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Abstract

Membranes grafted with water-soluble polymers resist protein adsorption and adhesion to cellular surfaces. Liposomes with surface-

grafted polymers therefore find applications in drug delivery. The physicochemical properties of polymer-grafted lipid membranes are

reviewed with mean-field and scaling theories from polymer physics. Topics covered are: mushroom–brush transitions, membrane expansion

and elasticity, bilayer-micelle transitions, membrane–membrane interactions and protein–membrane interactions.
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1. Introduction

Poly(ethyleneglycol) (PEG) is an inert, water-soluble

polymer that finds extensive application as a biocompatible

coating. Surface-grafted PEG-polymers resist protein ad-

sorption and adhesion to cellular surfaces. Phosphatidyleth-

anolamine N-derivatised in the headgroup with PEG

provides a controlled means of varying the polymer grafting

density of lipid membrane surfaces simply by changing the

mole fraction, Xp, of polymer lipid. Liposomes containing

such PEG-lipids resist adsorption of various components of

the immune system as well as the interaction with lip-

oproteins and lipolytic enzymes. This results in a prolonged

lifetime in the bloodstream that makes these sterically

stabilised liposomes suitable vehicles for drug delivery.

Here we review the physicochemical aspects of lip-

osomes grafted with hydrophilic polymer lipids. How the

material properties of the lipid membrane are modified by

the presence of polymer lipids is a significant feature in the

design of sterically stabilised liposomes. The basic design

parameters are the polymer size, np, and the grafting density

(Xp/Al), where Al is the area per lipid molecule. These two

parameters govern the transition from the mushroom to

brush regimes of polymer surface coverage (see Fig. 1). In

the mushroom regime, the polymers consist of non-interact-
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ing random coils of Flory radius, RF3, at the membrane

surface. In the brush regime, the polymer chains are more

densely packed, mutually interact, and extend out from the

membrane surface forming a layer of thickness, L.

Both the steric repulsive forces of the grafted surface

and the degree of protein adsorption differ greatly between

the mushroom and brush regimes. Polymer grafting densi-

ties in the brush regime favour steric stabilisation of the

liposome. At higher polymer grafting densities, lipid poly-

morphism comes into play. The bulky hydrophilic head-

groups favour formation of micelles by polymer lipids.

This leads to a destabilisation of lipid membranes at higher

grafting densities.

Many of the ways in which grafted polymers modify the

colloidal stability and material properties of lipid mem-

branes can be described by relatively straightforward theo-

ries of polymer physics that originate from Flory and De

Gennes. This review concentrates on these aspects.
2. Statistical physics of grafted polymers

Theories from polymer physics, starting with those of

Flory [1] for free polymers and going on to those of De

Gennes [2], Alexander [3] and others for grafted polymers,

can be used to characterise the statistical configurations and

thermodynamics of the polymer chains. Following the

original treatment of polymers grafted on solid surfaces

[3,4], two concentration regions of polymer lipid content



Fig. 1. The mushroom (i.e. low concentration) and brush (i.e. high

concentration) regimes of polymer surface grafting. Upper panel: the

mushroom regime of non-interacting polymers with radius fRF3. Lower

panel: the brush regime of extended polymer chains of length L, with

distance D between grafting points.

Table 1

Thickness, df/2, of the polymer layer obtained by X-ray diffraction for

DSPE-PEG:nPEG lipids in DSPC bilayer membranes [7]

nPEG XPEG regime df/2 (nm)a RF3 (nm)b L (nm)c

8 0.1 mushroomd 2.0 1.4 (1.0)

17 0.015 mushroomd 2.45 2.1 (1.1)

45 0.005 mushroomd 3.75 3.8 (2.1)

45 0.1 brush 6.6 (3.8) 5.6

114 0.05 brush 8.8 (6.7) 11.2

RF3 is the Flory radius of the polymer and L is the height of the polymer

brush.
a Half the fluid-layer thickness at the lowest applied osmotic pressures

giving contact.
b From Eq. (2) with am= 0.39 nm.
c From Eqs. (6) or (10) with am= 0.39 nm and Al = 0.48 nm

2 (gel phase).
d Interdigitated mushrooms.
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may be defined. These are characterised by the so-called

‘‘mushroom’’ and ‘‘brush’’ configurations of the grafted

polymer chain (see Fig. 1). The mushroom regime holds

at low concentrations of grafted polymer and the brush

regime pertains to higher concentrations. The chain config-

uration in these two regimes may be treated by the methods

of polymer physics, as outlined below.

2.1. Mushroom regime

At low concentrations, the polymer headgroups of the

grafted lipids do not interact; the polymer has a mushroom-

like configuration at the membrane surface. Under these

conditions, the polymer chain assumes a random configu-

ration, like that of the polymer free in solution (see Fig. 1,

upper panel). The characteristic dimensions of this random

coil polymer are specified by the Flory radius, RF, that is

determined by the degree of polymerisation, np, and the size,

am, of the monomer unit [1].

The dimensions of the free polymer are determined by

steric interactions (i.e. excluded volume effects) that tend to

expand the polymer. These are balanced by the unfavoura-
ble entropic effects of stretching the coiled polymer chain.

In the Flory theory, the free energy of a real chain is given

by (see, e.g. Ref. [2]):

Fp=kBTc
vmn

2
p

R3
þ R2

npa2m
ð1Þ

where R is the end-to-end distance of the chain and vm is the

excluded volume per monomer. In general, vm = am
3 (1� 2v),

where v is the Flory–Huggins interaction parameter. With

an athermal solvent, for which intramolecular interactions

other than steric may be neglected vmc am
3 . The first term

in Eq. (1) thus represents the excluded volume interactions.

These are depicted in a mean-field approximation and are

proportional to the square of the local monomer concentra-

tion [2]. The second term in Eq. (1) represents the stretching

free energy. It is derived from the entropy of an ideal

polymer chain the ends of which undergo a (Gaussian)

random walk (see Ref. [2]).

Minimising the free energy in Eq. (1) with respect to R,

yields the following expression for the (three-dimensional)

Flory radius:

RF3camn
3=5
p ð2Þ

Hristova and Needham [5] find that for the oxyethylene

monomer unit of PEG: amc 0.35 nm. From adhesion

measurements, Evans et al. [6] find that the data for PEG

lipids is best fitted by a value of am = 0.43 nm. These values

are close to the size of an oxyethylene unit amc 0.39 nm

determined from the monomer volume in aqueous solution

[6]. This intermediate value is adopted in what follows. Note,

however, that am effectively scales the relative contributions

of the excluded volume and stretching terms in Eq. (1). The

Flory radius for PEGs of molecular weight 350, 750, 2000

and 5000 is RF3 = 1.4, 2.1, 3.8, and 6.7 nm, respectively (i.e.

for np = 8, 17, 45 and 114, with am= 0.39 nm). For compar-

ison, the heights of the polymer layer measured in the

interdigitated mushroom regime of PEG:350, PEG:750 and

PEG:2000 distearoyl phosphatidylethanolamine (DSPE) lip-

ids are given in Table 1 [7,8].



Fig. 2. Mushroom and brush regimes of polymer grafting density as a

function of polymer size, np, predicted from Eq. (4) with Al = 0.65 nm2 and

am= 0.39 nm (solid line). The y-axis is the mole fraction, Xp, of polymer

lipid in fluid-phase membranes. The dashed line is the border between non-

interdigitated mushrooms and those from opposing bilayer surfaces that are

fully interdigitated.
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Eq. (2) applies to the polymer chain free in three

dimensions. Confining the polymer chain to one or two

dimensions reduces the exponent of R in the first term of Eq.

(1) to the appropriate dimensionality. In general, the expo-

nent of np in Eq. (2) for RFd̂ is given by [2]:

v ¼ 3=ðd̂ þ 2Þ ð3Þ

where d̂ is the dimensionality. For three, two and one

dimensions: v = 3/5, 3/4 and 1, respectively. The one-dimen-

sional case will be relevant later for discussion of the brush

regime, and the two-dimensional case applies to compressed

mushrooms.

2.2. Transition from mushroom to brush regime

When the concentration of the grafted lipid is increased,

the polymer headgroups begin to interact and assume a more

stretched (i.e. brush) configuration in which the polymer

chains extend out from the membrane surface (see Fig. 1,

lower panel). The transition between the mushroom and

brush regimes occurs at the concentration of grafted lipid for

which the surface-associated polymer chains first begin to

overlap. This condition is fulfilled approximately at mole

fractions, Xp
m! b, of polymer lipid given by:

Xm!b
p > ðAl=pa

2
mÞn�6=5

p ð4Þ

where Al is the membrane surface area per lipid molecule.

The latter is given by Alf 0.6–0.7 nm2 for lipids in the

fluid phase and Alf 0.40–0.48 nm2 for lipids in the gel

phase [9]. For PEG lipids with polymer molecular weights

350, 750, 2000 and 5000 (i.e. np = 8, 17, 45 and 114), the

transition from mushroom to brush configurations is ex-

pected to be initiated at XPEG
m! b = 0.11, 0.045, 0.014 and

0.005, respectively, assuming fluid-phase membranes.

Fig. 2 shows the predictions of Eq. (4) for the transition

between mushroom and brush regimes of polymer grafting

density (see also Ref. [7]). The mole fraction of polymer

lipid, Xp
m! b, at which the brush is first formed decreases

strongly with increasing size, np, of the grafted polymer. The

transition region within the mushroom regime at which

polymers from opposing bilayer surfaces are no longer able

to interdigitate is indicated by the dashed line in Fig. 2. This

occurs at mole fractions of polymer lipid that are half those

for the mushroom to brush transition. Only for rather short

PEG-lipids (e.g. PEG:350), or at low mole fractions, is the

mushroom configuration likely to be of overwhelming

significance.

The mushroom regime is revealed as a short region of

constant lipid chain mobility in gel-phase dipalmitoyl phos-

phatidylcholine membranes on admixture with small

amounts of PEG:350-dipalmitoyl phosphatidylethanolamine

(see Fig. 6, given later). A sharp increase in chain mobility

is found from spin-label EPR spectroscopy at ca. 7 mol% of

PEG-lipid that corresponds to a decrease in the lipid chain

packing density in the brush regime [10]. This correlates
reasonably well with a transition from the mushroom to

brush regime at XPEG
m! b = 0.08, that is predicted from Eq. (4)

for gel-phase phosphatidylcholine lipids and np = 8 (i.e.

PEG:350). The position of the discontinuity moves to lower

mole fractions of PEG-lipid with increasing polymer chain

length in agreement with Eq. (4) [10], although this transi-

tion then begins to overlap with the bilayer to micelle

transition. Recent measurements at closer concentration

intervals have revealed that the midpoint of the mushroom

to brush transition scales according to the polymer length,

np, with an exponent of ca. � 0.8 [11]. This is less steep

than the exponent of � 6/5 predicted from Eq. (4), but of a

similar magnitude.

2.3. Mean-field theory for the brush regime

Two different treatments have been given for the polymer

chain packing density in the brush regime. The first is a

mean field theory that in essence is similar to that presented

in Eq. (1). The second is a scaling theory that was given by

Alexander and De Gennes et al. [2–4]. The mean-field

theory is presented in this section and scaling theory in the

following section.

In the brush regime, the polymer chains are extended and

the problem is essentially one-dimensional. The chains are

confined in the direction normal to the surface of grafting

(see the lower panel of Fig. 1). For a grafted polymer chain,

the one-dimensional version of the mean-field expression

for the free energy is (cf. Eq. (1) and Ref. [12]):

FMF
p ðRÞ=kBTcvm

Xp

Al

� �
n2p

R
þ R2

npa2m
ð5Þ

where Xp is the mole fraction of polymer lipid and Al is the

area per lipid molecule at the grafting surface. Minimising
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the free energy of Eq. (3) with respect to R yields the

following expression for the equilibrium length of the

polymer chain:

LMFcnpa
5=3
m ðXp=AlÞ1=3 ð6Þ

when vmc am
3 , appropriate to an athermal solvent (i.e. for

v = 0). The length of the polymer chain is therefore linear in

np, consistent with Eq. (3) for the one-dimensional situation.

In Eq. (6), it is tacitly assumed that the monomer density is

uniform throughout the brush. Hence, LMF is equivalent to

the length of the brush region. The corresponding equilib-

rium free energy per polymer is given from Eqs. (5) and (6),

with R = LMF:

FMF
p ðLÞ=kBTcnpa

4=3
m ðXp=AlÞ2=3 ð7Þ

As will be seen later, the dependence of the mean-field

free energy on Al (and on Xp) differs from that for the

scaling theory.

Milner et al. [12,13] have developed a self-consistent

mean-field (SCMF) theory for dense polymer brushes. In

this treatment, the distribution of polymer chain end posi-

tions is considered explicitly. They find that the density

distribution of chain segments is parabolic with vertical

position, z, in the brush:

UðzÞ ¼ ½p2=8n2pa
3
m�tðLMFÞ2 � z2 b ð8Þ

This contrasts with the assumption of a step-function

profile that was made tacitly above, as is illustrated in Fig. 3

(see also Ref. [14]). In Eq. (8), the value of LMF is identical

to that given above in Eq. (6), where the constant premulti-

plying factor is explicitly (12/p2)1/3 = 1.07. Now, however,
LMF multiplied by this factor is the maximum extension of
Fig. 3. Distribution of the polymer segment density in the polymer brush.

The vertical height from the membrane surface is z. Solid line: the profile

given by Eq. (8) from the SCMF theory of Milner et al. [13]. Dashed line:

profile assumed in the simple mean-field and scaling theories. The position

axis is scaled by LMF that is given by Eq. (6).
the polymer chains, i.e. the maximum thickness of the brush

region. An expression identical to Eq. (7) is obtained for the

free energy in the self-consistent field treatment. The con-

stant premultiplying factor in Eq. (7) is then explicitly (9/10)

(p2/12)1/3 = 0.84. A word of caution is perhaps necessary,

however, with respect to the explicit multiplicative factors.

