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Abstract

Cogwheel phase-cycling schemes are applied to sideband suppression and sideband separation experiments in solid-state NMR.

It is shown that cogwheel phase cycles lead to the elimination of most pulse imperfection effects, while using far fewer experimental

signal acquisitions than conventional phase-cycling methods.
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1. Introduction

The invention of the total sideband suppression

(TOSS) and phase-adjusted spinning sideband (PASS)

methods by Dixon [1] marked a great advance in solid-

state NMR, both theoretically and experimentally. In
powder samples, the TOSS pulse sequence suppresses

the spinning sidebands, leaving only the centrebands

and the isotropic chemical shifts [1–7]. The method is

very useful for simplifying the magic-angle spinning

(MAS) NMR spectra of complex materials, especially at

relatively low spinning frequencies, but has the disad-

vantage of losing the chemical shift anisotropy (CSA)

information, which is encoded in the spinning side-
bands. The PASS experiment remedies this problem by

generating a set of spectra which may be combined to

separate the spinning sidebands by order [1,8–18]. PASS

disentangles the isotropic and anisotropic chemical shift

information, and may be used for the simultaneous es-

timation of the CSA principal values of a large number

of chemical sites [10–14]. 2D-PASS has also been used at

slow spinning frequencies to obtain isotropic shift res-
olution in delicate solid samples, for which high spin-

ning frequencies would cause mechanical damage
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[17,18]. 2D-PASS may also be used to obtain site-re-

solved information on molecular order in oriented

samples [19].

The original TOSS and PASS experiments used four

strong p pulses at carefully timed intervals applied to

transverse magnetization, generated by a cross-polari-
zation sequence [20] or a strong p=2 pulse. The pulse

sequences set up the phases of the magnetization com-

ponents so as to eliminate the spinning sidebands from

powder samples entirely, in the case of TOSS, or to

generate a free-induction decay with controllable phase

shifts of the sidebands, in the case of PASS. Variants of

the TOSS and PASS pulse schemes have been devel-

oped, using five or more p pulses instead of four [5,8], or
employing finite RF irradiation blocks instead of strong

pulses of negligible duration [4]. The variant of PASS

with five p pulses has proved to be particularly popular,

since after a second Fourier transform it leads to a clean

separation of spinning sidebands even in the presence of

differential relaxation effects. This is the 2D-PASS ex-

periment [8,9]. Extensions of 2D-PASS have been de-

scribed which are applicable to quadrupolar spin
systems [15,16].

The TOSS and PASS techniques are susceptible to

pulse imperfections, as might be expected for experi-

ments in which the phase of transverse magnetization

components must be carefully controlled by a sequence

mail to: Malcolm.Levitt@soton.ac.uk


Fig. 1. (a) Pulse sequence for TOSS or PASS experiments on a het-

eronuclear spin system, including ramped cross-polarization of trans-

verse magnetization from the I-spins to the S-spins , and preparation

of the S-spin magnetization phase by a set of strong p pulses. The

I-spin RF field is usually turned off during the S-spin p pulses, in order

to avoid loss of magnetization due to undesirable Hartmann–Hahn

transfer. (b) Coherence transfer pathway diagram for isolated spins-1/

2, showing the desirable pathway p0.

Fig. 2. Cogwheel splitting diagram for a cycle with a winding number
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of four or more p pulses. Although this problem may be
controlled by using composite pulses [21], it is common

practice to reduce the effect of pulse imperfections by

phase cycling the p pulses. This involves acquiring a set

of NMR signals using pulses of different phases, and

then superposing the results. For example, 2D-PASS

experiments are often conducted using a 243-step phase

cycle [8,10]. In the case of isolated spins-1/2, this 243-

step phase cycle may be shown to completely eliminate
the effects of misset RF amplitudes, phase transients, or

RF inhomogeneity on the acquired spectra (the effects of

finite pulse duration are not, however, eliminated). The

drawback of such a phase cycle is that the minimum

experimental time becomes rather long. If 16 increments

of the PASS sideband phase shift are required to sepa-

rate the sidebands, and the minimum re-equilibration

time between transients is 5 s, then the minimum total
duration of a fully phase-cycled 2D-PASS experiment is

about 5 h. This is often a considerable overkill in the

case of small molecules with good sensitivity and fa-

vourable relaxation time constants. In cases where the

longitudinal relaxation time constant is long, such as

many inorganic systems, a fully phase-cycled TOSS ex-

periment is impractical.

