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Abstract

The definition of objective and effective thresholds in MRI of human brain function is a crucial step in the analysis of paradigm-related
activations. This paper introduces a user-independent and robust procedure that calculates statistical parametric maps based on correlation
coefficients. Thresholds are introduced as p values and defined with respect to the physiologic noise distribution of the individual maps.
Experimental examples from the human visual and motor system rely on dynamic acquisitions of gradient-echo echo-planar images (2.0 T,
TR � 2000 ms, 96 � 128 matrix) with blood oxygenation level-dependent contrast. The results demonstrate the disadvantages of
thresholding with fixed correlation coefficients. In contrast, taking the individual noise into account allows for a derivation of p values and
a reliable identification of highly significant activation centers. An adequate delineation of the spatial extent of activation may be achieved
by adding directly neighboring pixels provided their correlation coefficients comply with a second lower p value threshold. © 2003 Elsevier
Inc. All rights reserved.
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1. Introduction

Since its inception about a decade ago, functional MRI
(fMRI) of the human brain has developed into an important
research tool in both basic and clinical neuroscience. The
majority of studies relies on blood oxygenation level-depen-
dent (BOLD) contrast [1], which exploits changes in the
intravascular content of paramagnetic deoxyhemoglobin as
an endogenous indicator of altered brain activity. While the
exact nature of the coupling between (synaptic) brain activ-
ity and cerebral hemodynamics remains a subject under
investigation [2], the enormous increase in the number of
fMRI studies points to a rather pragmatic approach by most
researchers. Unfortunately, this attitude bears the risk of
ignoring some of the putative problems associated with data
acquisition and data analysis. For example, apart from is-
sues such as structural susceptibility artifacts [3], the appro-
priate statistical treatment of fMRI data sets is part of an
ongoing discussion despite the availability of detailed the-
oretical descriptions [4,5]. In fact, most strategies face com-

mon problems: 1) they attempt to calculate a map of a
defined statistical parameter; 2) they have to identify acti-
vated pixels via task-related fMRI signal increases (or de-
creases) in a noisy environment; and 3) they use some kind
of “thresholding” at a particular step during processing. The
purpose of this contribution is to present an effective data-
driven approach to the analysis of fMRI data sets that is
physiologically plausible, statistically justified, and of con-
siderable practical value.

2. Methods and subjects

Altogether, the proposed evaluation strategy has evolved
during the analysis of several thousands of fMRI data sets
acquired in multiple studies of this laboratory. An early
version of the initial concept has been described by Klein-
schmidt et al. [6]. Experiments have been carried out at 2.0
T using the standard head coil (Siemens Vision, Erlangen,
Germany). Subjects were mainly healthy volunteers but
eventually included patients. In most cases, BOLD-sensitive
MRI was based on echo-planar imaging (EPI) to provide
adequate volume coverage at intermediate resolution, while
selected applications employed (multi-echo) FLASH se-

* Corresponding author. Tel.: �49-551-201-1728; fax: �49-551-201-
1307.

E-mail address: jbaudew@gwdg.de (J. Baudewig).

Magnetic Resonance Imaging 21 (2003) 1121–1130

0730-725X/03/$ – see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.mri.2003.08.013



quences in order to achieve high spatial resolution. The
fMRI experiments performed here refer to an active motor
task and a passive visual stimulation. Acquisitions used a
standardized multi-slice EPI sequence (TR/TE � 2000/54
ms, 96 � 128 acquisition matrix) covering a rectangular
field-of-view at 2 � 2 mm2 resolution and 4 mm section
thickness.

The motor task contrasted self-paced bimanual finger
movements with motor rest, while the visual study com-
pared stimulation by a flickering checkerboard (5 Hz) with
the presentation of a gray screen. In either case, the para-
digm represented a simple block design alternating 12 s
periods of enhanced (or attenuated) neural activity with 18
s periods of control. Each experiment started with a 20 s
control period in order to establish steady-state conditions
followed by 6 repetitions of the 30 s paradigm.

