":IG. 1. Plots of\, vs « for the reference potentials of E@®1) and selected
into the reference and AC potentials, respectively. values of the parametds. In the region\<1, the classical description is

For our purpose, instead of plotting'““'(x) as a func-  certainly not valid.
tion of the wave vectok, it is more instructive to plof/c“

as a function of the properly defined scaled capture angular .
momentuma. In accord with Ref. 1, the latter is defined in expected to break down completely. The aim of the quantal

. calculations of the rate coefficients is to cover this region and
such a way that it becomes equal to the angular momentum

- to elucidate the convergence @R and y*Q to y°“ for
guantum numbef whenever the collision energy becomes . : 3
: . ) . N>1. We note in passing that, if we extrapolate the expres-
equal to the height of centrifugal barrier for a given value of

€. In other words, integer values af=0,1,2,..., correspond sion forX,, down to the boundary of the guantum region, say

to the collision energies at which the capture channels witﬁ0 Np=1, we getxb'”bklmb for sufficiently largeb. Since,

¢=0,1,2,..., become classically open. The representation igccording to the Bethe law, the quantum rate coefficient has
terms of a variabla. prepares the ground for a discussion of & finite value in the limit\,<1, the above result suggests

quantum effects, which are expected to show up within thdhat the zero-energy quantum rate coefficient is proportional
energy range corresponding to low to b. We will see in Sec. V that this is indeed the case.

We definex throughm, as In Fig. 2, along with the rate coefficientd, for the
ion-induced dipole-ion—quadrupole interaction of E¢30),

A= m§+ 1/4—1/2= 2 kX, + 1/4—1/2. (200  we show also the asymptotic rate coefficieX{s from Eq.

(30) which correspond to pure ion—quadrupole interaction

for two casesp=5 andb=—10. We see thaX, and X°

coalesce for smalk; this is expected since, at low energies,

the main contribution to the capture comes from the long-

;nduc;d (ilgole_thpluisOlonF—ql:ra]l_drupole pofnt[@&te?“ﬁ‘ls range part of the potential. But we see also that this coales-
from a.( ?W' a=0]. For this case, we have the T0lIoW" cance forb=5 occurs only in the quantal region. Since the
ing expressions for the ACCI rate coefficients for the cases

The function\ has the desired property, vik()\+l)=m§
with mZ being the reduced capture orbital momentum.
As an example, we take as (r) an isotropic ion-

b>0 andb<0:
2 1 b 100 i
Xo=3%o. m(N==3—53 b>0,  (21a
ACCI_E 1 b

Xodd =3 X0, w(N==57+ 3, b<0. (21b)

The asymptotic forms oK, for small and largec are

3><21/3 b2 1/3
(?) for k<b?

Xplp=0= 4 (229
1 for x>b?,
3X21/3 4b2 1/3
(—) for k<b?,
Xplp<o= 4 K (22D
1 for x>b2

- : FIG. 2. Reference capture rate coefficiedtsvs \, (full lines) for selected
Plots of\, versusk andX,, versusk,, are presented in Figs. values of the parametdy. The dotted lines correspond to the rate coeffi-

1 an_d 2, forb ranging from 2.5 to _20- The blank area ﬂ?r _cients for pure ion—quadrupole interaction. In the regieal, the classical
<1 is the region where the quasiclassical approximation islescription is certainly not valid.
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TABLE I. Interaction parameters for the,H Ar* and N,+He" systems
(from the values ofy, A, andQ used in Ref. 4

System @, a.u. Ae,au. Q,au. R, a.u. a b
H,+Ar* 5.437 2.12 0.474 138 —0,052 4.81
N,+He" 11.74 479 —1.09 274 —0.0545 -10.2

value ofb for H,—Ar™ interaction is close to 5, we expect

that, assuming the pure ion—quadrupole interaction, there

does not exist an energy range wherg-tAr* capture can
be described classically.