As already mentioned, parameterisation in terms of am
implicitly includes a scaling of the strengths of the excluded

volume and chain stretching contributions to the mean field

(or scaling theory) free energy (cf. Ref. [3]). A more general

formulation of Eq. (5) is given later in connection with

bilayer–bilayer interactions. There, a multiplicative factor

scaling the relative strengths of the steric exclusion and

stretching terms is included explicitly (see Section 6.3.1).

2.4. Scaling theory for the brush regime

The essential determinant in the scaling theory is the one-

dimensional nature of the problem for the polymer chains

confined in the brush regime (see Fig. 1, lower panel).

Under these conditions, the length, L, of the polymer chains

and the free energy of the chains is linear in the degree of

polymerisation, np. This result for L follows immediately

from Eq. (3) for one-dimensional confinement. That for the

free energy follows, e.g. from considering the stretched

chain as a one-dimensional array of blobs of which the

corresponding sections of the chain are coiled in a manner

similar to that for a three-dimensional chain [2].

For long polymer chains, the scaling law for the equi-

librium length is given by [2,15]:

LSCcRF3ðRF3=DÞmL ð9Þ

where D is the diameter of the confinement, i.e. the distance

between polymer grafting points. The length scale in the

problem is the Flory radius, RF3, given by Eq. (2). From this

and the requirement that LSC must be linear in np, the

exponent in the scaling law is given by mL= 2/3. In terms

of mole fraction of polymer lipid, the distance D between

grafting points is given by D2 =Al/Xp (see Fig. 1, lower

panel). Eq. (9) then becomes:

LSCcnpa
5=3
m ðXp=AlÞ1=3 ð10Þ

This is exactly the same result as obtained from mean

field theory that is given in Eq. (6). Table 1 compares the

predictions of the height of the polymer brush from Eqs. (6)

or (10) with measurements by X-ray diffraction [7] for

multibilayers containing DSPE-PEG:2000 and DSPE-

PEG:5000. The X-ray measurements were made at applied

osmotic pressures for which the polymer brushes from

opposing lipid surfaces first come into contact.

The corresponding scaling law for the free energy for

long polymer chains is given by [2,15]:

FSC
p ckBTðRF3=DÞ2mF ð11Þ
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where (also above) kB is Boltzmann’s constant and T is the

absolute temperature. From Eq. (2) and the requirement that

the free energy is linear in np, one obtains 2mF = 5/3 (the

factor 2 multiplying mF is arbitrary. It is used simply for

convenience and consistency with what follows). In terms of

mole fraction of polymer lipid and area per lipid molecule,

the free energy per polymer is therefore given by:

FSC
p =kBTcnpa

5=3
m ðXp=AlÞ5=6 ð12Þ

This scaling-law result differs from that obtained from

mean-field theory, i.e. Eq. (7). The difference arises from the

inclusion of correlations between segments (in the ‘‘blobs’’)

in the scaling theory. Both expressions, however, are linear

in np. A further difference between the scaling theory and

the SCMF treatment of Milner et al. [12,13] is in the

distribution of chain ends. In the former case—apart from

an initial depletion layer—the distribution is essentially a

constant step function [4], whereas in the latter case, the

distribution has a parabolic form given by Eq. (8).

In principle, Eq. (12) applies to the excluded volume

effect of confinement because the characteristic length in the

treatment is RF3. Alexander [3] has derived a scaling law for

the stretching contribution to the chain free energy. At

equilibrium, this has the same scaling dependence as the

excluded volume term, as it must. Both terms are considered

separately later in connection with membrane–membrane

interactions (Section 6.3.2).

Hansen et al. [16] have proposed practical criteria for the

applicability of scaling theory that are derived from osmotic

pressure data on the free polymer in aqueous solution.

According to scaling theory, the osmotic pressure depends

on volume fraction of free polymer as Pff/f
9/4 [2]. This

semi-dilute power law holds for a very long polyoxyethy-

lene polymer, PEG:20,000, over a wide range of /f. For

shorter PEG-polymers, the scaling law holds only at pro-

gressively higher values of /f as the polymer length

decreases. In a polymer brush, the volume fraction of

monomers given from Eq. (10) by scaling theory is:

/̄pc am
4/3(Xp/Al)

2/3. From this and the osmotic pressure

results, the scaling regime for grafted polymer requires that

the mole fraction of polymer lipid is Xpz 0.23 and 0.07–

0.10 for DSPE-PEG:2000 and DSPE-PEG:5000, respective-

ly [16]. These values are upper estimates because it is likely

that the independence of monomer volume fraction from

polymer length is achieved more readily in the brush regime

for a surface-tethered polymer than for a polymer free in

solution in three dimensions.
3. Membrane expansion by the polymer brush

Steric interactions between the grafted polymers in the

brush regime will give rise to a lateral pressure, Pp, which

will tend to expand the lipid membrane. Amongst other

things, this will change the permeability properties and shift
the chain-melting transition of the membrane. Experimental

evidence for such a lateral expansion is provided by the

increase in motional freedom of spin-labelled lipid chains

on incorporating polymer-grafted lipids in bilayer mem-

branes [10]. In phospholipid monolayers, the increase in

lateral pressure by PEG-lipids at constant surface density

has been measured directly using surface balance techni-

ques [17]. The magnitude of the lateral pressure is given by

the first derivative of the free energy of the polymer brush

(Eqs. (7) and (12)) with respect to the membrane area. For

long polymers and/or high polymer-lipid contents this can

reach appreciable values, relative to the equivalence pres-

sure (f 35 mN m� 1; Ref. [18]) between lipid monolayers

and bilayers [19]. The extent of the resulting membrane

expansion is determined by the lipid equation of state, i.e.

by the monolayer P–A isotherm at the bilayer equivalence

pressure. Here we follow previous work [10] by using a

simple model equation of state due to Israelachvili et al.

[20], in order to illustrate the basic principles. A more

precise treatment using a virial equation of state is given by

Marsh [19].

3.1. Equilibrium surface area

The increase in surface area of the lipid membrane that

is induced by grafting polymer chains is estimated by using

a simple model introduced by Israelachvili et al. (see Ref.

[20]). This model adequately describes the elastic proper-

ties of fluid membranes in the absence of headgroup-

grafted polymers (see Refs. [18,21] for a discussion). The

interfacial free energy per lipid molecule in the membrane

is given by:

F tot
int=kBT ¼ ðc=kBTÞAl þ Co=Al þ Xp:F

brush
p =kBT ð13Þ

where the first two terms represent the interfacial free

energy of the polymer-free membrane. The first term is

the cohesive free energy of the membrane. Here, c is the

hydrophobic free energy density which has a value

cf 3.9	 10� 20 J nm� 2 [18]. The second term represents

the net repulsive interactions between non-polymer lipid

molecules. This is represented by an inverse dependence on

the area, Al, per lipid molecule. The equilibrium area per

lipid molecule, Al,o, in the absence of the polymer brush is

given by (see Ref. [21]):

Al;o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CokBT=c

p
ð14Þ

This has values in the region of Al,of 0.6–0.7 nm2 for

fluid lamellar phospholipid membranes [9]. The final term

in Eq. (13) is the free energy per lipid molecule of the

polymer brush, where Xp is the mole fraction of polymer

lipids. This term is given from Eqs. (7) and (12) as:

Xp:Fp=kBT ¼ a2mF

m npX
mFþ1
p =AmF

l ð15Þ
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where mF = 5/6 for the scaling theory (i.e. Eq. (12)) and

mF = 2/3 for mean-field theory (i.e. Eq. (7)).

The equilibrium area per lipid molecule in the presence

of the polymer brush is given by minimising the total

interfacial free energy, Fint
tot, with respect to Al. This yields

the following result:

A2
l ¼ A2

l;o þ mF

kBT

c
a2mF

m npX
mFþ1
p A1�mF

l ð16Þ

where the second term on the right represents the increase in

area per lipid induced by the polymer brush. The area per

lipid molecule increases monotonically with increasing

mole fraction of polymer lipid, with a steadily increasing

gradient (see Fig. 4, below). To first order, the expansion

(DAl =Al�Al,o) in area per lipid molecule by the polymer

brush is given by:

DAl

Al;o
cmF

kBT

Ko
A

a2mF

m np
Xp

Al;o

� �mFþ1

ð17Þ

which is directly proportional to the degree of polymerisa-

tion, np, and scales with the (mF + 1)th power of the mole

fraction of polymer lipid. Here KA
o ( = 2c) is the area

expansion elastic modulus of a single lipid layer (see next

section). To first order, this expression holds good for a

general value of KA
o (i.e. for a general exponent of Al in the
Fig. 4. Dependence of the fractional increase, (Al�Al,o)/Al,o, in area per lipid mol

fraction, Xp, of polymer lipid. Calculations are made using Eq. (16) with am= 0.3

correct to second order in the area extension. Solid line is the prediction from sca

approximation (i.e. Eq. (17)) is given by the short-dashed line (scaling theory) and

Xp = 1.16 (1.03), 0.45 (0.37) and 0.27 (0.21) for polymer sizes np = 8, 45 and 114

chain-melting transition temperature of bilayer membranes predicted from Eq. (19)

0.10 (0.09) and 0.06 (0.05) for polymer sizes np = 8, 45 and 114 in the scaling (m

membranes, the factor scaling the y-axis is: DSt/RTt = 0.044 K� 1.
Co term of Eq. (13)). Eq. (17) agrees with the leading term

obtained by Hristova and Needham [5] for mean-field

theory. The treatment of the latter authors differs from Eq.

(16) in higher order because they assumed a fixed area

expansion modulus, KA. In the present treatment, KA is

allowed to vary according to the explicit dependence of the

free energy on Al that is given by Eq. (13). It should be

noted that the assumption of constant KA has been demon-

strated experimentally only up to values of DAl/Al,of 0.05,

which is the maximum extension that giant lipid vesicles

can support in pipette aspiration experiments (see, e.g. Ref.

[22]). Over this range, both treatments yield very similar

results for the area expansion.

The area expansion is given as a function of polymer

grafting density, Xp in Fig. 4. Results from Eq. (16) for the

scaling theory and mean-field theory are compared in this

figure. The calculations retain all quadratic terms in DAl/Al,o

and are correct to second order in the area expansion. The

range of validity of the first-order approximation given by

Eq. (17) is also indicated in the figure. Note that the x-axis

differs somewhat between the scaling and mean-field theo-

ries because of the factor np
1/(mF+ 1). The range of polymer

lipid contents shown in Fig. 4 encompasses those for which

micelles are formed (see later). An area increase of 5% is

achieved at mole fractions of Xpc 0.49 (0.46), 0.19 (0.16)

and 0.12 (0.09) for polymer lengths of np = 8, 45, 114,
ecule by the lateral pressure in the polymer brush, as a function of the mole

9 nm, g = 3.9	 10� 20 J nm� 2 (KA
o = 78 mN.m� 1) and T= 293 K, and are

ling theory and the dashed line that from mean-field theory. The first-order

the dotted line (mean-field theory). Full-scale of the x-axis corresponds to

in the scaling (mean-field) theory, with Al,o = 0.6 nm2. Insert: shift (DTt) in

. Full scale of the x-axis (i.e. np
1/(mF+ 1)Xp/Al) corresponds to Xp = 0.27 (0.24),

ean field) theory, with Al = 0.55 nm2. For dipalmitoyl phosphatidylcholine



D. Marsh et al. / Biochimica et Biophysica Acta 1615 (2003) 33–59 39
respectively, as predicted by scaling (mean-field) theory.

This maximum area extension supported by giant lipid

vesicles was used by Hristova and Needham [5,23] as a

criterion to define the saturation concentration of polymer

lipid in a lamellar phospholipid membrane. These values are

greater than those for the onset of micelle formation in PEG-

lipid/phosphatidylcholine mixtures (see later).

3.2. Shift in chain-melting transition

The lateral expansion induced by the polymer brush in

gel-phase membranes also causes a lowering of the lipid

chain-melting temperature, Tt. A perturbation calculation

shows that the shift in transition temperature is related

directly to the lateral pressure: Pp
brush =�Xp.BFp

brush/BAl,

contributed by the polymer brush (see, e.g. Ref. [21]):

DTt ¼ �NAðPbrush
p =DStÞDAt ð18Þ

where DAt is the increase in area per lipid molecule on chain

melting, NA is Avogadro’s number, and DSt is the transition

entropy for chain melting. From Eqs. (15) and (18), the shift

in chain-melting transition temperature induced by the

polymer lipid is therefore given by:

DTt ¼ � NAkBTt

DSt

DAt

Al

� �
a2m
Al

� �mF

mF:npX
mFþ1
p ð19Þ

Typical mean values for the lipid molecular area and its

change on chain melting are: Alc 0.55 nm2 and DAt/

Alc 0.18, respectively, e.g. for phosphatidylcholines [9].

The insert in Fig. 4 gives the dependence of the shift in

transition temperature on polymer size and content that is

predicted by Eq. (19). The polymer brush is predicted to

lower the chain-melting transition because it exerts a pos-

itive lateral pressure in the membrane. For admixture of

PEG-lipids with hydrocarbon chains identical to those of the

host lipid, this is the direction of the shift that is observed

experimentally [10,24].

Longer polymer lipids create a greater lateral pressure

and therefore are more effective in reducing the transition

temperature. As will be seen later, however, larger amounts

of the shorter polymer lipids can be incorporated into the

membrane prior to micelle formation. The calculations

given in the insert of Fig. 4 approximately cover the range

of possible polymer-lipid contents for DPPC mixed with

PEG-DPPE lipids of different sizes, whilst preserving a

lamellar phase. They also correspond to the range over

which a perturbation treatment (i.e. Eq. (18)) is acceptable.