The dynamic fMRI data sets were processed using a
temporal correlation analysis as originally proposed by Ban-
dettini et al. [7]. A reference function with a rectangular
box-car waveform served to represent the stimulation pro-
tocol. This function was shifted by 4 s (2 images) to account
for hemodynamic latencies and rise times. Correlation co-
efficients were calculated on a pixel-by-pixel basis and
visualized in a gray-scaled correlation image as shown in
Fig. 1A.

Mathematically, the cross-correlation of two functions is,
of course, defined as a function which represents the corre-
lation coefficients of these functions for all possible lag
times. Thus, also the cross-correlation analysis of an fMRI
data set yields a complete function for each image pixel.
However, this work follows the standard procedure of re-
ducing this function to a single correlation coefficient cc for

Fig. 1. Thresholding with a fixed correlation coefficient cc. Maps of correlation coefficients at fixed lag time (A) as gray-scale correlation image as well as
after (B) thresholding with cc � 0.5, (C) color-coding, and (D) superposition with an EPI reference image.
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a fixed lag time. Depending on the definition of the refer-
ence function mimicking the stimulus protocol, this lag time
may be 4 s - reflecting the hemodynamic delay - or zero for
a correspondingly shifted function.

2.1. Fixed correlation coefficients

A correlation image contains information not only about
the functional anatomy and the strength of the paradigm-
associated neural processing, but also about the quality of
the fMRI experiment in terms of background noise and
subject performance such as involuntary movements. In-
stead of taking advantage of this information, it is common
practice to uniformly reduce the data by means of a fixed
correlation coefficient and to generate apparently unambig-
uous spots of color-coded activation on top of a high-quality
anatomic reference image. It is this part of the analysis that
deserves further consideration.

The values of the correlation image shown in Fig. 1A
range from �1 (perfect positive correlation) to 0 (no cor-
relation) and �1 (inverted negative correlation). Notewor-
thy, visual inspection by an experienced experimenter im-
mediately results in a subjective judgment of the quality of
the gray-scaled activations. This effective cognitive process
needs to be translated into an objective and user-indepen-
dent mathematical strategy. In the most simple case, a
separation of “activated” pixels or regions from other areas
is achieved by introducing a fixed cc threshold, e.g., cc �
0.5 as in Fig. 1B. In this case, thresholding simply refers to
the fact that all pixels with cc � 0.5 will be dismissed,
leaving only pixels with cc � 0.5 for further processing
(Fig. 1C) and visualization (Fig. 1D).

It should be emphasized that the common procedure of
overlaying an EPI-derived activation map onto an anatomic
image with much better spatial resolution is misleading and
often unacceptable. This is because echo-planar images may
exhibit serious spatial distortions which then translate into
geometric inconsistencies between the functional map and
the anatomy—and obviously hamper any reliable interpre-
tation of the results. Conversely, the use of an EPI reference
image as in Fig. 1D offers an inherent quality control to both
the experimenter and the reader of a publication: the degree
of susceptibility artifacts present in a particular section will
become evident. Although trivial, a color-coded activation
map can never be better than the quality of the original EPI
acquisitions, and any attempt to hide this problem should be
discouraged.

Although fixed correlation coefficients seem to be pop-
ular thresholds, even the original work on fMRI correlation
analysis widely varied the actual values from 0.7 to 0.25 [7].
On the other hand, cc thresholds as low as 0.25 are often
(mis-) interpreted as a hint that no activation could be found.
However, correlation coefficients do not represent objective
levels of confidence. Even worse, their values strongly de-
pend on the length of the acquired fMRI time series, i.e., the
number of images or data points contributing to the corre-

lation analysis. When the duration of the fMRI experiment
is doubled while all other parameters remain the same—
including the underlying noise—the resulting correlation
coefficient of a selected, truly activated pixel decreases. Or
conversely, for a shorter fMRI experiment with fewer im-
ages, such correlation coefficients increase. Accordingly,
the use of identical correlation coefficient thresholds in
fMRI experiments comprising different numbers of images
is by no means statistically justified.