V. RESULTS FOR ACCURATE QUANTUM, ACQ,
AND ACCI RATE COEFFICIENTS

Calculations ofy®(«), andy"“?(«) were done by solv-
ing the coupled and uncoupled Schimger equations, re-
spectively, for the two collision processesHAr" and N,

Dashevskaya et al.

N, + He*

capture rate coefficients y,

Total
nN
T

FIG. 4. As in Fig. 3 but for N(j=1)+He" capture.

+He". The interaction parameters for these systems are
listed in Table I, and the rate coefficients are presented ithe high-energy limit of the capture rate coefficients is the

Figs. 3 and 4. Shown are the three rate coefficigifsc),
¥ “Qk), and y"°“(x) versus the variablé(x) which is
defined as a solution to the capture equation;

NA+FD) K?
2—p2+vw (p) =5

with w=1 for the even case (HAr" capture¢ and w=0
for the odd case (N+He' capturg. The following aspects
of Figs. 3 and 4 deserve particular attention.

High energy limit The high-energy limitx>1 corre-

max (23

Langevin expression. With our choice of the length unit, we

AC!
get xR, Xpoi—x CC— xtane=1.

Low-energy limit The low-energy limit k<1 corre-
sponds ta\ <1 when the rate constant is determined by the
contribution of terms with small angular momenta only.

(i) The ACCI rate coefficient shows the familiar behav-
ior: it diverges ask~ Y3, similar to that of a capture rate
coefficient for an isotropic attractive interaction proportional
to —1/R3. This behavior is in conflict with the Bethe Ia\#.

(i) The ACQ rate coefficient tends to zero in the limit

sponds to larga > 1, when many capture channels are clas-«—0. This is in accord with the Wigner threshold 1&fv.

sically open. Here, all three rate coefficientg?(«),

Indeed, in the field of an attractive potential the partial cap-

Y 9k), and y*“C!(«) are close to each other. Except for ture rate coefficient for smak in the channel with angular

small-amplitude undulations of°%(«) and x"“?(«), which

momentum{ is proportional tox?‘. The lowest attractive

are due to the successive opening of new capture channeBC potential in Eq.(12) corresponds td=w=1 so that for
this is expected. In the limit of high energy, the capture evensmall k, x"“?( k)~ ¥ «k) = 2. However, this conclusion
is dominated by the ion-induced dipole interaction. Since thés not in accord with the Bethe law, which predicts a final,

polarization anisotropy in both cases is very smal<(l),

Total capture rate coefficients

FIG. 3. Hy(j=1)+Ar™ capture. Accurate quanturq? (full line), adiabatic
channel quantumy”® (short dashed line and adiabatic channel classical,

x"¢© (long dashed ling reduced energy-dependent rate coefficients vs

“classical angular momentum quantum numbex.” Left and right arrows
indicate approximate zero-energy and exact high-energy limigoOpen
circles correspond to the approximation in E80).

nonzero value of the rate coefficient in the limit-0. This
incorrect result is due to the neglect of nonadiabatic effects,
which, as we shall see, play a decisive part in the low-energy
capture dynamics.

(iii) The accurate quantum rate constants conform with
the Bethe law. In order to understand the limiting values of
XAk), x6=x1)|c=0=x2Y(x)| =0, it appears desirable
to formulate an approximate scheme that would yield an ap-
proximate value 05(8. Since the Coriolis coupling plays a
dominant part in the capture dynamics, one can attempt to
formulate a perturbation scheme in which the Coriolis inter-
action is considered in zero order, while the interfragment
interaction is regarded as a perturbation. This is easily done
since our problem corresponds to the case of an atomic col-
lision between an ion A and an atom B in a state=1. In
this spirit, the AC approximation for the ion—molecule case
corresponds to the Hund coupling cdsef a diatom, while
the perturbation approach, which we are looking for, corre-
sponds to the Hund coupling cadeThe switching between
different Hund coupling cases is well develogéd,so that
one can use a standard technique in calculating the interac-
tion. In the Hund coupling case, the good quantum num-
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bers are the orbital momentum quantum numbemnd the the simple observation that the expectation value of the
guantum number of the intrinsic angular momentunin  square of the orbital angular momentum operator conforms
discussing the zero-energy limit of the rate coefficient, weto the following relation:(12);°9=(12)/<“'=32. We thus