Taking calorimetric values of DSt = 115 J mol� 1 K� 1 and

Tt = 314 K, appropriate to dipalmitoyl phosphatidylcholine

(see, e.g. Ref. [9]), yields predicted shifts that are relatively

modest, on the order of 1–2j, in agreement with experi-

mental measurements for sub-micellar contents of polymer

lipid [24,25]. Nevertheless, small shifts in chain-melting
temperature are of practical relevance to the design of

liposomes for controlled release of contents by mild hyper-

thermia [26,27].
4. Elastic constants of polymer-grafted membranes

Stretching of the grafted polymers and their mutual

interactions in the brush regime will modify the elastic

properties of the composite membrane with respect both

to area dilation and to bending of the membrane. This direct

contribution of the polymer brush to the net membrane

elasticity has been treated by Hristova and Needham [23]

and by Milner et al. [13]. From the discussion in the

previous section, it is clear that the lateral pressure in the

polymer brush will also tend to expand the lipid membrane

and that this, in turn, will modify the intrinsic elastic

properties contributed by the lipid chains. This indirect

effect of the grafted polymer can be treated by combining

estimates of the lateral pressure from polymer physics with

the equation of state for the lipid layer. Such an approach

has been given by Marsh [19] by using a virial expansion

for the lipid equation of state. Here we use the simpler

equation of state introduced by Israelachvili et al. [20]—see

Eq. (13)—to illustrate the basic principles.

4.1. Stretching elasticity

The elastic area extension modulus is an important

quantity because it characterises the elastic deformations

of the membranes in response to lateral tension [28]. In

particular, it can affect vesicle permeability and the insertion

of amphiphilic molecules and proteins in the membrane

[18]. These elastic properties can be modified significantly,

relative to normal phospholipid bilayer membranes, by the

lateral pressure in the polymer brush. Currently, there is only

one measurement of the area elastic modulus in membranes

containing polymer lipids [29]. Little relative change was

found in the expansion modulus at the level of 4 mol%

PEG-lipid. Sizeable changes have been predicted for the

direct contribution from the polymer [23], but it will be seen

below that this is offset by the lateral expansion that the

polymer brush induces in the lipid layer.

The area extension modulus, KA, is related to the

interfacial free energy by (see Refs. [21,28]):

KA ¼ 2AðB2Fint=BA
2ÞT ð20Þ

The factor of two is included to sum the contributions

from both monolayers of the bilayer lipid membrane. From

Eq. (13), the elastic constant for area dilation is therefore

given by:

KA ¼ Ko
A

Al;o

Al

� �2

þ2mFðmF þ 1Þ kBT
Al

a2m
Al

� �mF

npX
mFþ1
p

ð21Þ
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where KA
o ( = 4c) is the area expansion modulus of the lipid

bilayer membrane with no grafted polymer. It is clear from

Eq. (21) that the polymer brush makes two opposing

contributions to the area elastic constant, relative to that

for the ungrafted bilayer membrane. The first contribution

arises from the increase in equilibrium area per lipid

molecule (in the tension-free state) that was treated in the

preceding section. This poises the membrane at a different

point in the P–A curve that is characterised by a smaller

value of KA (cf. Ref. [18]). The second contribution is the

elastic response of the polymer brush that is given by the

second term on the right-hand side of Eq. (21).

Substituting the (Al,o/Al)
2 term in Eq. (21) from Eq. (16)

yields the following result for the area elastic modulus:

KA ¼ Ko
A �

2mFð1� mFÞkBTa2mF
p ðA1�mF

l =A2
l;oÞnpXmFþ1

p

1þ 4mFðkBTa2mF
p =Ko

AÞðA
1�mF

l =A2
l;oÞnpX

mFþ1
p

ð22Þ

Because mF < 1 in both scaling and mean-field theories,

this predicts that the area elastic modulus is reduced by the

polymer brush. To first order in the polymer-induced area

extension, the reduction in KA given by Eq. (22) scales

directly with polymer length, np, and with grafting density

according to (Xp/Al,o)
mF+ 1. The maximum fractional de-

crease in KA according to Eq. (22) is 1/2 (1�mF) = 1/12

or 1/6 for the scaling and mean-field theories, respectively.

This is not achieved, however, for physically realistic

polymer lipid contents. For the range given in Fig. 4, the

total decrease in KA is 2.7% or 5% for the scaling and mean-

field theories, respectively. Experimentally, 4 mol% of a

PEG:1900 polymer lipid was found to have little effect on

the stretching elasticity of a 2:1 mol/mol stearoyl-oleoyl

phosphatidylcholine:cholesterol membrane [29]. This is in

agreement with Eq. (22) that predicts decreases of 0.03% or

0.1% from the scaling and mean-field approximations,

respectively, for Xp = 0.04, np = 43 and KA
o = 343 mN m� 1

(appropriate to cholesterol-containing membranes).

If the area expansion modulus, KA
o, of the lipid remains

constant, rather than being allowed to vary according to Eq.

(13), then the predicted change in KA is considerably larger

and of opposite sign (cf. Eq. (21)). This was the model

assumed in the original calculation of Hristova and Need-

ham [23], which unfortunately contains an error of sign. For

a constant lipid expansion modulus, the free energy is given

by Eq. (13) but with the first two terms replaced by the lipid

elastic free energy, 1/2KA
o(Al�Al,o)

2/Al,o. The net area

expansion modulus in the presence of the polymer brush

is then given to second order by:

KAcKo
A þ 2mFðmF þ 2ÞkBTa2mF

m npðXp=Al;oÞmFþ1

1þ 2mFðmF þ 1ÞðkBT=Ko
AÞa

2mF
m npðXp=Al;oÞmFþ1

ð23Þ
It should be remembered that Al,o is the equilibrium

area/lipid molecule in the absence of the polymer brush,
which is less than the equilibrium value (i.e. the value of

Al in the tension-free state) in the presence of the polymer

brush. To first-order, the ratio of the change in expansion

modulus predicted for constant lipid KA to that for variable

lipid KA is � (mF + 2)/(1�mF) (cf. Eqs. (22) and (23)).

This has values of � 17	 and � 8	 in the scaling and

mean-field cases, respectively. The prediction of Eq. (23)

for Xp = 0.04 still, however, represents an increase of only

f 2–3 mN m� 1.

In general, therefore, the grafted polymer does not

greatly affect the elastic constant for area expansion, be-

cause of the compensating effect on the intrinsic KA of the

lipids. This differs somewhat from previous predictions

[23]. Even for very stiff membranes, the relative change is

not great because of the higher intrinsic value of KA. See

also Ref. [19].

4.2. Curvature elasticity

The polymer will influence the bending of the grafted

membrane in a manner that is expected to depend strongly

on the length, L, of the brush region. This can affect both the

morphology and stability of a lamellar liposomal membrane.

Experimental information on the influence of polymer lipids

on curvature elasticity is currently lacking, although strong

effects may be anticipated from the known propensity to

form micelles (see later sections). The curvature elasticity of

polymer-grafted membranes has been analysed in detail

theoretically for large curvatures by Hristova and Needham

[23], and for normal curvatures by Milner and Witten [30]

with their self-consistent field version of mean-field theory.

Here, the bending of lamellar membranes, i.e. small curva-

tures, is considered.

The mean curvature bending modulus, kc, is given by

the second derivative of the free energy with respect to the

mean curvature c (i.e. the inverse local radius of curvature,

1/Rcurv) according to Refs. [21,28]:

kc ¼ ðB2Fint=Bc
2ÞT ð24Þ

Therefore, the polymer brush will contribute additively

by an amount kc
p to the curvature elasticity modulus. For

continuum or thin shell models, the curvature modulus

depends on the area modulus, KA, and the membrane

thickness, dt, according to Refs. [28,31]:

kcfKAd
2
t ð25Þ

where the scaling constant depends on the distribution of

elastic stress across the membrane. This equation may be

used as a first approach to establish the scaling laws for the

dependence of the curvature modulus on the polymer-lipid

parameters.

For long polymers, the thickness of the lipid layer may

be neglected. Thus the effective thickness of the membrane

is: dtc 2L. From Eq. (25), and the expressions given for KA

and L by Eqs. (23) and (6), respectively, the polymer brush
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contribution to the mean curvature elasticity modulus scales

according to:

kpcfkBTa
2mFþ10=3
m n3p

Xp

Al

� �mFþ5=3

ð26Þ

This is in agreement with the scaling results obtained by

Hristova and Needham [23] with mF = 5/6 for scaling theory,

and by Milner and Witten [30] with mF = 2/3 for mean-field

theory. In particular, the bending modulus scales as the cube

of the degree of polymerisation, i.e. np
3, and with a stronger

than quadratic dependence on the content of polymer lipid,

i.e. Xp
(5/3) + mF.

Just as for the area expansion modulus, the bending

modulus, kc
lipid, for the lipid component may be modified

from the value of kc
o for a bare lipid bilayer, as a result of the

area expansion by the lateral pressure of the polymer brush.

The scaling for KA is given in Eq. (21). For constant lipid

volume, the bilayer thickness scales as dtf 1/Al. Therefore,

from Eq. (25), the mean curvature modulus of the lipid is

given by:

k lipidc ¼ koc ðAl;o=AlÞ4 ð27Þ

in the presence of the polymer brush. In principle, for high

polymer lipid contents, this can represent a considerable

reduction relative to the bare lipid membrane.

In a more general treatment of curvature elasticity, the

free energy of bending is given by:

Felðc1; c2Þ ¼
1

2
kcðc1 þ c2 � 2coÞ2 þ k̄cc1c2 ð28Þ

where c1 and c2 (u 1/R1
curv, 1/R2

curv) are the principal

curvatures at a given point, kc and k̄c are the elastic moduli

for bending (i.e. mean curvature) and Gaussian curvature

(i.e, saddle-splay bending), respectively, and co (u 1/Ro
curv)

is the preferred or spontaneous curvature. The mean curva-

ture modulus, kc, already introduced describes cylindrical

bending (i.e. c1 = c, c2 = 0). A spherical elastic deformation

(i.e. c1 = c2 = c) involves additionally the Gaussian curvature

modulus. Bending into a saddle surface (i.e. c1 =� c2)

involves only the latter, k̄c.

The bending moduli and the spontaneous curvature are

related to the lateral pressure distribution, PpV(z)dz, trans-
verse to the membrane, where z is in the direction of the

membrane normal. Here the prime represents the derivative

of the lateral pressure with respect to position along the

membrane normal. The contributions from the grafted

polymer are given by the following integrations over the

brush region [30,32]:

kpc ¼ �
Z L

o

z
BPpVðzÞ
Bc
j
c¼0

dz ð29Þ

k̄pc ¼ �
Z L

z2PpVðzÞdz ð30Þ

o

2kcc
p
o ¼

Z L

o

zPpVðzÞdz ð31Þ

Thus, only kc depends on the properties of the curved

membrane, whereas k̄c and kcco are determined by properties

of the unbent membrane alone [30].

4.2.1. Mean curvature modulus

The lateral pressure (which has the opposite sign to the

osmotic pressure or lateral stress) may be obtained from the

free energy of the polymer brush (i.e. Eq. (15)) according to:

Pp(z) =�Xp(BFp
brush(z)/BAl(z)). The area per lipid molecule

at a height z from the lipid surface into the polymer brush is

given for cylindrical geometry by:

AlðzÞ ¼ Alð1þ zcÞ ð32Þ

where Al is the area at the lipid surface (strictly speaking, the

neutral surface) and c = 1/Rcurv is the membrane curvature.

From Eqs. (15) and (32):

BPpVðzÞ
Bc

¼ �mFðmF þ 1ÞkBTa2mF

m np
Xp

Al

� �mFþ1

ð33Þ

where PpV(z) =BPp/Bz. Substituting in Eq. (29) and using

Eq. (6) for the length of the polymer brush in the integration

limit yields:

kpc ¼ mFðmF þ 1Þ
2

kBTa
2mFþ10=3
m n3p

Xp

Al

� �mFþ5=3

ð34Þ

for the polymer contribution to the mean curvature elastic

modulus. This is in complete agreement with the straight-

forward scaling arguments that led to Eq. (26). Eq. (34)

applies to a lipid monolayer. For a bilayer membrane, the

bending modulus is twice this value. Note that application

of Eqs. (29) and (32) to the lipid contribution to the bending

modulus, where the free energy is given by the first two

terms of Eq. (13), also yields the result already given by Eq.

(27). When expressed in a more general way that explicitly

includes the dependence on area expansion modulus, viz.:

kc
L= kc

o(KA
L/KA

o) (Al,o/Al)
2, it is independent of the form

assumed for the lipid equation of state [19].

The polymer-lipid contribution, kc
p, to the bending

modulus predicted by Eq. (34) is given as a function of

the polymer grafting density in Fig. 5. For short polymers

with npV 8, this contribution never exceeds the bending

modulus, kc
o, of bare lipid membranes. Experimental values

for the latter lie in the region kc
of 1–2	 10� 19 J [9]. For

long polymers, e.g. PEG:2000 or PEG:5000, the polymer-

lipid contribution can exceed that of the bare lipid

membrane because of the cubic dependence on np. The

crossover point occurs at polymer-lipid contents of Xp =

0.11–0.16 and Xp = 0.04–0.03 for np = 45 and 114, re-

spectively. These values, however, are comparable to those

at which micelle formation begins in polymer-lipid mem-

branes with phosphatidylcholine (see later). Calculations



Fig. 5. Dependence of the polymer-lipid contribution, kc
p, to the mean

curvature elastic modulus on the mole fraction, Xp, of polymer lipid.

Calculations are made using Eq. (34) multiplied by a factor of two for

bilayers, with am= 0.39 nm and T= 293 K. Solid line is the prediction from

scaling theory and the dashed line that from mean-field theory. The

horizontal dotted lines indicate the approximate experimental range for the

bending modulus, kc
of 1–2	 10� 19 J, of bare lipid bilayers. Full scale of

the x-axis corresponds to Xp = 2.94 (2.47), 0.37 (0.27) and 0.12 (0.08) for

np = 8, 45, 114 in the scaling (mean-field) theory, with Al = 0.65 nm2.
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using the virial lipid equation of state indicate that for

np = 8 the net value of kc decreases but only very little

with increasing polymer-lipid content [19]. For longer

polymer lipids, kc is increased only slightly at polymer-

lipid contents corresponding to the onset of micellisation,

but exceeds kc
o several or many times depending on

polymer length for compositions corresponding to the

micellar phase.