Recently, a new phase-cycling paradigm called ‘‘cog-
wheel’’ phase cycling was described [22–24]. Unlike the

traditional ‘‘nested’’ phase cycling method [25–28], in

which the phase of only one pulse sequence block is varied

at a time, cogwheel phase cycling involves the simulta-

neous variation of many pulse sequence phases. In many

cases, cogwheel phase cycling leads to a large reduction

in the minimum total experimental time required to ac-

quire a clean NMR signal, with undesired coherence
transfer pathways eliminated. In the case of TOSS and

PASS, the reduction in the minimum experimental time

is dramatic. For isolated spins-1/2, a clean selection of

the desired signal in TOSS or PASS is obtained in only

11 phase-cycle steps instead of 243. For 16 increments of

the PASS sideband phase shift, with a re-equilibration

time between transients of 5 s, the minimum total exper-

imental time with cogwheel phase cycling is only 15min.

difference vector Dm ¼ f0;þ1;�1;þ1;�1;þ1; 0g. The pathway p at-

tains a final level given by the signature Dm � p (vertical scale on the

right). The desired pathway p0 is shown as a bold line: it accumulates the

unique signature Dm � p0 ¼ þ5. The barrier at the right-hand side has

holes separated byN ¼ 11 units, representing the selection rule Eq. (13).
2. TOSS and PASS pulse sequences

A typical pulse sequence for TOSS or PASS, as applied

to rare spins such as 13C or 15N in organic solids, is shown

in Fig. 1a. The abundant spin channel (typically 1H) is

denoted I , and the rare spin channel (typically 13C) is
denoted S. After ramped cross-polarization from the pro-

tons [29], the transverse S-spin magnetization is subjected

to a sequence of five strong p pulses separated by delays.

The pulse timings are conveniently referenced to the

start of signal acquisition, which is defined as t ¼ 0. The

preparation period (cross-polarization, or a single p=2
pulse) terminates at time point �T , where T is the
duration of the TOSS or PASS sequence. The time

points at the centres of the five p pulses are given by

�T þ s1;�T þ s2; . . . ;�T þ s5.
If the angular spinning frequency is denoted xr, the

pulse timings are conveniently described by the angles

hT ; h1; h2; . . . ; h5, defined by hT ¼ xrT and hq ¼ xrsq,
where q ¼ 1; 2; . . . ; 5. The phases of the five p pulses are
denoted /1;/2; . . . ;/5. The RF receiver phase shift

during signal acquisition is denoted /rec, and the post-
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digitization phase shift is denoted /dig. All phases are
defined as in [30,31].

In TOSS experiments using five p pulses, the pulse

sequence timings are chosen to satisfy the equations

2
X5

q¼1

ð�1Þq expfimhqg þ 1 ¼ 0 ð1Þ

for both m ¼ 1 and m ¼ 2. As shown in [6,7], this leads

to a free-induction decay in a powder sample which

yields a sideband-free NMR spectrum on Fourier

transformation. Eq. (1) may be solved analytically [5]

for the pulse sequence timings hq.
In PASS experiments using five p pulses, the pulse

sequence timings are chosen to satisfy the equations

2
X5

q¼1

ð�1Þq expfimhqg þ expfimðHþ hT Þg þ 1 ¼ 0 ð2Þ

for both m ¼ 1 and m ¼ 2, where H is an arbitrary
angle, called the pitch of the sequence. As shown in [8],

acquisition of a set of spectra for a series of pitches in

the range 0–2p, followed by a second Fourier trans-

form, generates a 2D spectrum containing sets of

spinning sidebands, separated by order. Timings hq
may be found numerically for arbitrary values of the

pitch H [8].