The apparently paradoxical result that longer acquisi-
tions yield activation maps with lower correlation coeffi-
cients is demonstrated in Fig. 2, which compares activation
maps for a motor task and for visual stimulation that were
obtained for a single, fixed threshold of cc � 0.4 and time
series of 25, 50, and 100 images. The shorter time series
were taken as subsets of the full acquisition comprising 100
images. While the resulting correlation images (not shown)
are more or less similar to each other, the thresholded
activation maps yield notable differences. The enhanced
number of pixels with cc � 0.4 for the series of 25 images
causes considerable “activation” outside the brain, whereas
the generally decreased correlation coefficients obtained for
“activated” pixels in the experiment with 100 images results
in a much cleaner map. The key to understanding this
behavior lies in an analysis of the underlying distribution of
correlation coefficients.

2.2. From correlation coefficients to p values

Fig. 3 shows distributions of correlation coefficients for
an fMRI study without any stimulation (null experiment)
but otherwise identical acquisition and analysis parameters
as in the experiments of Fig. 2. The values are obtained
from respective correlation images calculated using similar
reference functions as for the actual experiments. Because
of the large number of pixels involved, i.e., 96 � 128 �
12,288, the histograms may be represented as smoothed
distributions of correlation coefficients. In the absence of a
stimulus, i.e., without altered brain activity, the “noise”
distributions in Fig. 3 emerge as symmetric functions with
a Gaussian shape. Their widths increase when the number of
images decreases. Thus, correlation coefficients with values
above 0.4 by chance are more likely to occur when fewer
images contribute to the analysis.

In order to overcome the aforementioned inadequacies,
the procedure should involve a statistical test. Fortunately,
this is equivalent to the application of a probabilistic thresh-
old, which asks to which degree an observed high correla-
tion coefficient occurs by chance or represents a significant
effect. In line with earlier suggestions [7] and a wide ac-
ceptance in test statistics, it is therefore strongly recom-
mended to use p values instead of correlation coefficients
for thresholding in fMRI. As demonstrated in Fig. 4, a fixed
threshold of p � 0.001 leads to a more common behavior as
far as activation maps are concerned. In comparison with
Fig. 2 and a cc threshold of 0.4, the fixed p value corre-
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Fig. 2. Activation maps obtained for (A) a hand motor task and (B) visual stimulation using a fixed threshold of cc � 0.4 but different numbers of images
from the same time series: (top) 25 images, (middle) 50 images, and (bottom) 100 images (full acquisition).
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sponds to cc values of 0.588 (25 images), 0.427 (50 im-
ages), and 0.305 (100 images), respectively. Thus, a reduc-
tion of the number of images decreases the number of pixels
that are classified as activated by increasing the inherently
used cc threshold. Or in statistical terms, reducing the sam-
ple size results in a loss of power.

2.3. Individualized noise distribution

Fig. 5 shows correlation images and corresponding dis-
tributions of correlation coefficients obtained for the same
data as in Figs. 2 and 4. As theoretically predicted by
statistics and demonstrated by the null experiment, the basic
form of the distribution is adequately described by a Gauss-
ian curve. Brain activations, or more precisely pixels rep-
resenting paradigm-associated fMRI signal alterations,
manifest themselves as aberration of the true distribution

from the estimated Gaussian noise distribution, especially
for high positive-correlation coefficients. The actual histo-
gram can therefore be understood as the sum of two inde-
pendent distributions reflecting different subpopulations of
pixels: a dominating noise distribution given by a large
number of nonactivated pixels and a second much smaller
distribution of activated pixels with high positive (or nega-
tive) cc values. Of course, deviations from the noise distri-
bution may also occur simultaneously for both positive and
negative correlation coefficients.

While part of the noise may arise from technical sources
such as signal fluctuations due to the MRI sequence and
instrumentation, an important if not dominant source is
physiologic noise determined by the subject itself. Putative
factors are stimulus-correlated movements, variations in
respiration and cardiac pulsations as well as temporal insta-
bilities in hemodynamic responsiveness and mental state.
As a consequence, the width of the Gaussian noise distri-
bution not only depends on the number of images (compare
Fig. 3), but is also affected by unavoidable and largely
uncontrollable biologic factors [6]. In order to account for
these problems, one may take advantage of the additional
information in the actual distribution of correlation coeffi-
cients and develop a suitable correction of the theoretically
determined p values. This is achieved by the following
procedure.