4.2.2. Gaussian curvature modulus

Of additional interest are the curvature elastic properties

k̄c and co, which have not been previously considered. These

depend on the constant surface pressure distribution in the

polymer brush, PpV(z) =Pp(z)/L. From Eq. (30), it is then

found that:

k̄pc ¼ �2=3kpc =ðmF þ 1Þ ð35Þ

Hence, the Gaussian curvature modulus scales with the

polymer properties exactly as does the mean curvature

modulus. This is a result already obtained by Milner and

Witten [30] and Hristova and Needham [23]. Again Eq. (35)

applies to a monolayer, and for a bilayer k̄c
p is twice this

value. The sign of k̄c is such that formation of saddle

surfaces (for which c1 =� c2) costs free energy, just as for

simple cylindrical bending (see also Ref. [30]). As for the

mean curvature modulus, lateral expansion of the membrane

by the polymer brush leads to a reduction in the lipid

contribution to k̄c. The reduction factor, however, is different

from that for kc (cf. Eqs. (29) and (30)). It is given by Plipid/

Plipid
o (Al,o/Al)

2, where Plipid and Plipid
o are the lateral
pressures corresponding to Al and Al,o, respectively, which

are deduced from the lipid equation of state [19]. Qualita-

tively, the effects on the total Gaussian curvature modulus

are similar to those discussed already for kc.

4.2.3. Spontaneous curvature

The spontaneous bending moment 2kcco
p is obtained from

Eq. (31) in exactly the same way as for the Gaussian

curvature modulus. The spontaneous curvature induced by

the grafted polymer is then given by:

co ¼
1

4
mF

kBT

kc
a2mFþ5=3
m n2p

Xp

Al

� �mFþ4=3

ð36Þ

where kc is the total mean curvature modulus, including the

contribution from the lipid. In the case that the lipid

contribution to kc dominates, the spontaneous curvature

scales directly with L, the length of the polymer brush

(see also Ref. [21]). The dependence on the polymer-lipid

parameters is then given explicitly by Eq. (36). The pres-

ence of the polymer strongly favours bending, in a way that

depends quadratically on the polymer length and on the

(mF + 4/3) power of the polymer-lipid density. The sign of co
indicates the preference of the polymer brush for the outside

of the lipid aggregate. Eq. (36) is the value for a monolayer.

For a bilayer membrane, the spontaneous curvature is zero

by symmetry. Nevertheless, the monolayer value of co is

important for bilayers because it expresses the spontaneous

tendency to form micelles [18,33].

When kc is dominated by the polymer contribution, given

by Eq. (34), the spontaneous curvature becomes:

co ¼
1

2ðmF þ 1Þ
1

L
¼ 2ðmF þ 1Þa2mF

m np
Xp

Al

� �1=3
" #�1

ð37Þ

The spontaneous curvature then scales inversely with L.

Spontaneous bending is less favoured than in the ‘‘dilute’’

case because of the stronger dependence of kc
p on polymer

length and density. Note, however, that it is the product kcco
2

(see Eq. (28)) that determines the free energy associated

with the spontaneous tendency of the lamellar membrane to

bend. More detailed predictions of the spontaneous curva-

ture can be found in Ref. [19].
5. Micelle formation by polymer-lipids

Dispersed alone in water, lipids with hydrophilic polymer

headgroups form normal (i.e. oil-in-water) micelles. This is

a result of the steric bulk of the polar headgroup chains that

is augmented for PEG-linked phospholipids by the electro-

static charge of the lipid phosphate group. When mixed with

bilayer-forming lipids, the polymer-lipids therefore have a

tendency, which increases with increasing polymer-lipid

content, to induce micelle formation in aqueous dispersion.
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At lower polymer lipid contents, this can affect both the

morphology and permeability of the membrane vesicles. At

higher polymer-lipid contents this leads to a broad range of

coexistence of micelles and bilayer membranes that has

been investigated by several groups [10,34–36]. Two main

physicochemical aspects are of relevance: the thermody-

namics of the bilayer–micelle coexistence and the scaling of

these properties with polymer lipid length. These are dealt

with below.

5.1. Bilayer–micelle transition

The extended region of bilayer–micelle coexistence that

is found on increasing the concentration of polymer lipid

may be described in terms of equilibrium thermodynamics

[5,36]. The principal features of the bilayer–micelle transi-

tion can then be predicted from the Gibbs phase rule. For a

system of two components, polymer and non-polymer lipid

with water in excess (i.e. C = 2), the number of degrees of

freedom of the two coexisting phases, bilayer and micellar

(i.e. P= 2), is F =C�P + 1 = 1, at constant pressure. At a

fixed temperature, the compositions of the interconverting

bilayer and micellar phases must therefore remain constant

throughout the transition. Direct experimental evidence for

this prediction is given by measurements of the rotational

freedom of spin-labelled lipid chains in the lamellar com-

ponent throughout the coexistence region (see Fig. 6). From

the outer hyperfine splitting, 2Amax, in the spin-label EPR

spectrum, the chain mobility is found to remain constant

with increasing total PEG-lipid content, as is expected if the

composition of the lamellar phase remains unchanged. An

increase in chain rotational mobility (i.e. decrease in Amax) is
Fig. 6. Dependence of 2Amax, the maximum hyperfine splitting (i.e.

restriction of rotational mobility) of spin-labelled phosphatidylcholine (5-

PCSL) chains on PEG-lipid content in dipalmitoyl phosphatidylcholine/N-

PEG:350-dipalmitoyl phosphatidylethanolamine mixed lipid dispersions at

10 jC [10]. The (constant) high values of Amax in the bilayer–micelle

coexistence region are characteristic of the lamellar gel phase. The vertical

dashed lines represent the approximate boundaries of the coexistence region

(cf. Fig. 7 upper panel). The initial drop at low PEG-lipid content

corresponds to transition from the mushroom to the brush regime (vertical

dotted line). The large discontinuity at high PEG-lipid contents is

characteristic of the higher chain mobility in the micellar phases.
first observed close to the end of the coexistence region,

when the bilayer component has become very small and can

no longer be resolved (see also Ref. [10]).

The composition of the bilayer phase is specified by the

mole fraction of polymer lipid, Xp
on, at the onset of the

transition. That at completion of the transition, Xp
end, like-

wise specifies the composition of the micellar phase. The

total mole fraction of polymer lipid, Xp, may be expressed in

terms of the (constant) compositions, Xp
on and Xp

end, of the

individual phases by means of the conservation of matter:

Xp ¼ ½1� ftot ðmicelleÞ�X on
p þ ftot ðmicelleÞX end

p ð38Þ

where ftot (micelle) is the fraction of total lipid, polymer plus

non-polymer, that is in the micellar phase. The degree of

conversion to micelles at total mole fraction of polymer

lipid, Xp, is therefore given by:

ftot ðmicelleÞ ¼
Xp � X on

p

X end
p � X on

p

ð39Þ

It will be noted that this corresponds to the lever rule that

is familiar from the phase diagrams of binary mixtures (see,

e.g. Ref. [21]). This predicts that the degree of micellar

conversion depends linearly on the mole fraction of polymer

lipid, within the transition region.

The degree of micellar occupancy of the individual lipid

species, polymer (viz., fp) and non-polymer (viz., fo), is also

of interest. These are quantities that frequently are accessi-

ble experimentally. Within the micellar phase, the mole

fraction of polymer lipid is Xp
end. For the whole sample,

the mole fraction of polymer lipid in the micellar phase is

therefore Xp
endftot (micelle), i.e. when referred to both

phases, where the total mole fraction of polymer lipid is

Xp. Therefore, the fraction of polymer lipid that is in the

micellar phase is given by:

fp ðmicelleÞ ¼
X end
p

Xp

ftot ðmicelleÞ ð40Þ

where ftot (micelle) is given by Eq. (39). Correspondingly,

the fraction of non-polymer lipid in the micellar phase is

given by:

fo ðmicelleÞ ¼
1� X end

p

1� Xp

ftot ðmicelleÞ ð41Þ

The dependences of the degrees of micellar occupation on

total mole fraction of polymer lipid are given in the lower

panel of Fig. 7, for total lipid, and for polymer lipid and

non-polymer lipid. These values are deduced from Eqs.

(39), (40) and (41), respectively, and a normalised x-axis is

used. On initiation of the transition at Xp =Xp
on, the polymer

lipid migrates rapidly into the micellar phase, whereas the

non-polymer lipid remains preferentially in the lamellar

phase. Only towards the end of the transition, specified by



Table 2

Values of the parameters XPEG
on and XPEG

end governing the lamellar–micelle

transition obtained from fitting f (micellar) with Eqs. (39)– (41), for

different systems containing PEG-lipids

XPEG
on XPEG

end Reference

DPPC:

diC16 PEG:350 0.22F 0.07 0.73F 0.06 [36]

diC16 PEG:2000 0.07F 0.03 0.45F 0.05 [36]

diC16 PEG:5000 0.03F 0.01 0.28F 0.01 [10]

diC18 PEG-2000 0.05 0.20F 0.01 [34]

diC18 PEG-5000 0.025 0.14F 0.02 [34]

egg PC/POPE 9:1 mol/mol:

1-C16-2-C18:1-PEG:5000 0.05F 0.01 0.33F 0.05 [35]

Fig. 7. Lower panel: dependence of the degree of conversion to micelles

( ftot, solid line), and the fractional populations of polymer lipid ( fp) and

non-polymer lipid ( fo) in the micellar phase (dashed and dotted lines), on

the total mole fraction of polymer lipid, Xp. Values are calculated from Eqs.

(39)– (41), with Xp
end/Xp

on = 2 (dotted lines), 4 (dashed lines) for fp and fo,

and additionally Xp
on = 0.2 (for fo). Upper panel: dependence of the degree

of conversion to micelles ( ftot, dotted lines), and the fraction of PEG-lipid

( fPEG) and zwitterionic lipid ( fPC) in the micellar phase (dashed and solid

lines, respectively), on the total mole fraction of PEG-lipid, X(PEG), in

fully hydrated dipalmitoyl phosphatidylcholine/N-PEG dipalmitoyl phos-

phatidylethanolamine mixtures. The left-hand, centre and right-hand

sections refer to PEG-lipids with mean polymer molecular weights of

5000 Da (PEG:5000), 2000 Da (PEG:2000) and 350 Da (PEG:350),

respectively. The data points correspond to the fraction of spin-labelled

phosphatidylcholine in micelles for the mixtures with PEG:2000 (x) and
PEG:350 (n) lipids [36], and with PEG:5000 (.) lipid [10]. The fitting

parameters in Eqs. (39)– (41) are: XPEG
on = 0.03, XPEG

end = 0.28 for PEG:5000;

XPEG
on = 0.07, XPEG

end = 0.45 for PEG:2000; and XPEG
on = 0.22, XPEG

end = 0.73 for

PEG:350 lipids.
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Xp =Xp
end, does the non-polymer lipid migrate more rapidly

into the micellar phase.

5.2. Experimental application

Spin-labelled phosphatidylcholine lipid at probe amounts

has been used to study micelle formation in fully hydrated

mixtures of dipalmitoyl phosphatidylcholine with PEG-

linked dipalmitoyl phosphatidylethanolamine of different

polymer sizes by using ESR spectroscopy [10,36]. The
fraction, fPC, of spin-labelled lipid in micelles was deter-

mined by spectral subtraction with mixtures at a temperature

for which the lamellar population was in a gel phase and

therefore was well resolved spectrally from the more fluid

micellar population. The spin-label results for mixtures

containing the different chain length PEG-lipids are given

in the upper panel of Fig. 7. Fitting Eqs. (39) and (41) to the

data yields the lines shown for fPC in Fig. 7 (upper panel),

with the fitting parameters given in the figure legend. Use of

Eqs. (39) and (40) then allows prediction of the total fraction

of micelles ( ftot) and fraction of micellar PEG-lipid ( fPEG).

These are given by the lines without data points, in Fig. 7

(upper panel), for the different mixtures.

The effect of the size of the polymer-lipid headgroup is

seen clearly in Fig. 7 (upper panel). This is consistent with

considerations of the molecular shape that determines the

lipid packing parameter, v/Al, where v is the hydrocarbon

chain volume, A is the headgroup area per lipid and

l is the effective length of the hydrophobic tail (see, e.g.

Refs. [20,33,37]). For PC, v/Alc 1; for PEG:350 v/Al < 1

and for PEG:2000 and PEG:5000 the packing parameter

is progressively smaller than for PEG:350. Accordingly,

micellisation is induced more readily by PEG:2000

(XPEG
on = 0.07) than by the shorter polymer lipid PEG:350

(XPEG
on = 0.22) and yet more readily by PEG:5000 (XPEG

on =

0.03). In addition, the micelles contain a considerably

smaller fraction of the PEG:2000 polymer lipid than of

the PEG:350 lipid and a yet smaller fraction of PEG:5000

lipid. Throughout the lamellar –micelle transition, the

micelles respectively contain a mole fraction XPEG
end = 0.28

of PEG:5000 lipid, XPEG
end = 0.45 of PEG:2000 lipid and

XPEG
end = 0.73 of PEG:350 lipid (see Fig. 7, upper panel).

Other methods have also been used to study the degree

of micellisation. These results are collected together in

Table 2. Indirect measurements using the chain-melting

transition behaviour in differential scanning calorimetry

were analysed to yield the fraction of PEG-lipid in micelles

[34]. Direct measurements of the total lipid in the micellar

state were made using high-resolution proton NMR spec-

troscopy [35]. The values of XPEG
on and XPEG

end obtained by

fitting the data from the two different types of experiments

to Eqs. (39) and (40), and to Eq. (41), respectively, are given
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in Table 2. It should be noted that a fixed value was

assumed for XPEG
on to obtain f(micellar) from the calorimetric

data [34]. The NMR experiments extended only to XPEG =

0.13 in the coexistence region [35]. Therefore, the value of

XPEG
end in this case represents a considerable (linear) extrap-

olation for ftot.

It is of interest to compare these experimental values

with the theoretical calculations using methods of polymer

physics that were performed by Hristova and Needham [5].

