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Quantum-classical approximation beyond Redfield theory
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A guantum-classical approximation, capable of describing the evolution of open quantum systems
well beyond the applicability limits of Redfield theory is suggested. The theory is based on the short
lifetime of the quantum correlations between the quantum and the classical subsystem, caused by
energy dispersioiiper degree of freedonof the canonical bath. The resulting quantum-classical
approximation has the form of two auxiliary differential equations and fully accounts both for the
arbitrary long memory of the heat reservoir and detailed balance. These equations allow direct
solution in the time domain without constructing/diagonalizing Liouville space operators, and, in
combination with molecular dynamics techniques to simulate bath dynamics, may be applied to
quantum subsystems with a fairly large number of levels. A simple example of a two-level system,
coupled to a single correlation time canonical bath, was considered to demonstrate different regimes
of approaching the canonical equilibrium state. 2003 American Institute of Physics.
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I. INTRODUCTION oretical approach. First, a finite temperature of the bath has
to be taken into account, since the splittings between vibra-
A consistent treatment of condensed phase reactions ha®nal energy levels are often comparable to the mean energy
a great importance for chemistry, physics, and biology. Duef heat reservoir and, thus, an equilibriufrelaxed state
to the complexity of such systems, where interactions beexhibits considerable population differences. Besides, the
tween reactants and the surrounding molecules cannot be nigrck of the detailed balance principle in the description of
glected, the kinetics and dynamics of elementary reactions ifER leads to continuous heating of the vibrational degrees
liquids/dense gases still is not completely understood. Unlikef freedom, as the energy spectrum is unrestricted from
reactions in rarefied gases, liquid state processes are affectggove. Second, VER is very sensitive to the character of
by complicated many-body interactions, resulting in cage efmotion of the surrounding molecules, and the approach
fect, solvent-induced vibrational energy relaxation, etc. ~ should allow for realistic modeling of the bath dynamics.
The fully quantum-mechanical treatment of many-bodyysually VER processes occur in the picosecond time range,
systems is inaccessible, as the computational cost grows e3nd classical molecular dynami¢®D) seems to be most
ponentially with the number of degrees of freedom. How-gyitable for theab initio simulation of the bath at moderate to
ever, in many cases the reacting systems in condensed phagfig time scales and at sufficiently high temperatures to
may be represented by a relatively small subset of quanturgyoid quantum effects in the dynamics of the heat reservoir.
modes(usually the internal states of the reactants, the reac- Up to now only Redfield theory, modified to account for
tion coordinatesand a thermal reservoibath. The theory  the finite temperature of the bath, seems to meet the de-
of open quantum systems, coupled to a dissipative environmands. An appealing feature of the Redfield approach is that
ment, is being developed by many research groups. it allows a straightforward modification to incorporate a clas-
There exist a variety of approaches to open quaniUnjca| description of the bath dynamics, see Ref. 5, for in-
systems, ranging from rigorous methods with known appli-stance. Nevertheless, the Redfield approach is based on the
cability limits (Redfield theory and its extension&;® non-  \arkov approximation with respect to memory effects and,
Markovian  theorie§;*? Golden-Rule  perturbation {herefore, has rather narrow applicability limits, concerning
approactt? forward—backward initial value representation pot the allowed strength of the system—bath interactions
meth_od“l)s to some semiempirical schernes;?urface and the time resolution. Recently there appeared several non-
hopping;” time-dependent self-consistent fieht, Car—  \1arkovian theories, suitable to describe a short-time evolu-
Parrinello density f_“”Ct'O”alﬁ Gaussian wave packetap-  ion of the quantum subsystem, which, however, either omit
proaches The choice between them depends on the phege getailed balance principle or represent the bath as a set of
nomenon under consideration and the characteristigncoypled harmonic oscillators. The latter assumption is rea-
parameter values. _ o sonable when studying ultrafast processes in liquids, as on
In the present article we mainly focus on vibrational en-yery short time scales the motion of molecules in solutions
ergy relaxation(VER) of molecules in solutions and dense nainy consists of their vibrations. However, both the anhar-
gases. This problem puts quite specific demands on the thgsgnicity of bath modes and the coupling between them seem
to be important characteristics of the bath dynamics at longer
¥Electronic mail: aneufel@gwdg.de times. Thus, there is no reliable method to simulate VER
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processes beyond the limitations of Redfield theory, and the
present article attempts to fill up this gap.