In a first step, the histogram of correlation coefficients is
used to estimate the underlying noise distribution of a par-
ticular correlation image. In order to obtain a reliable esti-
mate, it is desirable to increase the sample size as much as
possible. One may therefore consider the entire multislice
fMRI data set as a possible optimum yielding rows � lines
� slices (e.g., 96 � 128 � 24) samples. However, this
procedure has to assume a uniform noise distribution in all
slices of the covered brain volume. Because multiple sec-
tions are usually acquired in an interleaved sequential man-
ner, their noise structure may indeed be influenced by slice-
dependent factors. It therefore seems advisable to derive the
noise distribution from individual sections. A further re-
striction stems from the characteristics of the image noise
outside the subject’s head in the surrounding air. These
regions provoke no relevant MRI signal but contribute noise
with an often narrower distribution of correlation coeffi-
cients than found within brain tissue. Because such contri-
butions may alter the statistical thresholds derived from the
estimated noise distribution, which, for example, may lead
to reduced specificity, this estimate includes only pixels
above a certain MRI signal intensity threshold. Thus, the
subsequent introduction of probabilistic thresholds relies on
histograms that represent pixels from brain tissue in indi-
vidual sections.

In a second step, a Gaussian curve is fitted to the central
portion of the histogram. The rationale for using this part is
the dominance of noise for low correlation coefficients
representing nonactivated pixels. The reason for excluding
the region around cc � 0 is based on the eventual experi-

Fig. 3. Distributions of correlation coefficients obtained in the absence of
a stimulus (null experiment). Original histogram (top, cc binning: 0.01
units) and smoothed representations (bottom, cc binning: 0.001 units) of
serial acquisitions with different numbers of images.
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Fig. 4. Activation maps obtained for (A) a hand motor task and (B) visual stimulation (same data as in Fig. 2) using fixed p values rather than correlation
coefficients for thresholding.
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mental observation of a perturbed peak structure of the
histogram in cases where the total number of samples is not
very high, for example, in transverse brain sections close to
the apex. It turns out that a robust definition of the Gaussian-
shaped noise distribution may be achieved by fitting those
parts of the histogram that cover a 50% range of the ob-
served peak height extending from the 30% level to the 80%
level (shaded zones in Fig. 5).

In a final step, demonstrated in Fig. 6, the distribution of
correlation coefficients is rescaled into percentile ranks of
the individual noise distribution. The subsequent choice of
a probabilistic threshold should be optimized to ensure both
specificity for the identification of highly significant activa-
tions and sensitivity to properly define the spatial extent of

individual activation spots. The rationale behind this strat-
egy is based on the observation that—at least for adequate
spatial resolution—correlation images (compare Fig. 5) re-
veal activated areas rather than individual pixels. Activa-
tions may therefore be described as ‘mountains’ with a
central peak for easy identification and an area around
defining the actual size.

2.4. Spatial response delineation

Even when defined with respect to individual noise lev-
els, the use of only a single statistical threshold is often
unable to yield a good compromise between specificity and
sensitivity. For example, as shown in the top part of Fig. 7,

Fig. 5. Correlation images (left) and corresponding histograms of correlation coefficients (right) obtained for a hand motor task (top) and visual stimulation
(bottom). While solid lines refer to the actual histogram, dotted lines represent Gaussian curves which are fitted to the central portion of the histogram (shaded)
to estimate the underlying noise distribution.
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the common assumption of p � 0.05, i.e., a 95% threshold
of the noise distribution, results in noisy activation maps for
both the motor task and visual stimulation. The obviously
wrong classification of activated pixels outside the brain
indicates the presence of a large number of false positive
“activations.” Their fraction is controlled by the chosen
significance level, or in other words, by the p value which
served for thresholding. In this example, p � 0.05 means
that 5% or 0.05 � 96 � 128 � 614 pixels represent false
positive activations.

