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The capture rate coefficients of homonuclear diatomic molecules (H2 and N2) in the rotational state
j 51 interacting with ions (Ar1 and He1) are calculated for low collision energies assuming a
long-range anisotropic ion-induced dipole and ion–quadrupole interaction. A comparison of
accurate quantum rates with quantum and state-specific classical adiabatic channel approximations
shows that the former becomes inappropriate in the case when the cross section is dominated by few
partial contributions, while the latter performs better. This unexpected result is related to the fact that
the classical adiabatic channel approximation artificially simulates the quantum effects of tunneling
and overbarrier reflection as well as the Coriolis coupling and it suppresses too high values of the
centrifugal barriers predicted by a quantum adiabatic channel approach. For H2( j 51)1Ar1 and
N2( j 51)1He1 capture, the rate constants atT→0 K are about 3 and 6 times higher than the
corresponding values for H2( j 50)1Ar1 and N2( j 50)1He1 capture. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1724822#

I. INTRODUCTION

Complex formation~capture! in low-temperature colli-
sions of an ion and a diatomic molecule usually occurs with
participation of molecules that occupy only low rotational
states. If the temperatureT is noticeably lower thanB/kB ~B
is the rotational constant of the molecule in energy units and
kB is the Boltzmann constant!, the largest contribution to the
capture rate constant~CRC! comes from the ground rota-
tional state of the diatom. If this state is not degenerate, and
if the ion is in a nondegenerate electronic state, the dynamics
of the capture assumes a particularly simple form since the
interaction between the colliding partners is isotropic. If, in
addition, the relative motion can be considered as classical,
the calculation of the CRC becomes a standard textbook
problem. Recently, the classical results have been extended
down to lower temperatures, where the relative motion is
quantal.1

If the states of the colliding partners are degenerate, the
problem of calculating CRC becomes more complicated. An
economic approach to attack this problem is the adiabatic
channel~AC! approximation which simplifies the dynamical
problem by assuming that the projection of the intrinsic an-
gular momenta of the collision partners on the collision axis
R is conserved throughout of the collision event.2,3 In what
follows we assume that the electronic state of the ion is non-
degenerate such that the intrinsic angular momentum is iden-

tical to the rotational angular momentum of the diatom
~quantum numberj!. A detailed treatment of state-specific
ion–molecule capture within the AC approximation, for ion–
quadrupole systems, was presented by Smith and Troe4 under
the condition of classical~Cl! relative motion~we call this
AC classical approximation, ACCl! who calculated state-
specific low temperature rate constants in the perturbed rotor
limit.

In this work we consider the cross section and the rate
constant for capture, by an ion, of a homonuclear diatom in
the first excited rotational statej 51. This problem is of spe-
cial interest for two reasons: first, it represents the main cor-
rection to the capture cross section of ground-rotational state
~the more so since the interaction in a system ‘‘ion–diatom
with j .0’’ is of longer range than that for a system ‘‘ion–
diatom with j 50’’ !, and second, the statej 51 is the ground
rotational state for a specific total nuclear spin of the diatom.
This is the reason why we decided to study in detail the
capture dynamics for a system ‘‘ion-homonuclear diatom’’ in
the state j 51 in the energy range between the
Bethe–Wigner5,6 and ACCl regimes. We assume that the ro-
tor statej 51 is adiabatically isolated from other rotational
states, and we calculate the capture cross section within three
different approximations: an accurate quantum treatment, a
quantum version of AC~ACQ! and the ACCl approximation.
We intend to derive a suitable analytical approximation for
the capture cross section similar to that suggested for ion-
induced dipole capture in Ref. 1. We have especially consid-
ered the two systems, Ar11H2 and He11N2, for which
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ACCl results are available.4 As in Ref. 3, instead of discuss-
ing the energy-dependent capture cross sectionss, we con-
sider the energy-dependent rate coefficientsK since the latter
show simpler limiting behavior at high and low energies.
Then we convertK into the temperature-dependent rate con-
stantsK̄.

The outline of the presentation is the following. In Sec.
II we review the theoretical background for calculating cap-
ture cross sections and rate coefficients in different approxi-
mations. Section III describes the calculation of accurate and
approximate capture probabilities. In Secs. IV and V we
present results for quantal and classical rate coefficients.
Thermal rate constants are presented in Sec. VI. Secs. VII
and VIII contain discussion and conclusion.