The outline of the article is as follows: The small param-
eter of the theory, its physical sense, and the applicability
limits are discussed in Sec. Il. The closed integrodifferential
master equation for the evolution of the reduced density ma-
trix of the quantum-dynamical subsysté@DY) is obtained
in Sec. Ill. Although the general procedure of the derivation
is well known, see for example Ref. 4, we repeat it here for
self-consistency and to ensure that the approximations made 0 ET £
are compatible with the desired applicability range. The S _ _ _
memory kernel is explicitely evaluated in Sec. IV, assuming::](.s?éé.blinergy distribution per degree of freedom in the Gibbs canonical
the bilinear form of the QDS—bath coupling Hamiltonian. '

This assumption, however, was made only to present the

results in a more compact form, while the quantum-classmagumed to be small compared to the splitting between corre-

formulation, see S_ec. V. remains in force for a general formsponding levels, while in the latter case one requires
of the QDS—bath interaction as well.

The application of non-Markovian theories to simulate  |W{’|7, /<1, a#p, i#Kk, 2

the kinetics of VER is rather difficult. Usually the linear wherer, is a characteristic lifetime of the QDS—bath corre-

integrodifferential equations are solved via the Fourier/lations. None the less, both approaches actually utilize the
Laplace transform technique. Unfortunately, it requires th%eak correlation of the QDS and the bath

- It is often believed, see Refs. 20, 21, for instance, that

inversion of the Liouville space operator and, therefore, is
computationally expensive even for QDSs with moderate[he lifetime of the QDS—bath correlationg is of order of
number of the states. However, if the bath is treated classithe correlation time of the heat reserveys, i.e., defined by

cally, the derlved_rjon-l\/!arkovw_;m maste_r equa_\tlon can be "Cthe bath dynamics. Usually the correlation time for the rota-
duced to two auxiliary differential equations without narrow-

) S tional motion of molecules and their fragments in solutions
ing the _appllcablll_ty limits, see Sgc. V : lies in the picosecond time range, while for the translational

Basic prope_r_ngs of th_e_ (_:Iensny _matr(xons_ervatmn OT motion (cage effect 7. may fall into nanoseconds. However,
the tracg, hermiticity, positivityare discussed n Sec. Vlin such correlations have purely “classical” character, they are
connection to the suggested non-Markovian quantum

lassical . . CA). A simol del of th readily determined via the two-dimensional conditional
classica approxmatlofNQ_ )- Simpl€ model o the two probability densityP(q,t|qq,t,) of generalized set of coor-
level system(as the QDS interacting with a single correla-

tion fi ical bath dtod trate basic f dinatesq at timet, beingqg at the initial instant of time.
lon ime canonical bath, was used to demonstrate basiC 1eg oya \yords, the “classical” correlations correspond to the
tures of the relaxation kinetics towards to the equilibrium

L e . _correlations between bath states, i.e., to the elerr@fﬁs'n
state, Sec. VII. A more realistic description of the bath via, fully quantum-mechanical picture. On the other hand, the

molecular dynamics technique and in the frameworks of th?actorization of the total density matrix into the direct prod-

de\{eloped NQCA W".l be ap_plied in _sub_sequent article. T_heuct of the density matrices of the QDS and the bath requires
main results and their possible applications are summariz