For PEG:2000, they predict a value of XPEG
on = 0.07 for the

onset of micellisation, which is similar to the values given

in Table 2. The predicted value for completion of the

lamellar–micelle transition is XPEG
end = 0.24, which is in-

termediate between the values given for PEG:2000 in

Table 2. The values calculated theoretically are found to

be rather similar in the gel and fluid phases. For PEG:

5000, values of XPEG
on = 0.035 and XPEG

end = 0.14 predicted

by the Hristova–Needham model are quoted by Baek-

mark et al. [34]. These values are in reasonable agreement

with the data reported by the latter authors (see Table 2),

but the value of XPEG
end differs considerably from the more

direct measurements by Rex et al. [35] and Montesano

et al. [10].

5.3. Scaling with polymer length

From Table 2, it can be seen that the mole fraction of

polymer lipid, Xp
on, required for onset of micellisation

depends rather strongly on the polymer length, np, as might

be expected. The scaling with np can be predicted if it is

assumed that onset of micellisation takes place at some fixed

critical expansion, DAcrit, of the membrane area by the

polymer lipid. Justification for this assumption comes from

experiments with spin-labelled lipids which show that onset

of micellisation occurs at approximately the same lipid

packing density for PEG-lipids of different polymer chain

lengths [10]. It is then seen immediately from Eq. (17) that

the dependence of Xp
on on polymer chain length is given by

Xp
onf np

� 1/(mF+ 1). The value of the exponent is therefore

� 3/5 in mean field theory and � 6/11 in scaling theory. For

PEG-lipids with np = 8, 45 and 114, it is found experimen-

tally that the exponent of np is � 0.74F 0.06 [10]; a value

of � 0.7F 0.1 is obtained from the combined values in

Table 2. This is similar to the theoretical predictions and

closer to that from mean-field theory, although still some-

what greater than the latter. A similar scaling has been

predicted for the saturation level of polymer lipid in the

bilayer by equating the repulsive pressure in the polymer

brush with the maximum tensile stress that a lipid bilayer

membrane can support [23]. The predicted saturation values

were, however, higher than the polymer lipid content at the

onset of micellisation.

In contrast, the mole fraction of polymer lipid, Xp
end,

at the end of the lamellar–micellar transition has a

considerably weaker dependence on np than does Xp
on

(see Table 2). This is because Xp
end depends more
strongly on the properties of the micelles than does Xp
on.

For PEG-lipids, a consistent interpretation of the exper-

imental values has been given in terms of the different

surface area per lipid in bilayers and micelles and the

different area expansions induced by the polymer lipids

in these two states [10].
6. Membrane–membrane interactions

The interaction forces between polymer-grafted lipid

surfaces are of direct relevance to their function in steric

stabilisation of liposomes. Consequently, they have been

the subject of several detailed experimental studies

[6,7,17,38]. The experimental approaches used include

the surface force apparatus, X-ray diffraction measurements

under osmotic stress, and micromechanical manipulation of

giant lipid vesicles. Two different regimes of grafting

density can be distinguished, viz., those corresponding to

the mushroom and brush regimes (see Fig. 8). In the dilute

mushroom regime, Hristova and Needham [23] propose a

mean-field treatment based on the Flory approach at low

compression, and adopt the scaling theory of De Gennes

and Alexander in the high-compression regime. In the

higher concentration brush regime, both the scaling and

mean-field approaches already introduced apply (see Ref.

[23]). A simple random-flight model, first introduced by

Dolan and Edwards [39], has also been considered in the

very high dilution regime.

6.1. Random flight model

The random flight approach of Dolan and Edwards

[39] uses the diffusion equation, neglects excluded vol-

ume effects, and thus can only be expected to apply to

reasonably long polymers at high dilution. It is included

here because of the success in interpreting surface-force

measurements on polymer-grafted lipids at low surface

coverage [17].

A random flight polymer chain is confined between two

plane surfaces distance d apart. Solution of the diffusion

equation with the boundary condition that the probability of

finding a chain segment goes to zero at the confining

surfaces, gives the required configurational distribution.

Then, by integrating over space, the total number of con-

figurations that are confined between the two planes,

relative to that for the free polymer, is [39]:

Xðnp; dÞ ¼ 1� 2expð�3d2=2npa
2
mÞ ð42Þ

for d2/npam
2 >1.1, or:

Xðnp; dÞ ¼
ffiffiffiffiffiffiffiffiffiffi
8pnp
3

r
am

d
exp

�p2npa
2
m

6d2

� �
ð43Þ

for d2/npam
2 < 2.8. In Eqs. (42) and (43), np is the number

of polymer segments, as usual, and am is the segment



Fig. 8. Schematic representation of the different regimes of polymer grafting density, Xp/Al, for interacting membrane surfaces (see Ref. [7]). Upper row: in the

relaxed state; lower row: under compression. RF3 is the Flory radius of an uncompressed mushroom; RF2 is the radius of the flattened mushroom; Lo is the

length of the polymer brush.
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length. The free energy of interaction (FR =� kBTlnX) is

then [39]:

FRðdÞ=kBTc� p2npa
2
m

6d2
þ ln

ffiffiffiffiffiffiffiffiffiffi
3

8pnp

s
d

am

 !" #
ð44Þ

for d2/npam
2 V 3, or:

FRðdÞ=kBTc� 2exp
�3d2

2npa2m

� �
ð45Þ

for d2/npam
2 z 3.

The interbilayer repulsive pressure, PR =� (Xp/Al)BFR/

Bd, where Xp is the mole fraction of polymer-grafted lipid

and Al is the area per lipid molecule, is then finally given by:

PRðdÞ=kBTc
Xp

Al

� �
�p2npa

2
m

3d3
þ 1

d

� 
ð46Þ

for d2/npam
2 V 3, or:

PRðdÞ=kBTc� 6
Xp

Al

� �
d

npa2m
exp

�3d2

2npa2m

� �
ð47Þ

for d2/npam
2 z 3.

6.2. Mushroom regime

Two regions of polymer grafting density can be distin-

guished within the mushroom regime as indicated schemat-
ically in Fig. 8. At low polymer concentrations, the

mushrooms from opposing membranes are able to interdig-

itate on compression [7]. Each mushroom is then com-

pressed against both membrane surfaces (left-hand panel of

Fig. 8). At higher polymer concentrations, the mushrooms

from opposing membranes do not interdigitate and are

compressed against one another (centre panel of Fig. 8).

At low compression, the mushrooms maintain their approx-

imately spherical shape (Fig. 8, left lower panel). At high

compression, the mushrooms distort to flattened discs (Fig.

8, centre lower panel).

6.2.1. Low compression

For low compression, i.e. little elastic distortion of the

mushrooms, Hristova and Needham [23] use the Flory

mean-field approach already introduced in connection with

the mushroom regime. From a somewhat more general

form of Eq. (1), the free energy per polymer mushroom is

given by:

FpðRÞ=kBTc
Ro
F3

am

� �1=3
2

3

Ro
F3

R

� �3

þ R

Ro
F3

� �2
" #

ð48Þ

where the equilibrium value of R for noncompressed mush-

rooms is given by:

Ro
F3 ¼ ð3k=2Þ1=5RF3 ¼ ð3k=2Þ1=5amn3=5p ð49Þ



Fig. 9. Bilayer–bilayer repulsive pressure, PR, as a function of interbilayer

separation, d, for polymer grafted membranes. Upper panel: in the

mushroom regime. The bilayer spacing is normalised to the Flory radius,

RF3
o , of the polymer that is given by Eq. (49) with k= 1. Solid line is the

result from Alexander–De Gennes scaling theory according to Eq. (57).

Dashed line is the mean-field result according to Eq. (50). The

dimensionless ordinate and abscissa apply quite generally for scaling

theory. For mean-field theory, the polymer length is taken as np = 45; and

the ordinate values increase with increasing np. Lower panel: in the brush

regime. The bilayer spacing is normalised to the height, Lo, of the

uncompressed polymer brush that is given by Eq. (60) or (66), i.e. Lo = Lo
MF

or Lo
SC. Solid line is the result from Alexander–De Gennes scaling theory

according to Eq. (67). Dotted line is the mean-field theory result according

to Eq. (61). Dashed line is the Milner–Witten–Cates SCMF theory result

according to Eq. (64), with the explicit numerical prefactor and Lo =L
MWC.

The dimensionless ordinate and abscissa apply quite generally for scaling

theory. For the mean-field theories, the ordinate is calculated for a polymer-

lipid content Xp = 0.1, with Al = 0.6 nm
2 and am= 0.39 nm; and the ordinate-

value decreases with increasing (Xp/Al).

D. Marsh et al. / Biochimica et Biophysica Acta 1615 (2003) 33–59 47
where k is a multiplicative factor that scales the excluded

volume term relative to the stretching term in Eq. (1), and

RF3 is the conventional Flory radius given by Eq. (2). The

force per unit area exerted on compressing the mushroom,

PMF =� (Xp/Al)BFp/BR, is hence given from Eq. (48) by:

PMFðRÞ=kBTcðamRo2
F3Þ

�1=3 Xp

Al

� �
Ro
F3

R

� �4

� R

Ro
F3

� �" #

ð50Þ

In the very low-density regime, Al/Xp>2pRF3
2 , the mush-

rooms from opposing membranes interdigitate without mu-

tual interaction (see left-hand panel of Fig. 8). The pressure

exerted between the mushrooms is then given by Eq. (50)

with R = d, for membrane–membrane separations d <RF3,

i.e. less than the size of a single mushroom. In the interme-

diate density regime, 2pRF3
2 >Al/Xp>pRF3

2 , the mushrooms on

opposing membranes first come into contact at df 2RF3

and the pressure exerted between the membranes is then

given by Eq. (50), with R = d/2 [23]. The dashed line in the

upper panel of Fig. 9 gives the dependence of the bilayer–

bilayer pressure on intermembrane separation, i.e. as a

function of R = d/2, for kc 1.

6.2.2. High compression

The scaling laws introduced by Daoud and De Gennes

[15] allow treatment of systems at high compression, where

the mushrooms no longer are three-dimensional but become

two-dimensional flattened pancakes of Flory radius:

RF2camn
3=4
p ð51Þ

which is the two-dimensional equivalent of Eq. (2) for RF3,

where v = 3/4 from Eq. (3) (see Fig. 8, centre panel). The

corresponding scaling law for RF2 is [15]:

RF2cRF3 	 ðRF3=dÞmRV ð52Þ

Hence, from Eq. (2) for RF3, correspondence of the

dependence of RF2 on np in Eq. (52) with that in Eq. (51)

requires that mRV = 1/4. The scaling law for the radius of a

strongly compressed mushroom is therefore:

RF2cam
am

d

� �1=4
n3=4p ð53Þ

Compression becomes sufficient for the mushrooms to

overlap when RF2
2 fAl/Xp, which occurs at the critical

membrane separation:

dcritcam
a2m
Al

� �2

X 2
p n

3
p ð54Þ

At this point, not only elastic forces arising from com-

pression of the mushrooms, but also osmotic forces arising

from overlap of the mushrooms, contribute to the repulsive

intermembrane pressure [23].
The scaling law for the configurational free energy of the

compressed mushroom is [15]:

FSC
p =kBTcðRF3=dÞmFV ð55Þ

From Eq. (2) for RF3 and the usual requirement that the

free energy is extensive in np, one gets mFV= 5/3. Thus Eq.
(55) becomes:

FSC
p ðdÞ=kBTcnpðam=dÞ5=3 ð56Þ
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for the dependence of the polymer configurational free

energy on membrane separation. The conformational con-

tribution to the intermembrane pressure, PR =� (Xp/Al)BFp/

Bd, is then:

PSC
R =kBTc

np

am

Xp

Al

� �
am

d

� �8=3
ð57Þ

This is the total pressure for separations greater than the

critical value for overlap of the compressed mushrooms, i.e.

for d>dcrit. This scaling theory estimate of the repulsive

pressure in the high-compression regime is shown by the

solid line in the upper panel of Fig. 9.

For stronger compression, d < dcrit, the osmotic contribu-

tion must be added to Eq. (57). For the latter, Daoud and De

Gennes [15] obtain the following (see, e.g. Ref. [23]):

Posm
R =kBTcn3pa

5
m

Xp

Al

� �3
2

d

� �2

ð58Þ

This corresponds to the osmotic pressure of highly

compressed, overlapping polymer chains with two-dimen-

sional behaviour.

6.3. Brush regime

As for the treatment of the properties of single bilayers in

the brush regime that were given previously, bilayer–bilayer

interactions of polymer-grafted membranes are discussed in

terms of mean-field theory and of scaling theory. The

situation in the brush regime is indicated schematically in

the right-hand panel of Fig. 8.

6.3.1. Mean-field theory

The dependence of the polymer free energy on the

height, L, of the polymer brush is given by Eq. (5), where

LuR = d/2, i.e. half the bilayer separation. From a more

general form of Eq. (5) we get:

FMF
p ðdÞ=kBTca1=3m LMF

o

Xp

Al

� �1=3
LMF
o

L
þ 1

2

L

LMF
o

� �2
" #

ð59Þ

where it is assumed (as previously) that vmc am
3 . The

equilibrium length of the polymer brush, Lo
MF, for the

isolated membrane is given by:

LMF
o ¼ ðk=2Þ1=3LMF ¼ ðk=2Þ1=3npa5=3m ðXp=AlÞ1=3 ð60Þ

where LMF is given by Eq. (6) and k is a multiplicative factor

that represents the relative strength of the excluded volume

and stretching terms (first and second on the right) in Eq.
(5). The repulsive pressure between bilayers PR =� (Xp/Al)

(BFp
MF/BL) is therefore given by:

PMF
R ðdÞ=kBTca�1=3

m

Xp

Al

� �4=3
2LMF

o

d

� �2

� d

2LMF
o

� �" #
ð61Þ

The dotted line in the lower panel of Fig. 9 gives the

dependence of the bilayer–bilayer repulsive pressure on the

intermembrane separation, d, according to Eq. (61).