II. THEORETICAL BACKGROUND

We consider the collision of a structureless particle A~an
atomic ion in a closed state! with a rigid rotor B2 in the
rotational statej 51 under the assumption that this state is
adiabatically isolated from other states. A complex AB2 is
assumed to be formed when partners approach each other at
a certain distanceRc . The dynamics of complex formation is
characterized by the wave function which is the solution of
the Schro¨dinger equation describing the coupled translational
and rotational motion of the partners. The boundary condi-
tions for the wave function are the incoming plane wave and
the outgoing spherical wave at largeR, and complete absorp-
tion at the surface of the complex. The asymptotics of the
wave function furnishes the complex formation~capture!
probabilitiesPj ,,

J which are labeled by the quantum numbers
of the total angular momentumJ, the relative angular mo-
mentum, and the intrinsic angular momentumj of the dia-
tom. For a rotationally unpolarized molecule, the state-
specific complex formation quantum~Q! cross section is
given by the standard formula for an inelastic cross section
~see, e.g., Ref. 7! in which the absolute values of the squared
matrix elements of the scattering matrix are replaced by the
capture probabilities,

s j
Q~k!5

p

k2 (
,,J

2J11

2 j 11
Pj ,,

J ~k!. ~1!

Here k is the wave vector which is related to the colli-
sion energyE, the relative velocityn and the relative linear
momentump asE5\2k2/2m5p2/2m5mn2/2 with m being
the reduced mass of the collision partners. Since we are dis-
cussing the casej 51 the subscriptj will be dropped and
only replaced by unity where necessary.

Following Ref. 7 we adhere to the convention that the
quantum numbers of those dynamical quantities that are con-
served during the collision appear as superscripts, while oth-
ers, corresponding to the asymptotic states, appear as sub-
scripts. A wave function inj ,J representation possesses a
definite parityp which is conserved; however, for a given set
j ,J, it is redundant and, therefore, appears in parentheses.
Instead of thej ,J representation, one can also use aj ṼJ

representation withṼ being the quantum number of the pro-
jection of j onto R at R→` ~the so-calledR-helicity repre-
sentation!. A wave functions in thej ṼJ representation does

not possess a definite parity, but it can be made so, if the
quantitiesṼ, are replaced by their absolute valuesV5uṼu
and the parityp. Since the transformationj ,J↔ j VpJ is
unitary, Eq.~1! can be rewritten as

sQ~k!5
1

3 (
V,p

sV
Q,p~k!,

with

sV
Q,p5

p

k2 (
J

~2J11!PV
J,p~k!. ~2!

HeresV
Q,p(k) are the partial quantum cross sections specified

by the asymptotic quantum numberV and the conserved
quantum numberp. In our case, there are three different par-
tial cross sectionss0

Q,p , s1
Q,p , s1

Q,p̄ wherep and p̄ are the
opposite parities.

In the ACQ version of the capture theory one assumes
that the projection quantum numberṽ of j onto the collision
axis remains a good quantum number for arbitraryR and one
considers one-dimensional radial motion along effective AC
potentialsUeff

J,v(R). The ACQ version of Eq.~2! reads

sACQ~k!5
1

3 (
ṽ

sACQ,ṽ~k!,

with

sACQ,ṽ~k!5
p

k2 (
J

~2J11!PJ,ṽ~k!, ~3!

where PJ,ṽ are the transmission probabilities through and
over the centrifugal barriers of the effective radial potential
Ueff

J,v(R), andsACQ,ṽ(k) are the partial cross sections speci-
fied by the assumed conserved quantum numberṽ. Since in
this approximationPJ,15PJ,21, there are two different par-
tial cross sectionssACQ,0, sACQ,61. Of course, instead of
quantum numbersṽ, one can label the partial cross sections
by quantum numbersv, p, introducing the cross sections
sACQ,v,p. Within this nomenclature, one hassACQ,0

5sACQ,0,p, sACQ,615sACQ,1,p5sACQ,1,p̄. Though asymp-
totically V5v, the cross sectionssACQ,v,p(k) and
sV

Q,p(k)uV5v are not equal to each other since the AC ap-
proximation does not account for the rotational asymptotic
coupling between differentv AC states.8 Nonetheless, the
ACQ cross sectionsACQ(k) is expected to provide a good
approximation to the accurate quantum cross sectionsQ(k)
if the region of rotational coupling lies substantially outside
centrifugal barriers.8

Finally, the ACCl counterpart of the quantum cross sec-
tion can be presented as an integral overJ of the classical
capture probabilitiesPv(k,J),

sACCl~k!5
1

3 (
ṽ

sACCl,ṽ~k!,

sACCl,ṽ~k!5
p

k2 E Pv~k,J!2J dJ. ~4!

This nomenclature Q and ACCl corresponds to the nomen-
clature Q and Cl in Ref. 1, where only one adiabatic~i.e.,
AC! potential was considered.

The state-specific quantum cross sections for capture
leads to the energy-dependent state specific rate coefficients
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KQ(E) and the temperature-dependent specific rate constants
K̄Q(T) which are related to the cross sectionssQ(k) in a
standard way,

KQ~E!5nsQ~k!, K̄Q~T!5^KQ~E!&T , ~5!

where ^¯&T denotes averaging over the Maxwell–
Boltzmann distribution in relative velocities at translational
temperatureT.