. . et%eir weak cross-correlatior4). In the following, we shall
in Conclusion. call them “quantum” correlations as they do not have clas-
sical counterparts.
Il. GENERAL REMARKS The decay of the quantum correlations depends strongly
on the statistical properties of the bath. In particular, if the
Strictly speaking, any physically justified separation ofpath is well described by the Gibbs canonit@dnstant tem-
the QDS and the bath requires their weak correlation. Mathperatur¢ ensemble, there exists an efficient mechanism lead-
ematically this is equivalent to the smallness of the correing to the decay of the QDS—bath cross-correlations. Indeed,
sponding off-diagonal elements in the total (QPBath)  the distribution of energie&) per bath degree of freedom in
density matrixg. These elements in the basis of the directthe canonical ensemble is proportional &@xp(—&/kgT),
product of the QDS and the bath states are of the form,  wherekg andT are the Boltzmann constant and the absolute
oP=(al(ilo|K)|B), a#B, i#Kk, (1) te_mperature, corr_espondingly, an_d i_s pIc_;tteq schematically in
Fig. 1. The maximum of the distribution is located &t
where Latin and Greek letters label the QDS and the bath-,T, and the mean square deviation of the energygiE
states, respectively. Indeed, the elemepf$ describe the a5 well.
correlations inside the QDS, whilg;i” correspond to the Since the energies of the bath degrees of freedom have
correlations between bath states. The specific mechanisgnh uncertainty okgT, the quantum correlations decay with a
providing weak QDS—bath correlations depends on the syscharacteristic timer,~#/(kgT) due to the phase cancella-
tem under consideration. The most widely used assumptiongion at longer times. Thus, averaging over canonical en-
however, are the weak coupling limit and the fast decay okembleprior to the actual simulations provides fast decay of
correlations due to bath dynamics. In the former case, théhe quantum correlations, at room temperatdirkkgT)
matrix elements of the QDS—bath interactiovs are as- ~10 fs, which is much shorter than the typical classical cor-
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relation times. This is in contrast to the approaches, wheréhe statesat no extra cost. Nevertheless, all equations of
averaging over the bath is takexfter propagation in time practical interest are finally transformed back into the origi-
(wave function based methods, etcThe qualitative differ- nal Hilbert space representation.

ence between the methods can be demonstrated by some ana- In the Liouville representation Eq3) takes the form,

log from classical mechanics. Many processes, affected by —

the stochastic mo'tion of molecules in quuids/den;e gases de(t) =i(7:(+ﬁ-‘+)7\/)5(t)+5(t)go, (4)
may be modeled either via the Fokker—Planck equation or by dt

molecular dynamics methods. In the former case, averagin\%
over the stochastic process is done at the stage of the de{'
vation of the equation, while in the MD approach simula-
tions are performed along deterministic trajectories with th
subsequent averaging of the results. The Fokker—Plan
equation contains the correlation time parameter, which caf)
be used to develop certain approximatigkkarkov limit, for

here, F, andV are the Liouville operators, denoted by
ke corresponding calligraphic symbols. The relations be-
tween matrix elements of the operators in the Hilbert and the
iouville spaces are given in Appendix A. Here we also ex-
nded the definition of the density matrix for negative times
sing the stepwise Heavisidefunction, i.e.,

instancg. On the other hand, the correlation time parameter o (t)=6(t)o(t). (5)
does not exist for the single MD trajectory, as it characterizes - ] ) i
the statistical ensemble, but not the single trajectory. Thus, (1) is a generalized function of time and allows for a

The theory developed in the present article is based offv0-Sided Fourier transform. The theory of the generalized
assumptior(2), wherer, is the lifetime of the quantum cor- functions and their properties can be found in Ref. 23.
relations provided by the energy dispersion of the bath de- 1he Liouville—von Neumann equatial) or (4) is not
grees of freedom. Note, tha is not a relaxation time of the Well suited to develop approximations and, therefore, is
bath, but characterizes its statistical properties. The relaxfansformed into an equivalent integrodifferential one as fol-
ation requires energy flow between the bath degrees of fred?Ws. The Fourier transform of E¢4) gives
dom, and, therefore, depends on the coupling of the bath . .7 .5~ YA _
modes. On the other hand, energy dispersion of the degrees (lo=i7=17)e(w)=IVe(w)=eo. ®
of freedom is a characteristics of the bath in the equilibriumWhere
i.e., when all relaxation processes are finished, that is why _ w ‘
is an universal function of temperature. In the following we Q(w)=f e(te 't dt. )
assume that the bath is not affected by the QDS evolution, o
though therg are many situations when the f_eedback of thﬁqtroducing the free resolve@o(w),

QDS evolution on the dynamics of the classical degrees of R
freedom can not be neglected. Examples are charge transfer (iw—iH—iF)Gy(w)=1, (8

in polar media, conformational changes of molecules, etc.