In the SCMF theory of Milner et al. [12,13], the

distribution of polymer chain ends is parabolic rather than

the step function that is implicitly assumed in the simple

mean-field theory based on Eq. (5). For this model, the

dependence of the polymer free energy on height, L, of the

polymer brush contains an additional term, compared to Eq.

(59) [13]:

FMWC
p ðRÞ=kBT ¼ p2

96

� �1=3

npa
4=3
m

Xp

Al

� �2=3

	 LMWC

L
þ L

LMWC

� �2

� 1

5

L

LMWC

� �5
" #

ð62Þ

where the maximum extent of the polymer brush is given

by:

LMWC ¼ 12

p2

� �1=3

npa
5=3
m

Xp

Al

� �1=3

ð63Þ

As noted previously, with these explicit premultiplying

factors, the self-consistent mean-field (MWC) results are

exact. The bilayer–bilayer repulsive pressure, PR =� (Xp/

Al)(BFp/BL), with L= d/2 is then given by (see Ref. [23]):

PMWC
R ðdÞ=kBT ¼ 1

2

p2

12

� �2=3

a�1=3
m

Xp

Al

� �4=3
2LMWC

d

� �2
"

� 2
d

2LMWC

� �
þ d

2LMWC

� �4
#

ð64Þ

The lower panel of Fig. 9 compares the predicted

dependence of the repulsive pressure on interbilayer dis-

tance, d, for the two mean-field models. The values for the

SCMF theory are lower than those given for the simple

mean-field theory, partly because the explicit prefactor of

1/2(p2/12)2/3 = 0.439 has been included for the former. The

repulsive pressure goes to zero at a greater value of d/2Lo
MF

for the SCMF model than for the MF model, because LMWC

is 2(3/p2)1/3 = 1.34 times greater than Lo
MF with k = 1 (com-

pare Eqs. (60) and (63)). As stated previously, the polymer

brush region has a step profile with length Lo
MF in the simple

mean-field approach, but has a parabolic profile with

maximum extent LMWC in the SCMF model.



Fig. 10. Force versus separation curves for DSPE bilayers containing 1.3

mol% DSPE-PEG:2000, in the dilute mushroom regime. Solid line is the fit

to Dolan–Edwards theory (Eq. (69)) with (Al/Xp) = 33 nm2, yielding

RF3 = 3.1 nm, together with the electrostatic repulsion calculated from

double-layer theory [17].
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6.3.2. Scaling theory

The free energy of the polymer brush, Fp
SC, for an isolated

membrane that was given in Eq. (12) corresponds to the

equilibrium energy of the uncompressed chains, and does not

include explicitly the separate contributions from the repul-

sive energy and the elastic stretching energy in a compressed

polymer brush of height, L. Scaling laws for the free energy

in this latter case have been given by Alexander [3]:

FSC
p ðLÞkBTcLSCo

Xp

Al

� �1=2
7

5

LSCo
L

� �5=4

þ L

LSCo

� �7=4
" #

ð65Þ

where the first term is the De Gennes steric repulsion energy

in the brush and the second term is the elastic energy for

compression of the brush (see also Ref. [40]). The equilib-

rium length of the uncompressed polymer brush, Lo
SC, in Eq.

(65) is given by:

LSCo ¼ 5k

7

� �1=3

LSC ¼ 5k

7

� �1=3

npa
5=3
m

Xp

Al

� �1=3

ð66Þ

where k is a multiplicative factor that represents the relative

strength of the excluded volume and stretching terms in Eq.

(65). The repulsive pressure between bilayers PR =� (Xp/

Al)BFp
SC/BL is therefore given from Eq. (65) (for L= d/2)

by [23]:

PSC
R ðdÞ=kBTc

Xp

Al

� �3=2
2LSCo
d

� �9=4

� d

2LSCo

� �3=4
" #

ð67Þ

It is readily seen from Eq. (67) that the equilibrium

situation for an isolated bilayer, viz. PR
SC(d) = 0, is given

by d/2 = Lo
SC and that by substituting L= Lo

SC in Eq. (65),

the equilibrium free energy is given by Eq. (12) derived

above.

The solid line in the lower panel of Fig. 9 gives the

dependence of the bilayer–bilayer repulsive pressure on

interbilayer spacing according to scaling theory. Here it is

compared with the predictions of the two mean-field theo-

ries. The latter are given for a polymer-lipid content of

Xp = 0.1, whereas with the dimensionless variables given in

Fig. 9 (lower panel), the results of scaling theory are

generally valid for all polymer-lipid contents.

6.4. Experimental applications: surface force measurements

In the surface force apparatus, the ratio of the force, F(d),
between the crossed cylindrical surfaces of radius, Ro, is

related to the free energy of interaction, per unit area,

between two flat surfaces at the same distance d apart by

the Derjaguin approximation [37,41]:

FðdÞ=Ro ¼ 4ptFpðd=2Þ � FpðLoÞbðXp=AlÞ ð68Þ

where Fp(d/2) is the free energy per polymer in a brush of

height d/2 and Lo is the height of the unperturbed brush. The
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interactions between the two membrane-bearing surfaces are

therefore obtained directly from the force–distance (F vs. d)

curves.

The interactions between phosphatidylethanolamine (PE)

bilayers containing PEG-grafted PE has been studied in the

low (f 1%) and high (f 5–10%) grafting regimes, by

using the surface force apparatus [17]. In the absence of

grafted polymer, PE bilayers adhere because of the reduced

hydration repulsion, relative to van der Waals’ attraction, in

comparison with phosphatidylcholine bilayers [21,42]. Fig.

10 gives the force–distance relations for polymer densities

in the very dilute mushroom regime. The steep part of the

curve at short membrane separations arises predominantly

from the direct steric interaction of the polymer with the

membrane surface, whereas the more slowly decaying part

at large separations arises from electrostatic repulsion that is

contributed by the negative charge on the polymer lipid.

The solid line in Fig. 10 represents a fit to the Dolan–

Edwards theory, with the electrostatic contribution calculat-

ed explicitly from double-layer theory. For Dolan–Edwards

theory, the ratio of the repulsive force, F, to radius, Ro, is

given by [17]:

FDEðdÞ
Ro

¼ 72p
Al

Xp

� �
kBTe

�d=RF3 ð69Þ

where d is the separation of the crossed cylindrical surfaces

and RF3 is the Flory radius of the random-flight polymer.

The surface density of polymer-lipid, Xp/Al, is determined

directly for the monolayers from which Langmuir–Blodgett

layers are deposited on the mica surfaces of the force

apparatus. The value of RF3 = 3.1 nm is the only fitted

parameter in Fig. 10, and is close to theoretical estimates

of the Flory radius (RF3c 3.5–3.8 nm) for a PEG:2000

polymer.
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Fig. 11 gives the force–distance relations for the steric

bilayer repulsion, at polymer densities in the brush re-

gime. For separation distances below twice the thickness,

LSC, of the polymer brush layer, the force with distance

relation for two curved cylindrical surfaces of radius, Ro,

is given from Eqs. (65) and (68) for scaling theory by

[17]:

F SCðdÞ
Ro

ckBT
Xp

Al

� �3=2
LSCo

7

5

2LSCo
d

� �5=4
þ d

2LSCo

� �7=4
� 12

5

" #

ð70Þ

with L= d/2, where Lo
SC is given by Eq. (66). The fit of Eq.

(70), with adjustable prefactor, which is given in Fig. 11,

corresponds to Lo
SC = 5.4 nm. This is rather close to

predictions of Eq. (10) for a PEG:2000 polymer with

np = 45, but less than the value of 6.5–7.0 nm that is

determined experimentally for the thickness of the polymer

brush.

More recently, Efremova et al. [38] have performed

surface force experiments with PE bilayers containing an

uncharged, PEG-grafted, two-chain lipid SAPDS (3-stear-

amidyl-2-(monomethoxyPEG-succinyl)-1-stearoyl-3-ami-

nopropane-1,2-diol). As expected, long-range electrostatic

repulsion was absent. Surface forces were repulsive and

attributed to osmotic interactions between the polymer

chains. The force between PE surfaces bearing 1.3 mol%

(mushroom regime) and 4.5 mol% (weak overlap)

PEG:2000-lipid extended up to separations f 8.5 nm.

This is roughly the separation at which the polymer chains

cease to interact, and is comparable to twice the Flory

radius, RF3, of PEG:2000 (see Eq. (2)). At 10 mol%

PEG:2000-lipid, steric repulsion between the two dense

polymer brushes was found to begin at separations below

f 12 nm. This results from the more extended conforma-
Fig. 11. Force versus separation curves for DSPE bilayers containing 9

mol% DSPE-PEG:2000 in the brush regime. The contribution from

electrostatic repulsion has been subtracted by extrapolation of the data at

larger separations. Solid line is the fit to polymer scaling theory (Eq. (70))

yielding LSC = 5.4 nm [17].
tion of the polymer chains in the brush regime. These

findings are consistent with those for the non-electrostatic

component of the repulsion between PE surfaces contain-

ing negatively charged DSPE-PEG:2000 that were de-

scribed above.

For 1.5 mol% of the neutral PEG:2000 lipid in the

mushroom regime, the force–distance relation was well

described by Eq. (69), with an adjustable prefactor and a

value of RF3 = 2.9F 0.1 nm. This is close to that obtained

for negatively charged DSPE-PEG:2000, also in the mush-

room regime [17]. For 4.5 and 10 mol% of the neutral

PEG:2000 lipid, comparably good fits to those of Kuhl et al.

[17] for DSPE-PEG:2000 at similar concentrations were

found by using the scaling theory expression, Eq. (70), for

the brush regime. The fitting parameters were also similar.

However, a better description of the interactions between

the polymer brushes was obtained by using the SCMF

theory of Milner, Witten and Cates (MWC). In the latter

treatment, the ratio of force to radius is given from Eqs. (68)

and (62) by [38]:

FMWCðdÞ
Ro

¼ 2p5

3

� �1=3

npa
4=3
m

Xp

Al

� �5=3

	 2LMWC

d
þ d

2LMWC

� �2

� 1
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d

2LMWC

� �5
� 9

5
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ð71Þ

where LMWC is given by Eq. (63). Good fits were obtained

with values of LMWC= 5.2F 0.3 nm for 4.5 mol% PEG-

lipid and 6.2F 0.3 nm for 10 mol% PEG-lipid. Both these

values are in good agreement with the thickness of the

polymer brush measured by surface plasmon resonance

[38]. For comparison, Eq. (63) with am= 0.39 nm predicts

LMWC= 4.7 and 6.1 nm for 4.5 and 10 mol% of PEG:2000-

lipid, respectively, where Al = 0.43 nm2 was measured at

the point of Langmuir–Blodgett transfer of the lipid

monolayers.

6.5. Experimental applications: osmotic stress experiments

Measurement of the equilibrium separation between

opposing bilayers as a function of applied osmotic stress,

by using X-ray diffraction, gives the dependence of the

bilayer–bilayer repulsive pressure on interbilayer separa-

tion. This technique has been used to study the steric

repulsion of distearoyl phosphatidylcholine (DSPC)

bilayers containing varying concentrations of PEG-lipids

of different polymer sizes [7]. The equilibrium bilayer

separation decreases monotonically with increasing applied

osmotic pressure. Comparison of the experimental pres-

sure–distance curves with the various theoretical models

were made.

Fig. 12 gives the pressure–separation curves for DSPC

with 1.5 mol% DSPE-PEG:750, which is representative



Fig. 13. Dependence of interbilayer separation (d, x-axis) on applied

osmotic pressure ( PR, y-axis) for multilamellar dispersions of DSPC+ 10

mol% DSPE-PEG:2000, in the brush regime. Dashed line: predictions from

SCMF theory (i.e. MWC, Eq. (64)); solid line: MWC with polydispersity

of PEG molecular weight; dotted line: scaling theory prediction (i.e. Eq.

(67)) [7].
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of the mushroom regime. At high applied pressures

(logP>6.5), the data are well described by the Flory-based

mean-field model for fully interdigitated mushrooms

according to Eq. (50) (Fig. 12, upper panel). At lower

applied pressures (logPV 6.0), the model of partially inter-

digitated mushrooms is required, combined with PEG-

molecular weight dispersity (see Fig. 12, lower panel). This

model corresponds to a weighted average of fully interdig-

itated (R = d in Eq. (50)) and non-interdigitated (R = d/2)

species [7].

Fig. 13 gives the pressure–separation curves for DSPC

with 10 mol% of DSPE-PEG:2000, which is representative

of the brush regime. There is good agreement between the

experimental data and the predictions of the SCMF theory

(MWC, Eq. (64)) for applied pressures 5.5 < logP < 6.0.

Over this range, scaling theory (Eq. (67)) predicts separa-

tions that are somewhat larger, by f 1 nm. For lower

applied pressures, logP < 5.5, the measured interbilayer

spacings are up to 3.0 nm larger than predicted for mono-

disperse polymer chains. The effect of PEG polydispersity is

in the correct direction to account for the difference between

experimental data and theoretical predictions (see Fig. 13
Fig. 12. Dependence of interbilayer separation (d, x-axis) on applied

osmotic pressure ( PR, y-axis) for multilamellar dispersions of distearoyl

phosphatidylcholine (DSPC) + 1.5 mol% DSPE-PEG:750, in the mushroom

regime. Upper panel: Flory-based mean-field predictions for fully

interdigitated mushrooms, i.e. Eq. (50) with R= d (dashed line), and

similarly for polydisperse Flory mushrooms (solid line); dotted line gives

the predictions of scaling theory, i.e. Eq. (57) truncated at d=RF3. Lower

panel: Flory-based mean-field predictions for partially interdigitated

mushrooms (dashed line) and with PEG-molecular weight polydispersity

(solid line); and scaling theory predictions for partially interdigitated

mushrooms (dotted line) [7].
and Ref. [7]). Further data and discussion can be found in

the latter reference.