In the following it is expedient to introduce the scaled
interparticle distancer5R/R* and the scaled wave vector
k5kR* with R* to be defined by convenience. In addition,
we use, instead of theK(k), a dimensionless rate coefficient
x~k!. We relate the latter toK(k) as

KQ~k!5S 2pR*
\

m DxQ~k!, ~6!

wherexQ(k) assumes the form

xQ~k!5
1

3 (
V,p,

xV
Q,p~k!,

with

xV
Q,p~k!5

1

2k (
J50

`

~2J11!PV
J,p~k!. ~7!

The ACQ and ACCl counterparts of Eqs.~5!–~7! are defined
similarly.

For a pure isotropic interaction, after simple algebra of
angular momentum addition, this expression reduces to a for-
mula for the rate coefficient for the isotropic capture,

xQ,iso~k!5
1

2k (
,

~2,11!P,~k! ~8!

which, of course, is valid for any value ofj. This formula
with j 50 in Ref. 1 was used for discussion of rate coeffi-
cients over wide energy ranges. Note that the normalization
of xQ,iso is chosen in such a way that, with an ion-induced
dipole interaction, ULang(R)52C/R4 and R* [RLang

5A2mC/\, the high-energy Langevin limit ofxQ,iso is equal
to unity,1

xQ,iso~k!uk@1[xLang51. ~9!

III. RELATIONS FOR ACCURATE AND APPROXIMATE
CAPTURE PROBABILITIES

A. Accurate treatment

The scattering wave function can be written in different
representations. In order to achieve a simple relation within
the AC approach, for the wave functions of the relative mo-
tion we use the AC angular basis. The radial parts of these
functions arecv

J,p(R) with v50,1 andp assuming two dif-
ferent values for twov51 states. For simplicity, we rewrite
the three functions asc0

J[c0
J,p , c1

J5c1
J,p , c

1̄

J
5c1

J,p̄ where
p and p̄ are opposite parities. As described in Ref. 7 and
discussed in Ref. 9,c0

J andc1
J are coupled by Coriolis inter-

action, whilec
1̄

J
satisfies a single equation. Inputs into these

equations are the effective AC potentialsyv
J,eff ~channel po-

tentials plus the centrifugal term! and the Coriolis coupling
y01

J .

The scattering equations should be solved with absorb-
ing boundary conditions on the surface of the complex. In
general, this can be done by introducing a negative imagi-
nary potential in the complex region. There exists, however,
an alternative approach if the motion of partners approaching
the surface of the complex is quasiclassical. Since any qua-
siclassical functions can be represented as a superposition of
incoming and outgoing waves, the absorbing boundary con-
dition corresponds to the quasiclassical functions that contain
only the incoming parts of the waves just before they reach
the complex surface. Of course, at large distances, the
complex-forming multichannel wave function conforms to
standard boundary conditions: outgoing waves in all the
channels and an incoming wave in a single state withv, p
5V, p. In this way, we get three capture probabilitiesPV

J,p

5P0
J , P1

J , P
1̄

J
. We note in passing that the above boundary

conditions close to the surface of the complex are identical to
those used in the theory of electron attachment to molecules
in the framework of the so-called extended Vogt–Wannier
theory ~see Ref. 10 and a review paper11!.

In what follows, we assume that the capture is deter-
mined by a special type of long-range anisotropic interaction,
i.e., by an anisotropic ion-induced dipole interaction and
ion–quadrupole interaction

V~R,g!52
q2a

2R4 1S 2
q2Da

3R4 1
qQ

R3 D ~3 cos2 g21!

2
,

~10!

whereq is the charge of the ion,a is the mean polarizability,
a5(a i12a')/3, Da5a i2a' , and Q is the quadrupole
moment of the molecule. The AC quantum numbersṽ and
statesuṽ& are defined as the result of a diagonalization of the
interaction matrix with the quantization axis taken to be the
collision axisR. In the perturbed rotor approximation, forj
51, Eq. ~10! generates the following AC potentials:4

Vv~R!52
q2a

2R4 1S 2
q2Da

15R4 1
qQ

5R3D ~223v2!. ~11!

The AC states are coupled by the rotational coupling; the
latter is simplified when one passes from theṽ representa-
tion to the v, p representation. Let us define states
u0&,u1&,u1̄& as those corresponding to the statesu0,p&, u1,p&,
u1,p̄&. Then the Coriolis interaction couples the statesu0& and
u1&, while the stateu1̄& remains uncoupled. We now choose
the length unitR* [RL5Amq2a/\ and introduce the energy
unit E* 5\2/mRL

2. Passing to the dimensionless scaled AC
potentialsyv5Vv /E* , we write the following expressions
for the effective AC potentials and the Coriolis interaction:

y0
J,AC,eff~r!5

~J~J11!12!

2r2 2
1

2r4 1S a

r4 1
b

r3D ,

y1
J,AC,eff~r!5y

1̄

J
~r!5

J~J11!

2r2 2
1

2r42
1

2 S a

r4 1
b

r3D ,

y10
J,AC,Cor~r!5y01

J,AC,Cor~r!5
AJ~J11!

r2 . ~12!