The full feedback between the quantum and the classica\\'flh'Ch descnbgs evolgtmn of the .QDS apd the bath in the
. . absence of their coupling, we rewrite £§) in the following
degrees of freedom will be considered elsewhere.

form:

0(@)=Go(@) 2o+ Goi W (w). ©)
The proof of Eq.(9) is evident, it is sufficient to act on both

The density matrix formalism is the most consistent waysides of Eq.(9) by (io—iH~iF), and from Eq.(8) we
to describe a QDS interacting with a thermal bath. The startimmediately come to Ed(6).
ing point is the Liouville—von Neumann equation for the ~ Substituting Eq.(9) into the last term on the left-hand

IIl. GENERAL QUANTUM MASTER EQUATION

total density matrixo(t), side of Eq.(6), and taking the inverse Fourier transform, we
. get the exact integrodifferential equation, fully equivalent to
de(t) _ '_[|:|+|§+w o(1)], e(0)=g, 3) the original Liouville—von Neumann Ed4). It takes the
dt h ’ ' ' form,

whereH, F, andW are the Hamiltonians of the QDS, bath (1) . L
and QDS-bath coupling, respectively. In the following we ~ —— =(8(O)+IWGo(1))eo+i(H+F)e(t)
set =1, which corresponds to the common practice of

working in frequency units. Besides, we also set the Boltz- N p—
mann constankg=1 and measure the temperature in fre- - |_ K(ne(t=ndr, (10
guency units as well. Then, one has ¥Kg/h=1.31
x 10" rad/s. where
From now on, it is convenient to formulate the problem K(D)=WGo(r)W, Go(r)=0(1)eMe7™. (11

in Liouville space?? It greatly reduces intermediate deriva-

tions and allows to present results in a compact form. MoreBath variables are present in E40), but the kerneK(7) is

over (although this is not used in the present arjicilhe  known explicitly. This is in contrast to the Nakajima-—
Liouville formalism makes it possible to include non- Zwanzig generalized master equatf@nyhere the bath vari-
Hamiltonian dynamicglike spontaneous radiative decay of ables are excluded at the expense of a complicated structure
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of the memory kernel. The required perturbation expansionvhere the trace is taken only over the bath variables, elimi-
over weak QDS—bath cross-correlations to their lowest ordenates the source term on a time scale larger than the quantum

is easy to make using the factorized density matrix of thecorrelations lifetimer, . In the following we assume that the

form (we neglect the feedback of the QDS evolution on therenormalization is done, i.e., that

dynamics of the bath degrees of freedom

o(t=7)=0(t—7)Xpy (12
in the integrand on the right hand side of Ef0). Here,
—FIT

Zy

e

o= Zp=Try(e ™M) (13
is the equilibrium density matrix of the canonical bath(Tr

denotes the trace over the bath degrees of fre¢dbnen we

Tro(Wpp)=0. (20)

Then, the source teri@(t) is nonzero only in the presence of
the initial correlations between the QDS and the bath and
then rapidly decays at times exceeding. We would em-
phasize, however, that the renormalization concerns only the
diagonal over bath variables part of the QDS—bath coupling,
which does not induce transitions between bath states.

The derived non-Markovian master equatid#d) for the
reduced density matrix can be solved via Fourier transform

get the closed integrodifferential equation for the reducednethod, which yields algebraic equation of the form,

density matrix of the QDS, which is obtained from Ej0)
by taking the trace over the bath states to give

do(t) — A
—gr = dWoo+ L —i[A.a(1)]
—f M(r)o(t-r)dr, (14)

where

a(t)=Trye(t), 0o=Tr, o,

_ . (15

L) =Try(iWGoe(t) o),
and the reduced memory kernel

M(7)=Tro(K(7) po) = Tro(W Go( 1) W) (16)

Despite the fact, that the factorized density matiig)
was used to obtain the closed integrodifferential equatio
(14) for the QDS evolution, the quantum correlations be-
tween the QDS and the bath are taken into account perturb
tively. Indeed, the cross-correlations between the QDS an

the bath appear due to the interactions between them and ar

generally strictly proportional to the quadratic power of the
interaction. But the exact kernel in E(LO) is already pro-

n

w5 (w)+i[H,5(0) ]+ M(0)F(0)=0e+ (), (21)

and provided that the Fourier transform of the memory ker-
nel and of the source term,