The coherence transfer pathway [25–28] leading to
the desired signals in both TOSS and PASS is shown in

Fig. 1b. Each p pulse leads to an alternation of the co-

herence order between þ1 and �1. These coherence

transfers are 100% efficient in the case of perfect p pul-

ses. However, in the case of pulse imperfections, each

pulse leads to finite coherence transfers between any of

the three possible coherence orders in a system of iso-

lated spins-1/2, namely �1, 0, and +1. For an experi-
ment involving five imperfect p pulses, there are

therefore 35 ¼ 243 coherence pathways contributing to

the final NMR signal. In general, each of these extra-

neous pathways prepare the magnetization components

with incorrect phases, leading to imperfect sideband

suppression (in the case of TOSS) or imperfect sideband

separation (in the case of PASS). The task of phase

cycling is to filter out signals from the one desired signal
pathway, while suppressing the 242 others.
3. Phase cycling

In a sequence consisting of a preparation element

(single p=2 pulse or a cross-polarization period), followed
by Q separated pulses (where Q is a positive integer), a
general coherence transfer pathway contributing to the

finalNMRsignalmay be denoted by a vector pwithQþ 2

elements:

p ¼ f0; pð0;1Þ; pð1;2Þ; . . . ; pðQ�1;QÞ;�1g; ð3Þ
where q ¼ 0; 1; . . . ;Q, and the symbol pðq;qþ1Þ denotes the
coherence order in the interval between blocks q and

qþ 1 (the preparation block is denoted q ¼ 0). The co-

herence order before the preparation element is zero,

and the coherence order for the detectable signal is �1,

in the case of a perfectly adjusted receiver [28]. In the

case of a TOSS or PASS sequence with Q ¼ 5, the de-

sired coherence transfer pathway leading to a clean

NMR response is p0 ¼ f0;þ1;�1;þ1;�1;þ1;�1g, as
illustrated in Fig. 1b.
3.1. Nested phase cycles

Traditional ‘‘nested’’ phase cycling, as treated by

Bain [26] and Bodenhausen et al. [25], exploits the

change in coherence order induced by each pulse se-

quence element. For a general pathway p, the coherence
order change induced by an element q is defined by

Dpq ¼ �pðq�1;qÞ þ pðq;qþ1Þ. For the desired pathway p0,
the coherence order change induced by an element q is

denoted Dp0q. For example, the ideal pathway p0 for a
5-pulse TOSS or PASS experiment has the following set

of order changes:

Dp00 ¼ þ1; Dp01 ¼ �2;

Dp02 ¼ þ2; Dp03 ¼ �2;

Dp04 ¼ þ2; Dp05 ¼ �2:

ð4Þ

Nested phase cycling works by selecting coherence

order changes one at a time. A desired order jump Dp0q is
selected, at the expense of a finite set of undesired order

jumps Dpq, by cycling the element q in a number of steps

equal to the largest separation between Dp0q and Dpq,
plus one. Multiple selections at different elements q are

implemented by nesting the individual phase cycles.

Such phase cycles are readily constructed but they are
often long.

Consider a 5-pulse TOSS experiment, conducted on a

system of isolated spins-1/2, so that all orders greater

than þ1 or less than �1 may be ignored. On each step of

the pulse sequence, there are five possible changes in

coherence order, namely one of f�2;�1; 0;þ1;þ2g.
Since the coherence pathway must terminate with �1,

there are only three possible coherence order changes on
the fifth element, namely Dp5 ¼ f�2;�1; 0g. It is

therefore possible to select pathways with the desired

order jump Dp05 ¼ �2 and suppress pathways with the

undesired order jumps Dp5 ¼ f�1; 0g by a three-step

cycle of the phase /5. This three-step cycle therefore

selects pathways with pð4;5Þ ¼ þ1. For these pathways,

there are only three possible coherence order changes on

the fourth element, namely Dp4 ¼ f0;þ1;þ2g, of which
the desired pathway has Dp04 ¼ þ2. It is therefore pos-

sible to select pathways with pð3;4Þ ¼ �1 by a three-step

cycle of the phase /4. This argument may be continued
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to show that the desired unique pathway p0 ¼ f0;þ1;
�1;þ1;�1;þ1;�1g is selected by nested three-step

phase cycles of all five p pulses, without cycling the

phase /0 of the preparation element. This requires

35 ¼ 243 phase cycle steps. One such phase cycle is de-

fined by the equation

/0 ¼ 0;