The single effective AC potential forJ50 is
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y0
0,AC,eff~r!5y0

J,AC,eff~r!uJ505
1

r22
1

2r4 1
a

r4 1
b

r3 ,

~13!

wherea52Da/15a, b52mqQ/5RL\2. Here one term,y iso,
is the scaled isotropic ion-induced dipole interaction. The
other term,yv

aniso, contains two interaction parameters: param-
etera encompasses the scaled anisotropic ion-induced dipole
interaction and the parameterb results from first-order ion–
quadrupole interaction. The values of these parameters for
the two systems considered are listed in Table I.

If a is zero or very small~such as this is the case here!,
the potentialy1 is attractive, and potentialy0 at large dis-
tances is repulsive for the caseb.0, while the potentialy0 at
large distances is attractive andy1 is initially repulsive for
the caseb,0. These two cases are called conventionally the
even and odd cases, see Ref. 4. In this paper we only con-
sider the collision energies that are noticeably below the po-
tential barriers fory0 @in the even case,y0

max5(1/6)(3b/2)4

50.84b4] and for y1 @in the odd case,y1
max5(1/6)(3b/4)4

50.05b4], and, therefore, we will regard the at large dis-
tances repulsive potentials as purely repulsive. Note that all
the effective AC potentials are repulsive at large distances.

B. AC calculations

Within the standard AC approximation, the rotational
coupling is neglected completely such that the AC capture
probabilitiesPJ,ṽ are simply the transmission probabilities
through the centrifugal barriers of the effective potentials
yv

J,AC,eff . The transmission probabilities are found from the
respective AC wave functionscAC,J,ṽ that satisfy the un-
coupled scattering equations similar to those of Ref. 1.

C. ACCl calculations

Within the ACCl approximation, the transition probabili-
ties Pṽ(k,J) are Heaviside step functions,

Pṽ~k,J!5H QFk2

2
2max~yv

J,AC,eff~r!!G , for attractive AC potentials,

0, for repulsive AC potentials,

~14!

whereQ(x) is the Heaviside step function. Note that for the even casev51, and for the odd casev50.

IV. CLASSICAL AC RATE COEFFICIENTS

The capture rate coefficient within the ACCl approach reads

xACCl~k!5
1

6k H J0
2~k!, for attractive AC potentials withṽ50, in the odd case,

2J1
2~k!, for attractive AC potentials withṽ561, in the even case,

~15!

where theJv(k) are found from the solutions of the equation

max$yv
J,AC,eff~r!uJ5Jv

%5
k2

2
~16!

with v50, for the odd case, andv51, for the even case.
One can express quasiclassical AC rate coefficients

through the rate coefficients for a certain reference potential
Vr(R), provided that the latter has a structure similar to that
for AC potentials. For this purpose we consider the classical
capture in the field of a certain potentialVr(R). The standard
equations for the capture yield the angular momentum for the
orbiting trajectory,Mc , as a function of the initial linear
momentum of relative motion,P. In terms of these quanti-
ties, the capture cross sectionSr and the capture rate coeffi-
cient Kr for the reference potential are

Sr5p
Mc

2

P2 , Kr5
p

m

Mc
2

P
. ~17!

The calculation ofSr andKr can be simplified if one intro-
duces scaling parameters, a unit of lengthR0 and a unit of
actionA. Then the initial variablesR, P, Mc can be expressed
via the scaled dimensionless variablesr, p, mc as

r 5R/R0 , p5PR0 /A, mc5Mc /A. ~18!

With this scaling, the unit of energy isE05A2/mR0
2, and the

dimensionless energy is«5E/E0 . We then introduce the
reduced rate coefficientXr(p)5mc

2(p)/2p which is related
to Kr as

Kr5
2pAR0

m
Xr~p!. ~19!

Up to this point, the two parametersR0 and A remained
arbitrary and they could be defined as a matter of conve-
nience. We consider two possible choices.

~i! R0 and A can be chosen in order to decrease the
number of parameters entering into the potentialVr(R) by
two. For the interaction containing two inverse-power terms
~such as2C4 /R4 and 2C3 /R3), the scaled potentialn(r )
can be written in a the formn(r )521/2r 421/2r 3. The
function Xr(r c) in Eq. ~19! will contain no parameters. The
scaling parameters do appear, however, when one passes to
the rate coefficientKr and when one expresses the collision
energy E through dimensionless energy«. This choice of
parameters was also adopted in Ref. 4 where the ratio of the
thermally averaged classical capture rate to the Langevin
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capture rate was discussed~see Fig. 4 in Ref. 4!. However,
this choice appears inconvenient when the relation between
classical and quantum rates is discussed.

~ii ! R0 andA can be chosen in order to provide a quasi-
classical correspondence between the classical angular mo-
mentumM and its quantum number counterpart,, i.e., A
5\; R0 can be chosen in such a way that the isotropic part
of the ion-induced dipole term in the AC potential takes the
form 21/2r 4. With this choice ofR0 andA, the dimension-
less distancer coincides withr, the dimensionless linear
momentump coincides withk, and the classical function
Xr5Xr(p) represents the quasiclassical counterpart of the
AC quantum functionxACQ5x r

ACQ(k) for the AC potential
which coincides with the reference potential. In other words,
Xr(p)[x r

ACCl(k). Of course, in this caseXr(p) and
x r

ACCl(k) depend additionally on the parameters that enter
into the reference and AC potentials, respectively.