M(w)= fl./f/l(t)e"“" at,

. (22
Ho)= | dve ™ dr
are known. Here
'E'(w)=fx (e et dt (23

is the Fourier transform of the reduced density matrix.
Nonetheless, the detailed information about energy lev-
els of the bath, necessary to determine the bath propagator

e'’7, is not available for realistic heat reservoirs, especially
in the thermodynamic limit. In reality, the information about
dynamics of the heat reservoir enters either via the spectral
lensity of the bath or via the autocorrelation function of the
DS—bath coupling. An explicit evaluation of the memory
rnel(16) in a form suitable to introduce quantum-classical

treatment of the bath is given in the next section.

portional to the second power of the coupling, and, therefore,
the effect of the cross-correlations on the dynamics of QDSV. EVALUATION OF MEMORY KERNEL

is retained in Eq(14) up to their lowest order.
The right-hand side of Eq14) contains both an instant
source term due to the initial conditions and the time-

extended sourcg(t). Potential renormalization is required

The explicit evaluation of the memory kernél6) is
done assuming a simpléactorized form of the QDS—bath
coupling Hamiltoniar\V, when it can be written as a product
of two operators which have matrix elements only in the

to provide fast decay of the additional source. Indeed, th?QDS or the bath subspaces, i.e.

free propagatog,(t) has the following property

Go(h)go = €M apXpy, (17
t>7’b
which leads to
Z(t) = Trb(iVAVpb)eii‘tO'O. (18)
t>7y
Thus, the renormalization of the form,
H—H+Tro(Wpp), W—W—Tr,(Wpy), (19)
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However, the above assumption is made only to provide a
transparent derivation of the kernel structure, while the main
results of the article, see Sec. V, remain valid for the general
form of W as well.

Taking into account a bilinear form of the QDS—bath
coupling Hamiltonian(24) and successively applying Egs.
(A9) and (A13), we derive from Eq(16) the following ex-
pression for the integral term on the right-hand side
of Eq. (14),

W=UB, W=, B
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jw M(T);(t—T)dT
=J o) ([V,e N (t— 1) (7)

—[V,e F7a(t— )V &M 7j (7)) dT, (25)

where j; o(7) have the sense of the “quantum” correlation

functions, and are defined as

1 . . ~
ji(m)= Z_bTrb(Bh(T)Bh(o)e_ FIT),

1 i i i (26)
J2(7)= 5= Trp(Bn(0)Bn(7)€" FT).
b
Here
éh(T):ei'ETé e*”gf (27)

is the bath operator in the Heisenberg representation.

A. A. Neufeld
~ 2777](087“‘"/“’0
Jl(w):—/_l_efwT ' (34)

where»is a phenomenological friction coefficient. However,
in case the bath is treated classically, e.g., by molecular dy-
namics methods, the information ab&q(w) is not imme-
diately available, since the quantum correlation functions
j1A7), defined by Eqs(26), do not have classical analogs.
Indeed, the quantum correlation functions are defined on the
entire time axigincluding negative timesand are the aver-
ages of the corresponding time-ordered products of the bath
operators. This is in contrast to the classical correlation func-
tions, which are defined from a given moment of time, pro-
viding the retarded or the advanced evolution. Besides, in the
classical limit bath operators commute with each other, and,
therefore, the time-ordered averag26) do not have classi-
cal counterparts.

Nevertheless, the memory kernel can be rewritten using
quantities which may be directly identified with the classical
correlation functions. For this purpose we introduce the sym-

The quantum correlation functions are not independentmetrized correlation functio() along the entire time axis,

but related to each other. First,

jo(m)=]a1(—7). (28)

Jn)=(un) +j(T)2, T—71)=T(7), (35
where the last property follows from E8), and the cor-

The second relation is established USing the two-sided FOLf'esponding retarded and advanced correlation functionS,
rier transform, i.e., when we consider the entire time axis,

including negative times. It givés

Ta(w)=e"Tjy(w), (29)
where
Tado)= [ iidmeer dr (30

Mathematical proofs of Eq$28) and(29) are given in Ap-
pendix B. The established relati@®9) allows to rewrite the

Fourier transform of Eq(25) solely viaj;(w). The resulting
expression takes the form,

/Th(w)a(w):;n ([V, PG () P™ [V, PG (w)VP™]

x et oM (w+ wgmtie), &—+0.