/q ¼
2p
3
floor

j
3q�1

� �
for qP 1;

ð5Þ

where the transient counter is j ¼ 0; 1; . . . ; 242, and

floor xf g is the largest integer not greater or equal to x
[28]. On each step, the receiver and digitizer phases are

set according to the ‘‘master equation’’ for the desired

pathway p0:

þ/0 � 2/1 þ 2/2 � 2/3 þ 2/4 � 2/5 þ /rec þ /dig ¼ 0:

ð6Þ
This 243-step phase cycle has been used in TOSS and

PASS experiments [5,8,9].

In fact, one can do considerably better than this, even

within the framework of nested phase cycling. In a

system of isolated spins-1/2, the only coherence transfer

process with a order change Dp ¼ þ2 involves a change

in coherence order from �1 to þ1. Hence it is possible
to select the coherence orders pð3;4Þ ¼ �1 and pð4;5Þ ¼ þ1

at the same time by cycling the phase /4 so as to select

Dp4 ¼ þ2, while suppressing the four other possible

order changes Dp4 ¼ f�2;�1; 0;þ1g. This requires a

minimum five-step cycle of /4. Similarly, it is possible to

select pathways with pð1;2Þ ¼ �1 and pð2;3Þ ¼ þ1 by cy-

cling the phase /2 in five steps so as to select Dp2 ¼ þ2.

Since the initial coherence order must be 0, the selection
of pð0;1Þ ¼ þ1 at the expense of pð0;1Þ ¼ f�1; 0g may be

accomplished in a three-step cycle of /0. The unique

pathway p0 may therefore be selected in 3� 52 ¼ 75

steps without changing the phases /1, /3, and /5. One

implementation of the 75-step phase cycle is given by

/0 ¼
2p
3
j;

/1 ¼ 0;

/2 ¼
2p
5
floor j=3f g;

/3 ¼ 0;

/4 ¼
2p
5
floor j=15f g;

/5 ¼ 0;

ð7Þ

where the transient counter is j ¼ 0; 1; . . . ; 74. The

receiver and or digitizer phase are set according to the
master equation, Eq. (6). The 75-step phase cycle in Eq.

(7) has the same selection properties as the 243-step

phase cycle in Eq. (5). However, as shown below, even

this 75-step cycle is far from the optimal solution.
3.2. Cogwheel phase cycles

In cogwheel phase cycling, one cycles the pulse se-

quence phases according to

/q ¼
2pmq
N

j; ð8Þ

where mq is an integer called the winding number for the

element q and N is the number of steps in the phase

cycle. The receiver and digitzer phases are also assigned

winding numbers:

/rec ¼
2pmrec
N

j;

/dig ¼
2pmdig
N

j:
ð9Þ

In general, the phases of all pulse sequence elements

change at the same time, so that by the end of N steps,

the phase /0 will be about to complete m0 full revolu-

tions, the phase /1 will be about to complete m1 full
revolutions, and so on. Cogwheel phase cycling is

therefore very different from nested phase cycling, where

all phases but one are held fixed until the moving one

has finished a full cycle.

As shown in [22], the properties of cogwheel phase

cycles are determined by the difference in winding

numbers of adjacent elements, defined as follows:

Dmðq;qþ1Þ ¼ �mq þ mqþ1: ð10Þ
In a sequence with elements q ¼ 0; 1; . . . ;Q, the differ-

ence in winding number between the detection/digitiza-

tion system and the last pulse sequence element may be

defined

DmðQ;detÞ ¼ �mQ þ mrec þ mdig: ð11Þ
It is useful to compile a winding number difference vector

Dm as follows:

Dm ¼ f0;Dmð0;1Þ;Dmð1;2Þ; . . . ;DmðQ�1;QÞ;DmðQ;detÞg: ð12Þ
The vector Dm has the same number of elements (Qþ 2)

as the pathway vector p (Eq. (3)).