For our purpose, instead of plottingx r
ACCl(k) as a func-

tion of the wave vectork, it is more instructive to plotx r
ACCl

as a function of the properly defined scaled capture angular
momentuml. In accord with Ref. 1, the latter is defined in
such a way that it becomes equal to the angular momentum
quantum number, whenever the collision energy becomes
equal to the height of centrifugal barrier for a given value of
,. In other words, integer values ofl50,1,2,..., correspond
to the collision energies at which the capture channels with
,50,1,2,..., become classically open. The representation in
terms of a variablel prepares the ground for a discussion of
quantum effects, which are expected to show up within the
energy range corresponding to lowl.

We definel throughmc as

l5Amc
211/421/25A2kXr11/421/2. ~20!

The functionl has the desired property, viz.l(l11)5mc
2

with mc
2 being the reduced capture orbital momentum.

As an example, we take asn r(r ) an isotropic ion-
induced dipole plus ion–quadrupole potential@potentials
from Eq.~12! with a50]. For this case, we have the follow-
ing expressions for the ACCl rate coefficients for the cases
b.0 andb,0:

xeven
ACCl5

2

3
Xb , nb~r !52

1

r 42
b

2r 3 , b.0, ~21a!

xodd
ACCl5

1

3
Xb , nb~r !52

1

2r 4 1
b

r 3 , b,0. ~21b!

The asymptotic forms ofXb for small and largek are

Xbub.05H 3321/3

4 S b2

k D 1/3

for k!b2,

1 for k@b2,

~22a!

Xbub,05H 3321/3

4 S 4b2

k D 1/3

for k!b2,

1 for k@b2.

~22b!

Plots oflb versusk andXb versuslb are presented in Figs.
1 and 2, forb ranging from 2.5 to 20. The blank area forl
,1 is the region where the quasiclassical approximation is

expected to break down completely. The aim of the quantal
calculations of the rate coefficients is to cover this region and
to elucidate the convergence ofxQ and xACQ to xACCl for
l.1. We note in passing that, if we extrapolate the expres-
sion forXb down to the boundary of the quantum region, say
to lb51, we getXbulb'1}b for sufficiently largeb. Since,
according to the Bethe law, the quantum rate coefficient has
a finite value in the limitlb!1, the above result suggests
that the zero-energy quantum rate coefficient is proportional
to b. We will see in Sec. V that this is indeed the case.

In Fig. 2, along with the rate coefficientsXb for the
ion-induced dipole1 ion–quadrupole interaction of Eq.~30!,
we show also the asymptotic rate coefficientsXb

as from Eq.
~30! which correspond to pure ion–quadrupole interaction
for two cases,b55 andb5210. We see thatXb and Xb

as

coalesce for smalll; this is expected since, at low energies,
the main contribution to the capture comes from the long-
range part of the potential. But we see also that this coales-
cence forb55 occurs only in the quantal region. Since the

FIG. 1. Plots oflb vs k for the reference potentials of Eq.~21! and selected
values of the parameterb. In the regionl<1, the classical description is
certainly not valid.

FIG. 2. Reference capture rate coefficientsXb vs lb ~full lines! for selected
values of the parameterb. The dotted lines correspond to the rate coeffi-
cients for pure ion–quadrupole interaction. In the regionl<1, the classical
description is certainly not valid.
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value of b for H2– Ar1 interaction is close to 5, we expect
that, assuming the pure ion–quadrupole interaction, there
does not exist an energy range where H2– Ar1 capture can
be described classically.

V. RESULTS FOR ACCURATE QUANTUM, ACQ,
AND ACCl RATE COEFFICIENTS

Calculations ofxQ(k), andxACQ(k) were done by solv-
ing the coupled and uncoupled Schro¨dinger equations, re-
spectively, for the two collision processes H21Ar1 and N2

1He1. The interaction parameters for these systems are
listed in Table I, and the rate coefficients are presented in
Figs. 3 and 4. Shown are the three rate coefficientsxQ(k),
xACQ(k), and xACCl(k) versus the variablel~k! which is
defined as a solution to the capture equation;

maxH l~l11!

2r2 1yv
AC~r!J 5

k2

2
, ~23!

with v51 for the even case (H21Ar1 capture! and v50
for the odd case (N21He1 capture!. The following aspects
of Figs. 3 and 4 deserve particular attention.