Hansen et al. [16] have shown that the osmotic stress data

of Kenworthy et al. [7] for DSPC containing 10 and 20

mol% of the longer polymer lipid DSPE-PEG:5000 can be

well described with scaling theory. This success is attributed

to the relatively high volume fraction of polymer chains in

these samples, hence achieving true semi-dilute—rather

than dilute—behaviour (see Section 2.4).

6.6. Experimental applications: adhesion measurements

Micromechanical tests of adhesion between giant phos-

pholipid vesicles containing phospholipids grafted with

PEG chains have been performed by Evans et al. [6]. These

measurements constitute a direct determination of the steric

influence of grafted hydrophilic polymers on the surface

interactions of liposomes. Three graft chain lengths

(npc 45, 114 and 273) and several surface densities of

grafting were employed. These extend from dilute, non-

interacting mushrooms to marginal brushes with mean

volume fractions up to 0.06. Adhesion was induced by the

depletion forces resulting from addition of non-absorbing

free polymer. The latter increases the adhesion energy over

that of pure van der Waals’ attraction by one to two orders

of magnitude, when mole fractions of the free polymer reach

0.1–0.2 [43].

At vesicle contact, where the free polymer is excluded,

the scale of the adhesion energy is given by the product of

the osmotic pressure, Pf, and the correlation length, nf, of
the free polymer in solution, i.e. by Pfnf. In the Flory mean-

field theory, the osmotic pressure at a volume fraction, /f, of

free polymer is given by [6]:

Pf ¼
kBT

a3m
ve

/2
f

2
ð72Þ



Fig. 14. Adhesion threshold, /f*, for the volume fraction of free PEG-

polymer in the bathing solutions of giant unilamellar 1-stearoyl-2-oleoyl-

phosphatidylcholine vesicles, as a function of the mole fraction, Xp, of

PEG-lipid of size np = 114 or 273 in both vesicles (symmetric), or in only

one vesicle (asymmetric), of the adhering partners [6].
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where ve = 1–2v is the Flory–Huggins excluded volume

parameter. Correspondingly, the correlation length of the

free polymer is given by [44]:

nf ¼
am

ð6ve/f Þ
1=2

ð73Þ

Hence, the required product depends on volume fraction

of free polymer according to Pfnff/f
3/2. A similar result is

obtained from scaling theory, for which Pff/f
9/4 and

nff 1//f
3/4 [2].

Fig. 14 gives the dependence of the volume fraction of

free polymer, /f*, at the onset of vesicle adhesion on mole
Fig. 15. Left: proteins of small size, Rprot, relative to the polymer grafting densi

adsorption at the lipid surface. Adsorption is diminished, however, by the lateral pr

polymer grafting density, i.e. pRprot
2

HAl/Xp, are unable to penetrate the polymer b

compressing the brush.
fraction of PEG-lipid in the vesicles. For long polymers, this

depends neither on the length of the free polymer nor on that

of the grafted polymer [6]. The linear relation found in Fig.

14 suggests that the steric barrier that must be overcome for

adhesion has an energy scale that varies with mole fraction

of polymer lipid according to Xp
3/2, and has a size of the

order f kBT(am
2/Al) Xp

3/2. The polymer layers on the two

interacting vesicles contribute additively to the steric barrier,

because the ratio of slopes in Fig. 14 for symmetric and

asymmetric distributions of grafting is f 22/3. These results

establish a parsimonious criterion for stabilisation of vesicle

surfaces grafted with homopolymers [6].
7. Protein adsorption

Protein adsorption assumes a central role in the imple-

mentation of steric stabilised liposomes as drug delivery

systems. The purpose of the polymer coat is to suppress

opsonisation by serum proteins. This prevents recognition

by macrophages and clearance from the blood circulation by

the reticuloendothelial system.

At low protein concentration, cprot, the adsorption on

polymer-grafted lipid membranes is described by the Lang-

muir adsorption isotherm (see, e.g. Ref. [45]):

h ¼ Kadscprot ð74Þ

where h is the degree of surface coverage and Kads is the

equilibrium constant. Two situations are distinguished,

depending on the size, Rprot, of the protein, relative to the

polymer grafting density, Xp/Al [46]. For small proteins,

pRprot
2 <Al/Xp, the protein penetrates the polymer layer and

adsorbs to the underlying surface (primary adsorption—see
ty, i.e. pRprot
2 <Al/Xp, can penetrate the polymer layer and achieve primary

essure in the polymer layer. Right: proteins of large size, Rprot, relative to the

rush and can achieve only secondary adsorption, possibly at the expense of
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Fig. 16. Dependence of protein primary adsorption, Kin
ads, on polymer lipid

content, Xp, of lipid membranes. Calculations are for am= 0.39 nm. Upper

panel: in the polymer mushroom regime according to Eqs. (75) and (77).

Curves are given for different values of polymer length and protein size

according to np
6/5/Aprot nm

� 2, as indicated. These cover the range Aprot = 6–

64 nm2 and np = 8–114. Lower panel: in the polymer brush regime

according to Eq. (80). The x-axis is normalised with respect to protein

volume, Vprot, in nm3. Scaling and mean-field theory results are given by

solid and dashed lines, respectively. Dotted line is a numerical SCMF

calculation for a small protein, Rprot = 4.86 am [48].
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Fig. 15, left). The association constant for primary adsorp-

tion, Kin, is then given by (see, e.g. Ref. [18]):

Kads
in ¼ Kads

in;oexpð�PpAprot=kBTÞ ð75Þ

where Pp is the lateral pressure exerted by the polymer

layer, Aprot (cRprot
2 ) is the cross-sectional area of the

protein, and Kin,o
ads is the association constant for the bare

lipid surface.

For large proteins, pRprot
2

HAl/Xp, the protein can adsorb

only at the outer surface of the polymer layer (secondary

adsorption—see Fig. 15, right). If secondary adsorption is

possible, this may be attenuated by compression of the

polymer brush. The association constant for secondary

adsorption, Kout
ads, is then given by:

Kads
out ¼ Kads

out;oexpf�½FpðLoutÞ � FpðLoÞ�ðXp=AlÞAprot=kBTg
ð76Þ

where [Fp(Lout)�Fp(Lo)](Xp/Al) is the interaction energy

per unit area of the polymer brush, Lout and Lo are the

lengths of the compressed and uncompressed brushes, and

Kout,o
ads is the association constant for secondary adsorption

in the absence of polymer lipid. This expression does not

allow for any shift in position of the site of secondary

adsorption.

7.1. Primary adsorption: small proteins

The lateral pressure, Pp, exerted in the polymer layer

depends on the regime of polymer grafting density. In the

low-density mushroom regime, a possible description is the

Volmer equation of state [11,47]:

Pmush
p ¼ kBTXp

Al � pR2
F3Xp

ð77Þ

where the excluded area per polymer lipid, pRF3
2 , is specified

by the Flory radius, RF3, given in Eq. (2). This expression is

appropriate at low mushroom densities well below the

overlap region. Fig. 16 (upper panel) gives predictions based

on Eqs. (75) and (77) for the reduction in protein association

constant with increasing mole fraction, Xp, of polymer lipid.

Dependences on Xp are shown for different polymer and

protein sizes that are specified by the composite value np
6/5/

Aprot in nm� 2. These cover the range of np = 8–114,

corresponding to PEG:350 to PEG:5000, and of Aprot = 6–

64 nm2 where the higher value corresponds to the cross-

sectional area of human serum albumin. The x-axis in the

upper panel of Fig. 16 extends up to the mushroom–brush

transition of the short PEG:350 polymer (cf. Eq. (4)). The

decrease in association constant in Fig. 16 is initially rather

modest (f 10%). A dramatic decrease is obtained only

when the polymer mushrooms approach one another closely

and begin to overlap (indicated approximately by the dashed

lines in Fig. 16, upper panel). Eq. (77) assumes that proteins

do not penetrate the polymer mushrooms appreciably. It
therefore predicts that protein adsorption is abolished at the

mushroom–brush transition because then Pp
mush!l. This

is an overprediction for small proteins that are still able to

penetrate the polymer brush.

In the brush regime, the lateral pressure (Pp
mush =

�XpBFp
brush/BAl) exerted by the polymer is given, from

Eqs. (7) and (12) by:

Pbrush
p ¼ mFkBTnpa

2mF

m ðXp=AlÞmFþ1 ð78Þ

where mF = 5/6 for scaling theory and mF = 2/3 in mean-field

theory. This pressure is distributed throughout the length, L,

of the polymer brush, where L is given by Eq. (6) or Eq. (10).

Assuming a uniform stress profile, the lateral pressure

experienced by the inserted protein is (Pp/L)	 2Rprot, where

2Rprot is the height of the protein. Eq. (75) therefore

becomes:

Kads ¼ Kads exp½�ðPbrush=LbrushÞVprot=kBT � ð79Þ
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where the volume of the protein of molecular weight,M, and

partial specific volume, v̄, is Vprot =Mv̄/NA, withNA being the

Avogadro’s number. Substitution from Eqs. (78) and (6) or

(10) yields:

Kads
in ¼ Kads

in;oexpt� mFa
ð2mF�5=3Þ
m VprotðXp=AlÞmFþ2=3 b ð80Þ

For scaling theory, the exponent of the grafting density,

Xp/Al, is 3/2, and the exponent of am is zero. This scaling

result was obtained by Halperin [46] from the local osmotic

pressure by using the ‘‘blob’’ picture of the polymer brush.

For mean-field theory, the exponent of (Xp/Al) is 4/3, and

that of am is � 1/3. Eq. (80) predicts that adsorption of

small proteins is independent of polymer size. This holds for

reasonably long polymers, i.e. when the lateral stress profile

at the position of the protein is no longer sensitive to

polymer length.

Fig. 16 (lower panel) gives predictions of the protein-

association constant from Eq. (80) for both scaling theory

and mean-field theory, in the brush regime. The x-axis in

the lower panel of Fig. 16 is scaled by the protein size,

Vprot, in units of nm3. Primary protein adsorption declines

steeply with increasing content of polymer lipid, after a

short initial lag. Adsorption is largely suppressed at

grafting densities characterised by an area per polymer,

Al/XpVRprot
2 , that is of the order of the size of the

protein.

A SCMF theory by Szleifer [48] calculates the profile

of lateral pressure throughout the polymer brush. This

model predicts that the adsorption of a lysozyme model

protein (Rprot = 4.86am) depends on polymer size only for

npV 50. For longer PEG polymers, adsorption is sup-

pressed at a mole fraction of grafting Xpc 0.15. These

numerical results are depicted by the dotted line in the

lower panel of Fig. 16 for np = 150. The dependence on

polymer grafting density differs considerably from the

predictions of scaling theory or simple mean-field theory

for polymer brushes. This is particularly so at low polymer

densities for which a brush description becomes less

appropriate. Qualitatively, the SCMF data is then more

like that predicted for the mushroom regime, in the upper

part of Fig. 16.

The kinetics of primary protein adsorption have been

treated by Halperin [46]. Kramer’s rate theory was used,

together with a potential barrier similar to that used in Eq.

(50). Additionally, the effective viscosity experienced by the

protein in the polymer brush was derived as gc gsRprot
3 (Xp/

Al)
3/2. The largest effect comes, however, from the activa-

tion barrier. The reader is referred to the original paper for

further details.

7.2. Secondary adsorption: large proteins

Large proteins that are not able to penetrate the polymer

brush can only adsorb at the secondary minimum in the
potential energy profile [46]. In general, the protein will

have to compress the brush to reach the secondary mini-

mum (see Fig. 15, right). This costs energy and the net

effect is to resist protein adsorption. Jeon and Andrade [49]

analysed this situation for a flat protein of area Aprot, by

using Eq. (65) from scaling theory. From Eqs. (65) and

(76), the effect of brush compression on the adsorption

coefficient is given by:

Kads
out ¼ Kads

out;oexp �npa
5=3
m Aprot

7

5

LSCo
Lout

� �5=4

þ Lout

LSCo

� �7=4
"(

� 12

5

#
Xp

Al

� �11=6
)

ð81Þ

where Lout is the height of the brush at the position of the

secondary minimum, and Lo
SC is given by Eq. (66). Com-

parable expressions can be derived from MF theory and for

the SCMF theory of Milner et al. [12]. From Eq. (59) for

MF theory:

Kads
out ¼ Kads

out;oexp �npa
4=3
m Aprot

LMF
o

Lout
þ 1

2

Lout

LMF
o
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� 3
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Al
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where Lo
MF is given by Eq. (60). From Eq. (62) for SCMF

theory:

Kads
out ¼ Kads

out;oexp � p2

96

� �1=3

npa
4=3
m Aprot

(

	 LMWC

Lout
þ Lout

LMWC
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5
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Al
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where LMWC is given by Eq. (63).

Halperin [46] has treated the situation for secondary

adsorption of a spherical protein, by using Eq. (65) from

scaling theory, together with the Derjaguin approximation.

From simple geometry, the length of the brush at radial

distance, r, away from the point of closest contact is

given by:

L ¼ Lout þ r2=2Rprot ð84Þ

where Lout is the height of the brush at the point of

maximum compression and Rprot is the radius of the

protein (see Fig. 15, right). The Derjaguin approximation

for the repulsive potential exerted by the brush on the

protein is (cf. Ref. [46]):

USC
brush ¼ 2p

Z ru

0

½FSC
p ðLÞ � FSC

p ðLSCo Þ�ðXp=AlÞr:dr ð85Þ



Fig. 18. Binding of avidin to biotinylated giant unilamellar egg

phosphatidylcholine vesicles containing DSPE-PEG:750 [50]. Lines

represent nonlinear least-squares fits of the dependence on polymer

grafting density f exp[�AXp/(1�BXp)] (see Eqs. (75) and (77)). Solid

line: for ideal-gas lateral pressure (B = 0) giving A= 43F 6 using all data

points. Dashed line: for Volmer equation of state, giving A= 41, B = 18,

using just the first four data points.
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where the integration limits r = 0 and r= ru correspond to

L= Lout and L= Lo
SC, respectively. Changing variables by

means of Eq. (84) leads to:

USC
brush

KBT
cn2pa

10=3
m Rprot

7

5

LSCo
Lout

� �1=4

� 1

11

Lout

LSCo

� �11=4
"

þ 3

5

Lout

LSCo

� �
� 21

11

#
Xp

Al

� �13=6

ð86Þ

where Lo
SC is given by Eq. (66). Finally, the modification

of the adsorption coefficient from compression of the

brush is given by Kout
ads =Kout,o

ads exp(�Ubrush/kBT).