In cogwheel phase cycling, the signal component

from pathway p is allowed by the phase cycle if an in-

teger ZðpÞ exists which satisfies the following identity:

Dm � p ¼ Dm � p0 þ NZðpÞ: ð13Þ

The pathway signatures Dm � p and Dm � p0 are defined by

Dm � p ¼
XQ
q¼1

Dmðq�1;qÞpðq�1;qÞ;

Dm � p0 ¼
XQ
q¼1

Dmðq�1;qÞp0ðq�1;qÞ:

ð14Þ

In order to select signals from a unique pathway p0,
while suppressing all others, the following conditions are

imposed:
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1. The winding numbers are chosen such that the signa-
ture Dm � p0 is unique: There must be no other path-

ways p for which Dm � p ¼ Dm � p0.
2. There must be no pathways p 6¼ p0 for which Eq. (13)

can be satisfied by choosing an integer value of ZðpÞ.
3. The receiver and/or digitizer winding numbers must

satisfy the ‘‘cogwheel master equation’’

XQ
q¼0

Dp0qmq þ mrec þ mdig ¼ 0; ð15Þ

where Dp0q ¼ p0ðq;qþ1Þ � p0ðq�1;qÞ is the change of order

induced by the element q, for the desirable pathway

p0.
In many cases all three conditions may be satisfied for

a number of steps N which is much smaller than that

needed in the ‘‘nested’’ procedure. Typically, the mini-

mal cogwheel solutions are discovered by numerical

searches over many combinations of winding numbers

[24], although in some cases predictive formulae exist

[22].

In the case of TOSS and PASS sequences with five p
pulses, the appropriate winding number combinations

may be discovered by a simple diagrammatic procedure

(Fig. 2). In a system of isolated spins-1/2, all but the first

element of the desired pathway p0 ¼ f0;þ1;�1;þ1;�1;
þ1;�1g involve the maximal coherence order þ1 or the

minimal coherence order �1. The signature Dm � p0 may

therefore be kept unique by ensuring that the elements

of Dm have the same sign as the corresponding elements
of p0. The simplest solution is Dm ¼ f0;þ1;�1;þ1;�1;
þ1; 0g (the last element may have any value since

all observable pathways terminate on order �1, in the

case of an ideal quadrature receiver). The signature is

given in this case by Dm � p0 ¼ þ5. All other observable

pathways have smaller values. For example, the path-

way p ¼ f0;�1;�1;þ1;�1;þ1;�1g deriving from an

imperfect transformation under the first p pulse has a
signature Dm � p ¼ þ3. Fig. 2 contains a ‘‘cogwheel

splitting diagram’’ which shows how the signatures of

the different coherence transfer pathways are con-

structed. Note that many different pathways have the

same overall signature Dm � p: the degeneracy does not

matter since all of these pathways must be suppressed.

The minimum value for the signature is given by the

pathway p ¼ f0;�1;þ1;�1;þ1;�1;�1g, for which
Dm � p ¼ �5. Note that there are no pathways termi-

nating on þ1 in the case of perfect quadrature signal

detection. All pathways therefore have signatures Dm � p
between þ5 and �5, with the desired pathway p0 being

the only one with the maximal signature. Since all sig-

natures between þ5 and �5 are occupied by undesired

pathways, condition [2] may be satisfied by choosing

N P 11. The rationale for this is illustrated by the bar-
rier at the right-hand side of Fig. 2, which represents the

selection rule in Eq. (13).
The cogwheel winding numbers may be constructed
from the solution for the winding number difference

vector, Dm ¼ f0;þ1;�1;þ1;�1;þ1; 0g. From Eq. (10),

assuming m0 ¼ 0, we get fm0; m1; m2; m3; m4; m5g ¼ f0;þ1;
0;þ1; 0;þ1g. Eqs. (4) and (15) then lead to

�6þ mrec þ mdig ¼ 0: ð16Þ
One of the possible cogwheel phase-cycling solutions

for the five-pulse TOSS/PASS schemes is therefore spec-

ified byN ¼ 11 and the following set of winding numbers:

m0 ¼ 0; m1 ¼ þ1;

m2 ¼ 0; m3 ¼ þ1;

m4 ¼ 0; m5 ¼ þ1;

mrec ¼ 0; mdig ¼ þ6:

ð17Þ

The explicit phase cycle is

/0 ¼ /2 ¼ /4 ¼ /rec ¼ 0;

/1 ¼ /3 ¼ /5 ¼ 2pj=11;

/dig ¼ 12pj=11;

ð18Þ

where j ¼ 0; 1; . . . ; 10. This 11-step phase cycle may be

abbreviated as COG11ð0; 1; 0; 1; 0; 1; 0; 6Þ, using the

notation COGNðm0; m1; . . . ; mQ; mrec; mdigÞ described in [23].