(31

Here we used the following identity for the operator expo-

nent:

etil:i TEE IsneiiEnT,
n

(32

whereP" are the projector operators on the eigenstates of the
QDS Hamiltonian, whileE,, are the corresponding eigenval-

ues, i.e.,

ﬁ)n:|n><n|, |:||n>:En|n>v om=E—En. (33

Tl =0 TA1),  Taah1)=6(—1)T(7), (36)

which possess all necessary properties to be identified with
the classical correlation functions. The Fourier transform of
Eq. (35) gives

Tw)=(1+e“ N (w)/2,
- . , (37)
Jw)= f_wj(T)e_le dr,

where we have also used E®Q9). Thus, the Fourier trans-

form of the quantum correlation functign(w) is expressed
via the Fourier transform of the symmetrized correlation

function 7(w) as

~ 2J(w)

J1(w)= T30 (39

Substituting Eq(38) into Eq.(31) we obtain

M(0)5(0)= > | [0.PY,5(w) 1P —tan!‘( w;" km)

X[V,ﬁk[v,ﬁ(w)]+ﬁm])7(w+wkm+is),

(39

where[ ..., ...]. denotes anticommutator.
The derived non-Markovian master equation for the re-
duced density matrix of the QDS, given by Edq21) and

In principle, Egs(21) and(31) are sufficient to describe (39), is based on the quantum-mechanical description both of
the kinetics of the QDS relaxation towards to its Boltzmannthe QDS and the bath. However, unlike E8{l), it allows for
equilibrium, if J;(w) is known. For the spin-boson model, classical treatment of the bath degrees of freedom. In that
and when the spectral density of the bath has smooth ohmitase the Fourier transform of the symmetrized correlation

form with frequency cutofiw,,?° it is of the form

function is replaced by its classical anafdg,e.,
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T(0)=Trel )+ Faa ) = TR w) + Tei R ).
(40

It is a matter of common knowledge, that all mixed 1/sinh( t/m )

guantum-classical treatments use some uncontrolled approxi-
mations and are not equivalent. Thus, the formulation of the
guantum-classical approximation presents a big challenge. 0
However, the identification of the symmetrized correlation
function with the sum of classical correlation functioi@®)
seems to be a quite natural way to introduce classical de-
scription of the bath degrees of freedom. Finally, EG4),

(39) can be used if the bath is treated both quantum-
mechanically and classically. In the former case, the Fourier
transform of the symmetrized correlation function is ex-fFiG. 2. Time behavior of the generalized kerfg{t), defined by Eq(43).
pressed via the known Fourier transform of the quantum cor# has singularity~ 1/t att—0 and decays exponentially &t + .

relation function],(w) using Eq.(37), while in the latter
case it is replaced by the sum of Fourier transforms of the

Ty t

classical correlation functiong0). da(t) =)o —i[l3| F(t)]—f%?(t)

The derived Eq(39) effectively decouples the statistical dt 0 ' ’
and the dynamical properties of the heat reservoir. The " X (42
former enter via universaldynamics independenfunction ﬁ:f /\A/t(r)e*iHT dr, t>r,

of the temperature, while the information about bath dynam-

ics is contained in the Fourier transform of the symmetrizedyell known as the Redfield theory. It can be directly solved
correlation function7(w) which, however, implicitly de- in the time domain, and, besides, the explicit construction of
pends on the temperature as well. Thus, the classical treahe full Redfield tensork can be avoided,which allows
ment is introduced only to describe the dynamical propertiegpplication to a fairly large QDSs. The deficiency of the
of the heat reservoir, while the statistical properties of theredfield approach concerns its rather severe restrictions,
bath are taken into account quantum-mechanically. both for the allowed strength of the system—bath interactions

and for the applicability time scalé®$ ;). Many processes

in condensed phase, however, occur in a subpicosecond time
V. DIFFERENTIAL FORM OF THE period, while the shortesfrotationa) classical correlation
QUANTUM-CLASSICAL APPROXIMATION times are usually about ten picoseconds. The non-Markovian