The effect of brush compression on the kinetics of

protein adsorption has also been considered by Halperin

[46]. A semiqualitative approach is used, based on an

interaction potential similar to Eq. (86). The reader is

referred to the original paper for details.

7.3. Experimental applications

Efremova et al. [38] have studied the adsorption of

proteins to supported monolayers of DSPE containing the

neutral polymer-grafted lipid SAPDS-PEG:2000. The de-

pendence of the adsorption of bovine pancreatic trypsin

inhibitor (BPTI) and human serum albumin (HSA) on

polymer grafting density was determined by surface plasma

resonance. Results are shown in Fig. 17 in terms of the

estimated percentage surface coverage by the adsorbed

protein. Adsorption of the larger protein HSA (MW=66.2

kDa) is suppressed at lower surface grafting densities than is

that of the smaller protein BPTI (MW=6.5 kDa).
Fig. 17. Adsorption of BPTI and HSA to supported monolayers of DSPE

containing PEG:2000-lipid [38]. The solid and dashed lines represent

nonlinear least-squares fits of the dependence on polymer grafting density

f exp(�BmXp
m), where m= 3/2 and 4/3 for scaling theory and mean-field

theory, respectively (cf. Eq. (80)). For BPTI: B3/2 = 75F 30 and B4/3=

45F 15, and for HSA: B3/2 = 220F 40 and B4/3 = 120F 30.
The solid and dashed lines in Fig. 17 represent least-

squares fits of Eq. (80) for scaling theory and mean-field

theory, respectively, to the adsorption data. The factor within

the exponential that scales the dependence on Xp is used as a

fitting parameter, Bm. From Eq. (80) Bm=(5/6)Mv̄/NAAl
3/2 for

scaling theory and Bm=(2/3)Mv̄/NAAl
4/3 for mean-field theo-

ry. A value of Al = 0.43 nm2 was measured for the deposited

monolayers. For HSA, this gives predictions of Bm= 245 and

170 from scaling and mean-field theories, respectively.

These are rather close to the values obtained from the

least-squares fits shown in Fig. 17. For BPTI, the predictions

are lower than the fitted values: Bm = 23 and 22 for scaling

and mean-field theories, respectively. It should be remem-

bered, however, that the lower grafting densities shown in

Fig. 17 are close to the mushroom regime for a PEG:2000

polymer, whereas Eq. (80) applies to the brush regime.

Studies with spin-labelled lipids (cf. Fig. 6) demonstrate

that primary adsorption of HSA to dipalmitoyl phosphatidyl-

choline membranes is suppressed entirely at the mushroom-

to-brush transition, for PEG-lipids with a variety of polymer

sizes [11]. For smaller proteins such as BPTI, Fig. 17 shows

that protein penetration of the polymer brush is still possible.

For PEG:2000-lipids, the mushroom! brush transition is

expected to occur at Xpf 0.01 with gel-phase bilayers (see

Eq. (4)). The adsorption of BPTI is not eliminated but is

considerably reduced in the brush regime (see Fig. 17).

Noppl-Simson and Needham [50] have measured the

binding of avidin to giant phospholipid vesicles that contain

biotinylated lipid. Fig. 18 shows the reduction in bound

avidin as the polymer-lipid content of the vesicle is in-

creased. Binding is suppressed completely at 10 mol% of

PEG-lipid. The decrease in binding depends approximately

exponentially on polymer-lipid content (solid line in Fig. 18),
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as would be expected for lateral pressure of an ideal gas (cf.

Eqs. (75) and (77)). The cross-sectional dimensions of

deglycosylated avidin deduced from the crystal structure

[51] are Aprot = 5.0	 5.6 nm2, which yields Aprot/Al = 43 for

Al = 0.65 nm2. This value is close to that obtained from the

simple exponential fit in Fig. 18. The effect of using the

Volmer equation of state (i.e. Eq. (77)) for the lateral

pressure exerted by the polymer mushrooms is shown by

the dotted line in Fig. 18. Because Eq. (77) is a hard-disc

model, it is predicted that binding is abolished completely at

the mushroom–brush transition, i.e. for Xpf 0.04–0.05.

For a PEG:750-lipid, Eq. (2) predicts that pRF3
2 /Alc 22,

which is reasonably close to the value assumed for this

model in Fig. 18 (dashed line).
8. Conclusions

The theories of polymer physics go a long way towards

establishing design criteria for the polymer-grafted lip-

osomes that are used as carriers in drug delivery. Rela-

tively straightforward approaches allow estimation of the

concentrations of polymer lipid that are required to

achieve the brush regime that resists adsorption of large

proteins. Further considerations outline the contribution to

the mechanical properties, the ability to suppress penetra-

tion of the polymer brush by small proteins, and the

influence on those bilayer properties that affect drug

release, particularly of thermosensitive liposomes. An

important area is the analysis of the steric repulsive

pressure of the polymer, which combats adhesion, partic-

ularly to cellular surfaces. Finally, characterisation of the

polymer-lipid content at the onset of micelle formation

defines the window for which grafted liposomes may be

obtained with a stable polymer brush. The possibility that

incipient micellisation may improve release properties has

still to be investigated.

Definition of symbols used

c hydrophobic free energy density (i.e. energy per

unit area) at the membrane surface

g effective viscosity in the polymer brush

gs viscosity of the solvent (water)

# degree of surface coverage by adsorbed protein

m exponent in power-law dependence of the Flory

radius on polymer size: RFd̂c amnp
r; m = 3/(d̂ + 2),

where d̂ is the dimensionality

ve Flory–Huggins excluded volume parameter: ve =

1–2v
nf correlation length of a free polymer in solution

Pf osmotic pressure of a free polymer in solution

Pp lateral pressure in the grafted polymer layer

PpV(z) transverse distribution of lateral pressure in the

polymer brush: PpV(z) =BPp/Bz where Pp is the

lateral pressure at height z in the polymer brush

(units of PpV are force per unit area)
Pp
brush lateral pressure of the polymer brush

Pp
mush lateral pressure exerted between polymer

mushrooms

Plipid lateral pressure in the lipid layer

Plipid
o lateral pressure in a bare lipid layer without

polymer

/f volume fraction of a free polymer in solution

U(z) density of polymer chain segments at height z in

the brush

v Flory–Huggins interaction parameter

X fractional number of configurations of a confined

polymer, relative to a free polymer

am effective size, i.e. length, of a monomer unit in a

polymer chain

Al cross-sectional area of a lipid molecule, in the

plane of the membrane

Al,o equilibrium area per lipid molecule, in a bare

membrane without polymer lipids

DAl expansion in membrane area per lipid molecule by

the polymer brush: DAl =Al�Al,o

DAt change in membrane area, per lipid molecule, at

the chain-melting transition

Aprot cross-sectional area of a protein

c membrane curvature: c = 1/Rcurv, where Rcurv is the

radius of curvature of the membrane

co spontaneous mean curvature of the membrane

surface: co = 1/Ro
curv

co
p contribution of the grafted polymer layer to the

spontaneous curvature of a single lipid layer

c1, c2 principal curvatures of the membrane surface:

c1 = 1/R1
curv, c2 = 1/R2

curv

Co strength of repulsive free energy between lipid

molecules: fCo/Al

d separation of the surfaces of two adjacent mem-

branes (without the polymer layer)

dt membrane thickness

d̂ dimensionality of space in which the polymer is

confined

D distance between polymer grafting points: D2 =

Al/Xp

fo (micelle) fraction of non-polymer lipid, o, that is in a

micellar phase

fp (micelle) fraction of polymer lipid, p, that is in a micellar

phase

ftot (micelle) fraction of total lipid that is in a micellar phase

Fel elastic free energy for bending of the membrane

Fp free energy of a grafted polymer chain (i.e. free

energy per polymer)

Fp
brush free energy, per polymer, of the polymer brush

Fp
MF free energy of a grafted polymer chain according to

mean-field theory (i.e. free energy per polymer)

Fp
MWC free energy of a grafted polymer chain according to

the SCMF theory of Milner, Witten and Cates (i.e.

free energy per polymer)

Fp
SC free energy of a grafted polymer chain according to

scaling theory (i.e. free energy per polymer)
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Fint
tot total interfacial free energy, per lipid molecule

FR free energy of interaction of a polymer with the

confining surface

F force between crossed cylindrical surfaces in the

surface-force apparatus

F DE force between surfaces in the surface-force appa-

ratus, predicted by Dolan–Edwards theory for the

grafted polymer layer

F MWC force between surfaces in the surface-force appa-

ratus, predicted by the SCMF theory of Milner,

Witten and Cates for the grafted polymer layer

F SC force between surfaces in the surface-force appa-

ratus, predicted by scaling theory for the grafted

polymer layer

kB Boltzmann’s constant

kc mean curvature bending modulus of a single lipid

layer: kc =BM/B(c1 + c2) where M is the bending

moment acting on a membrane edge, and c1,c2
( = 1/R1

curv, 1/R2
curv) are the principal curvatures of

the membrane (the value for a bilayer membrane is

2	 kc)

kc
lipid contribution from the lipid molecules to the mean

curvature modulus

kc
o mean curvature modulus of a single bare lipid

bilayer without polymer

kc
p contribution of the grafted polymer layer to the

mean curvature modulus

k̄c Gaussian curvature modulus of a single lipid layer

(the value for a bilayer membrane is 2	 k̄c)

k̄c
p contribution of the grafted polymer layer to the

Gaussian curvature modulus

KA elastic area-expansion modulus of a single lipid

layer: KA=Al(BH lat/BAl)T where slat ( =�Plat) is

the lateral tension in the layer (the value for a

bilayer membrane is 2	KA)

KA
o elastic area-expansion modulus of a single, bare

lipid layer, without polymer lipid

Kads equilibrium constant for protein adsorption (Lang-

muir isotherm)

Kin
ads association constant for primary adsorption

Kin,o
ads association constant for primary adsorption to a

bare lipid surface

Kout
ads association constant for secondary adsorption

Kout,o
ads association constant for secondary adsorption to a

bare lipid surface

LMF length of the polymer brush according to mean-

field theory: LMFc npam
5/3(Xp/Al)

1/3 (c LSC)

Lo
MF equilibrium length of a noncompressed poly-

mer brush according to mean-field theory: Lo
MF=

(k/2)1/3LMF, where k is an explicit weighting

factor introduced into Eq. (5): Fp
MF/kBTc k(vmnp

2

/R) (Xp/Al) +R
2/(npam

2)

LMWC maximum length of the polymer brush according

to the SCMF theory of Milner, Witten and Cates

Lout thickness of polymer brush when compressed by

secondary protein adsorption
LSC length of the polymer brush according to scaling

theory: LSCc npam
5/3(Xp/Al)

1/3 (c LMF)

Lo
SC equilibrium length of a noncompressed polymer

brush according to scaling theory: Lo
SC=(5k/7)1/3

LSC, where k represents the relative strength of the

occluded volume and stretching terms in Eq. (65),

which can be expressed alternatively as: Fp
SC/

kBTc LSC(Xp/Al)
1/2tk(LSC/L)5/4+(L/LSC)7/4b

L, Lbrush thickness of the polymer brush, i.e. height above

the membrane surface

mF exponent in dependence of polymer free energy on

grafting density: Fp/kBTc npam
2 /(Xp/Al)mF; mF = 5/

6 for scaling theory and mF = 2/3 for mean-field

theory

mFV exponent in the scaling theory for the free energy

of a compressed polymer mushroom

mL exponent in scaling theory for polymer length

mRV exponent in the scaling theory for the radus of a

compressed polymer mushroom

np number of monomers per polymer (p), i.e. polymer

length/degree of polymerisation

NA Avogadro’s number

P applied osmotic pressure

PR repulsive pressure between membranes

PMF pressure required to compress a polymer mush-

room (from mean-field theory)

PR
MF repulsive pressure between membranes according

to mean-field theory for the grafted polymer layer

PR
MWC repulsive pressure between membranes according

to the SCMF theory of Milner, Witten and Cates

for the grafted polymer layer

PR
osm osmotic contribution to the repulsive pressure

between membranes, for overlapping grafted

polymer chains

PR
SC repulsive pressure between membranes according

to scaling theory for the grafted polymer layer

R end-to-end distance of a polymer chain

Rcurv local radius of curvature of the membrane

Ro
curv spontaneous radius of curvature of the membrane

surface

R1
curv, R2

curv principal radii of curvature of the membrane

surface

RF Flory radius of a random-coil polymer chain

RF2 Flory radius of a random coil polymer that is

confined to two dimensions: RF2c amnp
3/4

RF3 Flory radius of a random-coil polymer in three

dimensions: RF3c amnp
3/5

RF3
o Flory radius of a noncompressed polymer mush-

room: RF3
o =(3k/2)1/5RF3, where k is an explicit

weighting factor introduced into Eq. (1): Fp/

kBT= k(vmnp
2/R3) +R2/(npam

2)

RFd̂ Flory radius of a random-coil polymer in d̂

dimensions

Rprot protein radius

DSt transition entropy for chain melting of a lipid

membrane
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T absolute temperature

Tt chain-melting transition temperature of a lipid

membrane

DTt shift in chain-melting transition temperature of a

lipid membrane

vm excluded volume per monomer of the polymer

chain

Vprot volume of a protein molecule

m̄ partial specific volume

Xp mole fraction of polymer lipid, p

Xp
end mole fraction of polymer lipid at the completion of

micelle formation

Xp
on mole fraction of polymer lipid at the onset of

micelle formation

Xp
m! b mole fraction of polymer lipid at which the

polymer layer converts from the mushroom regime

to the brush regime

z vertical height in the membrane (in the direction of

the normal to the membrane surface)
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