High energy limit: The high-energy limitk@1 corre-
sponds to largel@1, when many capture channels are clas-
sically open. Here, all three rate coefficientsxQ(k),
xACQ(k), andxACCl(k) are close to each other. Except for
small-amplitude undulations ofxQ(k) and xACQ(k), which
are due to the successive opening of new capture channels,
this is expected. In the limit of high energy, the capture event
is dominated by the ion-induced dipole interaction. Since the
polarization anisotropy in both cases is very small (a!1),

the high-energy limit of the capture rate coefficients is the
Langevin expression. With our choice of the length unit, we
get xl@1

Q , xl@1
ACQ→xACCl→xLang51.

Low-energy limit: The low-energy limit k!1 corre-
sponds tol!1 when the rate constant is determined by the
contribution of terms with small angular momenta only.

~i! The ACCl rate coefficient shows the familiar behav-
ior: it diverges ask21/3, similar to that of a capture rate
coefficient for an isotropic attractive interaction proportional
to 21/R3. This behavior is in conflict with the Bethe law.12

~ii ! The ACQ rate coefficient tends to zero in the limit
k→0. This is in accord with the Wigner threshold law.12

Indeed, in the field of an attractive potential the partial cap-
ture rate coefficient for smallk in the channel with angular
momentum, is proportional tok2,. The lowest attractive
AC potential in Eq.~12! corresponds toJ5v51 so that for
smallk, xACQ(k)'xACQ,1(k)}k2. However, this conclusion
is not in accord with the Bethe law, which predicts a final,
nonzero value of the rate coefficient in the limitk→0. This
incorrect result is due to the neglect of nonadiabatic effects,
which, as we shall see, play a decisive part in the low-energy
capture dynamics.

~iii ! The accurate quantum rate constants conform with
the Bethe law. In order to understand the limiting values of
xQ(k), x0

Q5xQ(k)uk505xQ,1(k)uk50 , it appears desirable
to formulate an approximate scheme that would yield an ap-
proximate value ofx0

Q. Since the Coriolis coupling plays a
dominant part in the capture dynamics, one can attempt to
formulate a perturbation scheme in which the Coriolis inter-
action is considered in zero order, while the interfragment
interaction is regarded as a perturbation. This is easily done
since our problem corresponds to the case of an atomic col-
lision between an ion A1 and an atom B in a statej 51. In
this spirit, the AC approximation for the ion–molecule case
corresponds to the Hund coupling caseb of a diatom, while
the perturbation approach, which we are looking for, corre-
sponds to the Hund coupling cased. The switching between
different Hund coupling cases is well developed,7,13 so that
one can use a standard technique in calculating the interac-
tion. In the Hund coupling cased, the good quantum num-

TABLE I. Interaction parameters for the H21Ar1 and N21He1 systems
~from the values ofa, Da, andQ used in Ref. 4!.

System a, a.u. Da, a.u. Q, a.u. RL , a.u. a b

H21Ar1 5.437 2.12 0.474 138 20,052 4.81
N21He1 11.74 4.79 21.09 274 20.0545 210.2

FIG. 3. H2( j 51)1Ar1 capture. Accurate quantum,xQ ~full line!, adiabatic
channel quantum,xACQ ~short dashed line!, and adiabatic channel classical,
xACCI ~long dashed line!, reduced energy-dependent rate coefficients vs
‘‘classical angular momentum quantum number’’l. Left and right arrows
indicate approximate zero-energy and exact high-energy limits ofxQ. Open
circles correspond to the approximation in Eq.~30!.

FIG. 4. As in Fig. 3 but for N2( j 51)1He1 capture.
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bers are the orbital momentum quantum number, and the
quantum number of the intrinsic angular momentumj. In
discussing the zero-energy limit of the rate coefficient, we
are interested in the state,50 which does not produce a
centrifugal barrier. In the zero and first order, the interfrag-
ment interaction is equal to the isotropic potential. In our
case, this is the isotropic ion-induced dipole interaction pro-
portional toR24. The anisotropic part of the potential shows
up only in the second order. In our case, the anisotropic part
of the potential is mainly the ion–quadrupole interaction
~note thata is very small! such that the second-order inter-
action is proportional to the square of the anisotropic part of
the interaction, (R23)2, divided by the zero-order energy
difference of the two coupled states,,50 and,852. This
difference is just the difference in the rotational energies of
the pair for two values of,, which is proportional toR22. In
this way, the second order correction to the isotropic interac-
tion turns out to be proportional toR24. In other words, the
interaction energy in the channel with,50 becomes a modi-
fied ion-induced dipole interaction, and, therefore, the results
of our previous analysis1 for s-wave capture become appli-
cable. The explicit calculation then yield the following ex-
pression for the interaction potentialypert(r) within the per-
turbative approach:

ypert~r!52
1

2r4 ~11b2/3!. ~24!

Let Ppert(k) be the capture probability for the potentialypert

from Eq. ~24! in the limit of smallk. Then

x0
Q5x0

Q,1'x0
pert5 lim

k→0

2J11

6k
Ppert~k!U

J51

. ~25!

For small k, Ppert is linear in k, and reads Ppert

54kA11b2/3.1 Thus we get

x0
pert52A11b2/3. ~26!