It selects signals passing through the desired pathway p0

while suppressing the contributions from all 242 unde-

sirable signal pathways.

On some spectrometers, it is not possible to implement
digitizer phase shifts /dig which are not integer multiples

of p=2. In this case, the receiver reference phase /rec may

be used instead; this leads to the cogwheel cycle

COG11ð0; 1; 0; 1; 0; 1; 6; 0Þ. However, many commercial

instruments cannot control the RF receiver reference

phase either. An alternative which is less demanding on

the hardware is to subtractþ6 fromall the radiofrequency

winding numbers: the cogwheel cycle is then COG11
ð�6;�5;�6;�5;�6;�5; 0; 0Þ. All of the above cycles are

equivalent in the case of a perfect quadrature receiver.

As the diagram in Fig. 2 suggests, artefacts caused by

imperfections in the quadrature receiver may be elimi-

nated by a simple extension of the cogwheel cycle.

Quadrature artefacts are signal components with a co-

herence order of þ1, while zero-frequency artefacts

caused by a DC offset in the analogue-to-digital con-
verters have a coherence order of zero. The desired

pathway p0 ¼ f0;þ1;�1;þ1;�1;þ1;�1g may be sep-

arated from all the others, including the receiver artefact

pathways, by selecting a winding number difference

vector Dm ¼ f0;þ1;�1;þ1;�1;þ1;�1g. This gives the

ideal pathway the largest possible signature

Dm � p0 ¼ þ6, which is unique. The minimum signature

is possessed by the quadrature artefact pathway
p ¼ f0;�1;þ1;�1;þ1;�1;þ1g, which has Dm � p ¼ �6.

Since the largest difference in signatures is 12, at least 13

steps are needed in the cogwheel phase cycle. The 13-

step cogwheel cycle COG13ð0; 1; 0; 1; 0; 1; 0; 6Þ elimi-
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nates the effects of pulse imperfections, as well as all
quadrature and zero-frequency artefacts. Note that

quadrature artefact suppression may be included in

cogwheel phase cycles with only a small increase in the

overall cycle length. This feature may be useful in many

other experimental contexts.

The quadrature image-compensated cycle COG13

ð0; 1; 0; 1; 0; 1; 0; 6Þ requires control of the digitizer phase
in non-integer multiples of p=2. As mentioned above,
this capability is not available on all commercial

instruments. If necessary, the 13 acquired transients may

be stored independently and subjected to numerical

phase shifts, as described in [23].

As before [30,31], we alert the reader to the mis-

leading notation used in many spectrometer pulse pro-

grams, which often confuse the RF receiver reference

phase and the post-digitization phase.
4. Results

4.1. Sideband suppression

Fig. 3a shows an experimental 1H-decoupled 13C

NMR spectrum of powdered [1-13C]-glycine, at a magic-
Fig. 3. 1H-decoupled 13CNMRspectra of powdered [1-13C]-glycine, at a

magic-angle spinning frequency2.900 kHzandamagneticfieldof 7.05T.

(a) Ordinary CP-MAS spectrum (sum of 76 acquired transients); (b)

spectrum acquired using a 5-p TOSS sequence, without phase cycling

(sum of 76 acquired transients); (c) spectrum acquired with the 75-step

phase cycle in Eq. (7) (sum of 75 acquired transients); (d) spectrum ac-

quired with the 11-step cogwheel phase cycle in Eq. (18) (7 repetitions of

the 11-step cycle, corresponding to 77 acquired transients). All spectra

are plotted on the same vertical scale. Expanded regions of the spectra in

(b), (c), and (d), with a 20-fold larger vertical scale, are also shown.
angle spinning frequency 2.900 kHz and a magnetic field
of 7.05 T. The spectrum displays a set of spinning side-

bands. To a first approximation, the application of a 5-

pulse TOSS sequence [5] before the signal acquisition

suppresses all spinning sidebands except the centreband.