are interested in the state=0 which does not produce a see that aad hocreplacement of the expectation value of
centrifugal barrier. In the zero and first order, the interfrag-the square of the orbital angular momentum Byin the
ment interaction is equal to the isotropic potential. In ourACCI approach slightly suppresses centrifugal barriers and
case, this is the isotropic ion-induced dipole interaction prothus increases the capture rate. Presumably, this effect can be
portional toR™*. The anisotropic part of the potential shows described more consistently within the so-called axially
up only in the second order. In our case, the anisotropic pafonadiabatic channel approath.

of the potential is mainly the ion—quadrupole interaction  (ji) The classical approximation works much better for
(note thata is very small such that the second-order inter- H,+Ar* than for N,+He". The difference between these
action is proportional to the square of the anisotropic part otwo events is that, for the former, the effective potential for
the interaction, R™°)?, divided by the zero-order energy the channel withJ=0 is purely repulsive(b is positive,
difference of the two coupled state&=0 and¢'=2. This  while, for the latter, it possesses a centrifugal barrier and
difference is just the difference in the rotational energies othen becomes attractiv® is negativé. Indeed, if the contri-
the pair for two values of, which is proportional tiR 2. In - pution of y@7|,_, into x? is artificially ignored, one finds a
this way, the second order correction to the isotropic interacvery good agreement® and betweeny”®. This simply
tion turns out to be proportional & *. In other words, the means that the classical descripti@megration oved) is not

interaction energy in the channel wih=0 becomes a modi- able to account for a finite contribution that comes from zero
fied ion-induced dipole interaction, and, therefore, the resultgotal angular momentum.

of our previous analystsfor swave capture become appli-
cable. The explicit calculation then yield the following ex-
pression for the interaction potential®(p) within the per-

turbative approach: VI. RESULTS FOR TEMPERATURE-DEPENDENT

RATE CONSTANTS

1 _
v p)=— = (1+b?/3). (24) Temperature-dependent capture rate consfarare ob-

x
2p tained from y by averaging the latter over a Maxwell—
Let PP*{ k) be the capture probability for the potenti@®™  Boltzmann velocity distribution. The distribution functién

from Eq. (24) in the limit of small k. Then written in terms of the variabl&, reads
2J+1 -3 2
Q_ Ql_  pert_ li Ppert( . — 2 o
XG=X6 =X im K (25) F(x;0 K exn( ) 2
omexe = T Bk 0= 20 20

For small x, PP is linear in «, and readsPP®"  where the reduced temperatutés given by
=4k+\1+b%3.1 Thus we get

0=kgT/E*, with E*=#%uR?2. (28
per=2\1+b?/3. 26
X0 29 The reduced capture rate consta®¥(6) is defined as
For the considered two capture processes-Ar* and N,
+ ; ert__ ert__ ; *®
+He", we find xf*"=5.90 and x§*"=11.95, respectively. YQ(B):I YO(k)F(k,0)dx. (29)
These numbers are presented by heavy dots in Fig. 3 and Fig. 0
4. We indeed see that a perturbative treatment explains the —