For the considered two capture processes H21Ar1 and N2

1He1, we find x0
pert55.90 andx0

pert511.95, respectively.
These numbers are presented by heavy dots in Fig. 3 and Fig.
4. We indeed see that a perturbative treatment explains the
accurate numerical results in the zero-energy limit.

Intermediate energies: In the intermediate energy regime
(1<l<4) two features deserve discussion: the relation be-
tweenxQ, xACQ, andxACCl for each of the collision events,
and the difference between the capture rates for two pro-
cesses.

~i! For both H21Ar1 and N21He1 collisions the AC
classical approach,xACCl, approximates the accurate rate co-
efficients xQ better than the AC quantum approach does.
Since we know1 that the classical approximation, by replac-
ing the sum over angular momenta with an integral, quite
well simulates the quantum effects of tunneling and overbar-
rier reflections, the noticeable difference betweenxACCl and
xACQ with a smaller difference betweenxACCl andxQ should
be ascribed to yet another effect that partly simulates the
nonadiabatic coupling within the ACCl approach: a partial
decrease of the height of the ACClI centrifugal barrier po-
tential compared to ACQ barrier height. This follows from

the simple observation that the expectation value of the
square of the orbital angular momentum operator conforms
to the following relation:^ Î2&J

ACQ>^I2&J
ACCl5J2. We thus

see that anad hoc replacement of the expectation value of
the square of the orbital angular momentum byJ2 in the
ACCl approach slightly suppresses centrifugal barriers and
thus increases the capture rate. Presumably, this effect can be
described more consistently within the so-called axially
nonadiabatic channel approach.14

~ii ! The classical approximation works much better for
H21Ar1 than for N21He1. The difference between these
two events is that, for the former, the effective potential for
the channel withJ50 is purely repulsive~b is positive!,
while, for the latter, it possesses a centrifugal barrier and
then becomes attractive~b is negative!. Indeed, if the contri-
bution of xQ,JuJ50 into xQ is artificially ignored, one finds a
very good agreementxQ and betweenxACCl. This simply
means that the classical description~integration overJ! is not
able to account for a finite contribution that comes from zero
total angular momentum.

VI. RESULTS FOR TEMPERATURE-DEPENDENT
RATE CONSTANTS

Temperature-dependent capture rate constantsx̄ are ob-
tained from x by averaging the latter over a Maxwell–
Boltzmann velocity distribution. The distribution functionF,
written in terms of the variablek, reads

F~k;u!5
2u23/2

A2p
k2 expS 2

k2

2u D , ~27!

where the reduced temperatureu is given by

u5kBT/E* , with E* 5\2/mRL
2. ~28!

The reduced capture rate constantx̄Q(u) is defined as

x̄Q~u!5E
0

`

xQ~k!F~k,u!dk. ~29!

Similar definitions hold forx̄ACQ(u) and x̄ACCl(u). The re-
sults of calculations are presented in Figs. 5 and 6. We see
that the AC classical approximation, for H2( j 51)1Ar1

capture, performs well down tou'0.1 that corresponds to
1024 K. As for x̄ACQ(u), it fails in the limit of smalleru. For
N2( j 51)1He1 capture, the AC classical approximation is
accurate down tou'1, i.e.,T'1023 K.

Since the averaging in Eq.~29! smoothes out all fine
details of the energy-dependent rate coefficient, one can try
to design a simplified representation ofxQ. One form, which
does not require solutions of the Schro¨dinger equation for a
complete potential but only uses the zero-energy limit of the
rate coefficient for capture in an ion-induced dipole potential,
reads

xapp
Q 5min$x0

pert,xACCl%. ~30!

The results forxapp
Q 5min$x0

pert,xACCl% are obtained from
Figs. 3 and 4, and lead tox̄app

Q in Figs. 5 and 6.
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VII. DISCUSSION

The overall difference between capture rate coefficients
for H2( j 51)1Ar1 and N21He1 collisions is due to the
fact that the relative role of the anisotropic interaction~ion–
quadrupole! is larger for the latter case, and that the quadru-
pole moments of H2 and N2 are of different signs. For H2
~even case!, the open AC channels are those withv51,
while for N2 ~odd case! they correspond tov50. With our
normalization convention, the rate coefficientsxH2

Q (k) and

xN2

Q (k), for large enoughk, tend to 2/3 and 1/3, respectively.

In their the zero-energy behavior, we see that, for H2( j 51)
1Ar1 capture, the ratio of the zero-energy rate coefficient to
the high-energy rate coefficients is about 9 while it is about
36 for N2( j 51)1Ar1 capture.