A possible way of avoiding this problem is a noticeable
increase of the significance level. In the middle part of Fig.
7, the choice of p � 0.0001 reduces the number of false
positive pixels to 1.2. The corresponding activation maps
exhibit no activated pixels outside the brain and therefore
support the absence of false-positive activations in the entire
map. On the other hand, these maps clearly demonstrate that
the increased specificity is at the expense of a severe loss of
sensitivity. The far too conservative nature of this high
threshold is further evidenced by a comparison with the
correlation maps shown in Fig. 5 which depict much more
spatially extended and contiguous areas of pixels with high
correlation coefficients. In this case, the specificity of the
procedure is not adequate, or in other words, the number of
false-negative pixels is too high.

The spatial information contained in the clustering of
activated pixels as revealed in correlation images may be
exploited to improve the sensitivity without losing specific-
ity. Under the assumption that pixels within a truly activated
area bear a tight topographic relationship to a smaller num-
ber of pixels which exceed a threshold related to a very low
type-one error probability (false positives), specificity can
be preserved by using a high threshold criterion, while an
adequate area delineation may be achieved by a subsequent
iterative nearest-neighbor analysis. This latter strategy in-
cludes pixels around predefined activation foci, provided
their correlation coefficients comply with a second lower
probabilistic threshold. The successful application of this
approach is demonstrated in the bottom part of Fig. 7, which
presents activation maps where activation foci were ob-
tained with p � 0.0001 and directly neighboring pixels were
iteratively added as long as their correlation coefficients
fulfilled p � 0.05.

3. Discussion

This work describes a practical approach to the analysis
of fMRI data sets that is based on the physiologic charac-
teristics of the underlying individual noise distribution. It

Fig. 6. Rescaling of correlation coefficients to percentile ranks of the estimated noise distribution (broken line). The solid line is a smoothed representation
of the histogram (cc binning: 0.001 units). The percentile ranks of 99.99% (p � 0.0001; cc � 0.478) and 95% (p � 0.05; cc � 0.223) served as thresholds
for the identification of activation foci and area delineation, respectively (for details, see text).

1128 J. Baudewig et al. / Magnetic Resonance Imaging 21 (2003) 1121–1130



Fig. 7. Activation maps obtained for (A) a hand motor task and (B) visual stimulation (same data as in Figs. 2 and 4). Thresholding with p � 0.05 (top)
identifies most activations but includes a large number of false positive “activations.” The use of p � 0.0001 (middle) increases the specificity at the expense
of a serious loss of sensitivity. A combination of both p values (bottom) results in activation maps with both high specificity and sensitivity (for details see
text).
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results in a user-independent definition of objective thresh-
olds and yields robust statistical parametric maps of acti-
vated pixels with both high specificity and sensitivity. Al-
though the examples were based on a correlation analysis,
the principles apply to other statistical procedures proposed
for fMRI as well. This particularly holds true for the use of
probabilistic thresholds, i.e., p values, rather than the use of
thresholding with fixed correlation coefficients. For exam-
ple, when using a t test, the thresholds should not be given
in t but in p values.

Beside these general considerations the present approach
compensates for a variety of putative influences on the
histogram of correlation coefficients. Several factors such as
systemic alterations of the hemodynamic responsiveness
(“arousal”), respiration, perfusion, flow-induced tissue pul-
sations or stimulus-correlated motion are likely to alter the
noise structure of the acquired data sets and therefore affect
the individual shape (“broadness”) of the distribution of
correlation coefficients. The proposed strategy for estimat-
ing individual p values takes these effects into account and
thereby results in a robust and reliable procedure indepen-
dent of any user interference.

A further important issue addressed in this work is the
improvement in sensitivity without essential loss of speci-
ficity. This is accomplished by using a combination of two
distinct p values for identifying activation foci and defining
the full spatial extent through neighborhood relations, re-
spectively. The method should not be mistaken for a “clus-
ter analysis” that relies on assumptions about the cluster size
in relation to the image resolution. Specifically, the pro-
posed spatial response delineation does not exclude small—

even single-pixel—activations necessarily omitted in a con-
ventional cluster analysis.

In summary, proper statistical definitions for threshold-
ing are essential for a meaningful comparison of brain
activation maps across paradigms and subjects. Beyond this
basic requirement, the present approach compensates for
putative intra- and intersubject differences in performance
characteristics and therefore emerges as a simple, auto-
matic, and robust tool for high-quality analyses in magnetic
resonance functional neuroimaging.
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