Similar definitions hold fory®9(6) and x*““!(6). The re-
sults of calculations are presented in Figs. 5 and 6. We see
that the AC classical approximation, for,=1)+Ar"
capture, performs well down t6~0.1 that corresponds to

accurate numerical results in the zero-energy limit.
Intermediate energiesn the intermediate energy regime
(1=\=<4) two features deserve discussion: the relation be
tweenyQ, xA¢, andx"¢“ for each of the collision events, ~%F COWH -
and the difference between the capture rates for two pro10 _4 K. As forjACQ(e)' it fails in the "”_“'t of smallgra. For -
cesses N,(j=1)+He" capture, the AC classical approximation is
. 1 i ~10-3
(i) For both H+Ar* and N,+He" collisions the AC accurate down t@~1, i.e., T~10 “K. _
classical approachy"CC', approximates the accurate rate co- Since the averaging in Eq29) smoothes out all fine

efficients y? better than the AC quantum approach does details of the energy-dependent rate coefficient, one can try

Since we know that the classical approximation, by replac- to design a simplified representation . One form, which

ing the sum over angular momenta with an integral, quitedoes not require solutions of the Sctimger equation for a

well simulates the quantum effects of tunneling and overbar9Omplete potential but only uses the zero-energy limit of the

rier reflections, the noticeable difference betwadf® and rate coefficient for capture in an ion-induced dipole potential,
x"¢Q with a smaller difference betweerf°“' and x? should reads

be ascribed to yet another effect that partly simulates the
nonadiabatic coupling within the ACCI approach: a partial
decrease of the height of the ACCII centrifugal barrier po-The results foryg,=min{y§*",x"““} are obtained from

p
tential compared to ACQ barrier height. This follows from Figs. 3 and 4, and lead Fpgppin Figs. 5 and 6.

Xgpp: min{Xgert,XACCI}_ (30



9996 J. Chem. Phys., Vol. 120, No. 21, 1 June 2004
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H, + Ar+

Averaged total capture rate
coefficients

FIG. 5. Hy(j=1)+Ar* capture. Accurate quanturg? (full line), adiabatic
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FIG. 7. Comparison of accurate reduced quantum rate consg&hfsr
capture H(j=0)+Ar", Hy(j=1)+Ar", Ny(j=0)+He", Ny(j=1)
+He" for different scaled temperatures Dashed curves represegtc®

channel quantuny™°R (short dashed ling and adiabatic channel classical, for pure charge—quadrupole interaction.
X"°“" (long dashed linereduced temperature-dependent rate constants vs

scaled temperaturé (lower axig and conventional temperatufle (upper
axis). Open circles correspond @pp.

VII. DISCUSSION

quantum rates. Often, quasiclassical rates at low energy are
calculated by taking into account the leading term in the

The overall difference between capture rate coefficientsnteraction(proportional toR™~3). This is permissible when

for Hy(j=1)+Ar* and N+ He" collisions is due to the

fact that the relative role of the anisotropic interacti@mn—

the capture rate coefficieif(x) is noticeably larger than the
high-energy Langevin rate coefficiemt ,ng. If we take a

quadrupolgis larger for the latter case, and that the quadru-~value of 3 as a value “noticeably higher than unity;” from

pole moments of Kland N, are of different signs. For H
(even casg the open AC channels are those with=1,
while for N, (odd casgthey correspond te=0. With our
normalization convention, the rate coefficier)(tﬁz(x) and

Fig. 2 (N,+He" casg¢ we find that this value of the ratio
XNZ(K)/XLang corresponds ta ~ 3. Now, A= 3 is an angular
momentum which is again “noticeably larger than unity,”
and, therefore, the small relative differen@dout 15% be-

XSZ(K), for large enougtx, tend to 2/3 and 1/3, respectively. tween the accurate and quasiclassical rates can be ascribed to

In their the zero-energy behavior, we see that, fo(j+1)  the good performance of the quasiclassical approximation in
+Ar* capture, the ratio of the zero-energy rate coefficient tdhe region where one can neglect the ion-induced dipole in-
the high-energy rate coefficients is about 9 while it is abouteraction against the ion—quadrupole interaction. The situa-
36 for Ny(j=1)+Ar" capture. tion is quite different for H+ Ar*, see the discussion in Sec.
In the intermediate energy range<3 <6), the quasi- Ill. Aratio x"2(k)/x ang~3 is attained fom <1. This indi-
classical AC rate lies between the accurate quantum and Acates that, for bHAr™, one cannot adopt the pure ion—

T/K

100 10° 107 10% 105 104 10° g2
22 CRAALLU T T T T T T

quadrupole interaction and, at the same time, use the classi-
cal approximation for calculation of the rate constant.