In the intermediate energy range (2,l,6), the quasi-
classical AC rate lies between the accurate quantum and AC

quantum rates. Often, quasiclassical rates at low energy are
calculated by taking into account the leading term in the
interaction~proportional toR23). This is permissible when
the capture rate coefficientx~k! is noticeably larger than the
high-energy Langevin rate coefficientxLang. If we take a
value of 3 as a value ‘‘noticeably higher than unity;’’ from
Fig. 2 (N21He1 case! we find that this value of the ratio
xN2(k)/xLang corresponds tol'3. Now,l'3 is an angular
momentum which is again ‘‘noticeably larger than unity,’’
and, therefore, the small relative difference~about 15%! be-
tween the accurate and quasiclassical rates can be ascribed to
the good performance of the quasiclassical approximation in
the region where one can neglect the ion-induced dipole in-
teraction against the ion–quadrupole interaction. The situa-
tion is quite different for H21Ar1, see the discussion in Sec.
III. A ratio xH2(k)/xLang'3 is attained forl,1. This indi-
cates that, for H21Ar1, one cannot adopt the pure ion–
quadrupole interaction and, at the same time, use the classi-
cal approximation for calculation of the rate constant.

In order to illustrate the influence of the long-range ion–
quadrupole interaction on the capture, in Fig. 7 we compare
the capture cross sections for ground and excited states of H2

and N2. For both the ground and excited states the ion-
induced dipole interaction is approximately the same, while
the ion–quadrupole interaction is absent for nonrotating mol-
ecules. We see that the zero-temperature rate constants for
rotating molecules (j 51) are about 3 and 6 times higher
than for the nonrotating ones (j 50). Note that atu5100 the
capture rate constant for nonrotating molecules has already
reached its Langevin asymptote~1! while this is not the case
for rotating molecules~the asymptotic values are 1/3 for N2

and 2/3 for H2).
If we take into account solely the ion–quadrupole inter-

action for j 51, we obtain the AC classical rate constants
shown by the dashed lines in Fig. 7. These lines correspond
to the formula

FIG. 5. H2( j 51)1Ar1 capture. Accurate quantum,x̄Q ~full line!, adiabatic
channel quantum,x̄ACQ ~short dashed line!, and adiabatic channel classical,
x̄ACCI ~long dashed line! reduced temperature-dependent rate constants vs
scaled temperatureu ~lower axis! and conventional temperatureT ~upper
axis!. Open circles correspond tox̄app

Q .

FIG. 6. As in Fig. 5 but for N2( j 51)1He1 capture.

FIG. 7. Comparison of accurate reduced quantum rate constantsx̄Q for
capture H2( j 50)1Ar1, H2( j 51)1Ar1, N2( j 50)1He1, N2( j 51)
1He1 for different scaled temperaturesu. Dashed curves representx̄ACCI

for pure charge–quadrupole interaction.
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K̄even
ACCl~T!5

2

3
G~1/3!Ap

m S kBT

2 D 21/6U25 qQU2/3

,

~31!
K̄odd

ACCl~T!5221/3K̄even
ACCl~T!

which coincides with the results derived by Smith and Troe4

when their expression for the state-specific limiting low tem-
perature rate coefficients from Eq.~22! in Ref. 4 are properly
weighted and 123a1 for a givenv is identified with (2/5)
3(223v2). We see once again that, atu.10 where the
ACCl approximation is adequate, the ion–quadrupole model
performs well for N21He1 capture, while it does not for
H21Ar1 capture.

In order to simplify applications, finally, in Fig. 8 we
present the capture rate constants in conventional units ver-
sus temperature in K.

VIII. CONCLUSION

Calculations of accurate energy-dependent rate coeffi-
cients and temperature-dependent rate constants for H2( j
51)1Ar1 and N21He1 captures show two interesting dy-
namical features.

First, the adiabatic channel classical approximation per-
forms well down to the energy or temperature when only a
single partial rate coefficient (J51,,50,j 51) essentially
contributes. Here the role of the classical approximation~in-
tegration over total angular momenta and identification of
the relative angular momentum with total angular momen-
tum! is dual: it artificially simulates the quantum effects of

tunneling through and reflection above the centrifugal barri-
ers, and it suppresses too high values of centrifugal barriers
such as predicted by a standard adiabatic channel approach.
The former effect is similar to what has been found earlier
for a single interaction potential.1 The latter is novel, and its
universality requires more studies of nonadiabatic effects in
the adiabatic channel basis.

Second, a noticeable deviation of the quantum
temperature-dependent rate constant from its adiabatic chan-
nel classical counterpart occurs only at extremely low tem-
peratures~for T,1023 K). This property of the rate con-
stants can be traced back to a very large range of dominance
of the modified ion-induced–dipole interaction potential re-
sponsible for thes-wave capture. The range of dominance,
RL

M , of the modified ion-induced dipole interaction is given
by RL

M5RLA11b2/3. The condition fors-wave capture,k
<1/RL

M , is much more restrictive than the conventional con-
dition k<1/RGK , with RL

M about 150 Å for the H21Ar1

collisions,RL
M about 600 Å for the N21Ar1 collisions and

the gas-kinetic diameterRGK of the order of several Å.
On the basis of the above we thus expect that the clas-

sical version of the AC approximation will be valid also for
other types of interaction down to very low temperatures
such as the conditions of Bose–Einstein condensation.
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