The timings of the p-pulses, as derived in [5], are given

by h1 ¼ arccosð7=24Þ, h2 ¼ arccosð�11=24Þ, h3 ¼ p,
h4 ¼ 2p� h2, and h5 ¼ 2p� h1. The result of the TOSS-

5 sequence is shown in Fig. 3b. Although the sidebands
are greatly reduced in intensity, they are not completely

suppressed, which may attributed to imperfect perfor-

mance of the five p pulses. The spectrum shown in

Fig. 3c demonstrates that the sideband suppression is

greatly improved by acquiring 75 transients, with the p
pulses subjected to the phase cycle in Eq. (7). Fig. 3d

shows that essentially the same effect is achieved in a

cycle of only 11 transients, as in Eq. (18). The small
remaining signal amplitude in Fig. 3c and d is probably

mainly due to the finite duration of the pulses, which is

not taken fully into account by the TOSS equations (Eq.

(1)). Homonuclear dipole–dipole couplings may also

play a role in this fully 13C-labelled sample.

4.2. Sideband separation

Fig. 4 demonstrates the separation of 13C spinning

sidebands using a five-p-pulse PASS sequence and a sec-

ond Fourier transformation, as described in [8]. In this

case the sample is unlabelled LL-tyrosine �HCl and the

spinning frequency is xr=2p ¼ 1:750 kHz. In order to

demonstrate the power of the cogwheel phase cycles, the

pulse flip angles were deliberately set to 0:78p, instead of

p. If phase cycling is not used, the 2D spectrumdisplays an
imperfect separation of spinning sidebands (Fig. 4a). The

75-step phase cycle in Eq. (7) suppresses the spurious

contributions and gives an acceptable separation of the

sidebands by order (Fig. 4b). An essentially identical re-

sult is generated by the 11-step phase cycle of Eq. (18).

The suppression of pulse imperfection effects may be

particularly useful for the NMR of half-integer quad-

rupolar nuclei, where 9-p PASS sequences have been
used to separate the spinning sidebands [15,16]. Since

it is often difficult to manipulate quadrupolar nuclei

accurately, due to the large second-order quadrupolar

shifts, cogwheel phase cycles may be very useful for fil-

tering out the well-behaved signal components and

suppressing those which arise from imperfect RF pulses.

The results of Jerschow and Kumar [24] suggest that

coherence orders jpj > 1 may often be neglected in this
context. With this assumption, the minimal nested phase

cycle for 9-p PASS has 3� 54 ¼ 1875 steps. The corre-

sponding cogwheel cycle may be derived using a

straightforward extension of Fig. 2. One possible solu-

tion is the 19-step cogwheel cycle COG19ð0; 1; 0; 1; 0;
1; 0; 1; 0; 1; 0; 10Þ. This represents a reduction in the

minimum acquisition time by two orders of magnitude.



Fig. 4. Two-dimensional 1H-decoupled 13C NMR spectra of powdered

LL-tyrosine �HCl, at a magic-angle spinning frequency 1.750 kHz and a

magnetic field of 7.05T, acquired using the 2D-PASS pulse sequence

with 16 increments of the pitch H. (a) 2D-PASS spectrum acquired

without phase cycling, and with the flip angles of the five p pulses

deliberately misset to 0:78p (300 acquired transients for each H in-

crement). (b) Same as in (a), but using the 75-step phase cycle in Eq. (7)

(300 acquired transients for each H increment); (c) same as in (a), but

using the 11-step phase cycle in Eq. (18) (297 acquired transients for

each H increment).
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Conclusions

Cogwheel phase cycles often give rise to large time

savings in experiments which involve many coherence

transfer steps. In TOSS and PASS experiments involving

five p pulses, the saving in time is approximately a factor

of seven for a fully phase-cycled experiment. Even larger

time savings are anticipated for experiments which in-
volve consecutive TOSS or PASS sequences, such as

those designed to explore dynamic exchange phenomena

[32,33], or those which use two TOSS sequences to

separate isotropic and anisotropic chemical shifts

[34–38].
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