In order to illustrate the influence of the long-range ion—
quadrupole interaction on the capture, in Fig. 7 we compare

a0l ] the capture cross sections for ground and excited stateg of H
N AN N, + He* ] and N,. For both the ground and excited states the ion-
© sk N —9 ] induced dipole interaction is approximately the same, while
% = .0 AN Kapp 1 the ion—quadrupole interaction is absent for nonrotating mol-
8 " > ecules. We see that the zero-temperature rate constants for
= 0 . . . .
25 rotating molecules j(=1) are about 3 and 6 times higher
o . .
% 10 than for the nonrotating one$<0). Note that at= 100 the
o 8 capture rate constant for nonrotating molecules has already
< & reached its Langevin asymptdt® while this is not the case

4 for rotating moleculesthe asymptotic values are 1/3 fop N

2 O and 2/3 for H).

0 e aoe e T o e If we take into account solely the ion—quadrupole inter-

FIG. 6. As in Fig. 5 but for N(j=1)+He" capture.

action for j=1, we obtain the AC classical rate constants
shown by the dashed lines in Fig. 7. These lines correspond
to the formula
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20 T T T T T T T tunneling through and reflection above the centrifugal barri-
ers, and it suppresses too high values of centrifugal barriers

—2 such as predicted by a standard adiabatic channel approach.
g’ 1.5 N,(j=1)+He" T The former effect is similar to what has been found earlier
2 for a single interaction potentialThe latter is novel, and its
t universality requires more studies of nonadiabatic effects in
2 10F 1 the adiabatic channel basis.
= Second, a noticeable deviation of the quantum
IOM / temperature-dependent rate constant from its adiabatic chan-

05 F H,(j=D+Ar" nel classical counterpart occurs only at extremely low tem-
peratures(for T<10 3 K). This property of the rate con-

stants can be traced back to a very large range of dominance

0.0 . . L : . L — of the modified ion-induced—dipole interaction potential re-
1B 1E7 1E6 1ES 1E4 1ES 001 01 1 gponsible for theswave capture. The range of dominance,
T/ K RM, of the modified ion-induced dipole interaction is given

FIG. 8. Comparison of the accurate quantum rate consk&tén cm®s™1) iy R'-M_ RL 1+b%/3. The C.On.dltlon fors-wave capturek

for capture events Hj=1)+Ar*, N,(j=1)+He" for different tempera- \._1/R , is much more r%stnctlve than the conventional con-

tures. dition k<1/Rgk, with R\ about 150 A for the B+ Ar™
collisions, R about 600 A for the B+ Ar* collisions and

the gas-kinetic diameteRgy of the order of several A.
2/3

—accl e 2 \/; kgT\ Y92 On the basis of the above we thus expect that the clas-

Keven(T) = §F(1/3) wl 2 §QQ ' sical version of the AC approximation will be valid also for

o . 31 other types of interaction down to very low temperatures
ACCI _ ~—1/3,ACCI ( ) . . . .

Kodq (T)=2""Kgyen(T) such as the conditions of Bose—Einstein condensation.

which coincides with the results derived by Smith and froe

when their expression for the state-specific limiting low tem-

perature rate coefficients from E@2) in Ref. 4 are properly Financial support of this work by the Deutsche Fors-

weighted and * 3a; for a givenw is identified with (2/5) chungsgemeinschafiSFB 357 “Molekulare Mechanismen

X(2—3w?). We see once again that, 810 where the Unimolekularer Prozessg¢’and by the KAMEO program,

ACCI approximation is adequate, the ion—quadrupole modelsrael, are gratefully acknowledged.
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