master equation, Eqg21) and (31), allows for a larger

Although the non-Markovian master equati@¥) can  strength of the QDS—bath interaction and is valid for shorter

be directly solved by the Fourier transform technique, it istimes as well. In the case, when the bath is treated classically,
not convenient for practical purposes. First of all, in order tojit can be reduced to the differential form without narrowing
solve Eq.(21) one requires to find the inverse Liouville the applicability limits.
space operator, and the unfavorable scalthg dimension- As it was pointed out in Sec. IV, Eq39) effectively
ality of the Liouville space operators ?xN?, N is the  decouples the statistical and the dynamical properties of the
number of the states in the QD®&akes it possible only for heat reservoir. The information about the statistical proper-
rather small systems. Besides, the solution has to be founges enters via dynamics independent function of the tem-
for many distinct values of the Fourier transform parameteperature, which has the following forms in the time and the
w, for the subsequent use in the inverse transform to restoreourier domains,

the kinetics.
The reduction of the non-Markovian master equation to ¢ ()= — ; szi,
a Markovian one usually calls for some additional approxi- mTp SiNA(t/ 7p) mT
mations and can be done in several ways. The most popular ~ o (43
approximation utilizes fast decaypn the time scaleé~ 7., fp(w)=i tan)‘(ﬁ).

where 7. is the characteristic correlation tilmef the bath
correlation function, and requires weak effect of the QDS-The generalized memory kerngl(t), defined by Eq(43),
bath interactions on the time scale®f. Then, the following has a singularity at=0 and sharply decays at longer times

approximation: with the characteristic time,, see Fig. 2. It describes the
. . " decay of the QDS—bath cross-correlations at the expense of
o(t—r)=e Mg(t)=eto(t)e " (41)  the phase cancellation process due to the energy dispersion

_ _ _ _ of the degrees of freedom of the canonical bath. The charac-
can be made in the integral term of E@4), which result in  teristic time 7, was estimated in Sec. Il to be 1/T (A

the Markovian master equatigoontribution from the initial  =k;=1), while the accurate expressio4d) yields an even
correlations/(t) can be neglected for large times as Wwell ~ shorter lifetime of the quantum correlations. At room tem-
the form, perature T=300 K), one has,=8fs.
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Then, the first term in the right-hand side of E§9) can - - doi(t)) -

be interpreted as a high temperature limit, when the energg(t—17) = e_IH(t_T)<O'i(t)_ TT) gH(t=7)

dispersion of the bath degrees of freedom is so large, that the b

guantum correlations decay instantityhe Fourier transform da(t) P

of &function is constant, and is independent«wn The sec- 'HT( a(O)—i[A,at)]r— —— T )e'HT. (47)

ond term in the right-hand side of E(89) accounts for the

finite lifetime of the quantum correlations, and the functionalThe obtained expansion is similar to Eel), but is more

form of f,(t) is similar to the derivative of-function, but ~ accurate. The role of the additional terms in E4j7), which

has a finite width ofr, .
The high temperature limit term describes irreversiblematrix, is explained later in this article.

evolution, while the other term in the right-hand side of Eq.  Substitution of Eq(47) in the right-hand side of Eq45)

(39) accounts for the reversibility of the dynamics on theeliminates convolution, which gives

time scaler,, of the quantum correlations decay. Indeed, only~ m

the Fourier transform of the retarded correlation function Fo(0+ orm[ V. PV, 5(w)]. P™]

contributes to the high temperature part of the memory ker-

nel M(t>0), since the Fourier transform of the advanced

correlation function does not have singularities in the upper

plane of the complex surface. The situation is quite dlfferent

for the other term in Eq(39), asf,(w) has own singularities

in the upper plane ab,=2wi(n+1/2)T, (n=0,1,2,...)

and both the Fourier transform of the retarded and the ad-

=[V,PX[U,5(w)]+

+[Y,i[A,5(0)]+iod(w)].)P™, (48)

sz fo(r)e” IHTVQIHTdT_IZ tam‘( 2_I_)PkVPm

vanced correlation functions contribute to the inverse Fourier (49)
transform in the vicinities ofv,, . d
The assumption of the weak cross-correlations betweefi"
the QDS and the bath, employed in the present article, re- o . 1 k{ypm
quires that the matrix elements of the QDS—bath interaction Y= —J rfp(r)e” M vet dr= _T
satisfy the condition, - Cosﬁ(“’__r
g 0
|\7Vﬁiﬁ|7'b— <1, i#k, a#p8, (44)  Thus, Eq.(39) can be simplified to give
7T
M(0)5(w)=> [V,PHV,5(0)]+i[0,5(w
where the temperature and the QDS—bath coupling are in (@)5(w) kz,r:n[ (V. ote)]+l (@)l
frequency units. But it also means, that the evolution of the e
density matrixo(t) is weakly affected by the QDS—bath +Hi[Y,i[H,0(w)]
interaction on the time scale of the quantum correlations de- L A~
i T105(0)] )P " e 0+ o), (51)

cay 7,, and the main effect of the QDS—bath coupling takes
place at timeg> 7.

account for an early non-Markovian evolution of the density

Then, the second term on the right- which serves as a basis for the subsequent considerations.

hand side of Eq(39) can be further simplified as follows. Here we replaced the Fourier transform of the symmetrized

First, we use the identity,

To(0+ 0 [V, PV, 5(0)],P™

:Jm e—iwtfoc f

X[V, o(t—7)]4

o(7)[V,PRe 1R
e PMdr dt, (45)

and expands(t— 7) in the vicinity of 7~0 using the fast

decay of the kernef,(7). Note, that the off-diagonal ele-

correlation function by the Fourier transform of the retarded
correlation function, see discussion above &4). In other
words, on the time scale> 7, the dynamics becomes irre-
versible, which is related to the decay of the quantum corre-
lations.

Sometimes memory-type equations can be reduced to a
set of auxiliary differential equations. For a spin-boson
model and exponentially decaying kernel an equivalent set of
differential equations was obtained in Refs. 7, 8. Below we
derive differential form of NQCA for a more general case. In
the classical limit Eq(24) takes the form,

ments of the density matrix may evolve fast compared to
1/7,, since the splittings between QDS levels can be arbi-
trary. Hence, we expand the density matrix in the interaction

W(a)=V B(q), f B2(q)dg=1, (52

representatiomr; , which is related tar as

a(t):eilzlt;(t)e—iﬁt, ;(t) e |Ht—(t)e|Ht (46)

to get

where the normalization condition was introduced for the
sake of conveniency, while the correlation function of the
bath operators is determined via the two-dimensional prob-
ability densityP(q,qq; 7) of generalized coordinatgat time

7, given coordinate, at the initial instant of time. Here and
below g denotes the generalized set of coordinates, specify-
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ing the state of the system in its phase space, e.g., it mayq(t) . _ .
involve momenta of motion as well. Then, the classical cor—gy =§(t)—l[H,0(t)]—|f [W(q),n(q,t)]ddq, (60)

relation function is defined as
_ _ an(q,t)
ﬂet(r>=f f B(q)P(d,d0;7)B(de) dq dgy, (53 at

where we extended the definition #{q,q,; ) to negative
times via the Heavisidé-function, i.e.,

=—i[H,7(q,0)]=i[W(q),e(t)]+[U(a),o(t) ]+

- A do(t)
Y(a),i[H,o(t) ]+ ——

* at

+Lgn(a,t), (61)
N

P(quOa T): 0( T)P(qqu;T)-

In turn, the two-dimensional probability densiB(q,q;7)
satisfies the classical equation of motion of the form

with the initial conditions,

7(a,t=0)=[Y¥(a),00]+ , (62

where nonzero initial conditions for the auxiliary matrix
arise from instant source term in E@8), provided by the
time derivative on its right-hand side. The initial conditions
_ _ ) o for auxiliary matrix accounts for the earlyt£7,) non-
where L is the linear functional operator, defining the evo- parkovian evolution, and their role is well demonstrated in
lution of the system in its phase space. In particular, for thesec v/j|. Note, however, that there also exists corresponding
simplest case, corresponding to stochastic jumps of infinitgs;m in the right-hand side of E¢61). Thus, the account for
length, one has the initial non-Markovian stage is reflected both in the
_ b ) — —tl7, “slipped” initial conditions and in the structure of the relax-
Lq=1l7e, P(Q.00;)=0t)e T725(dGo)- (56) atiopnp operator as well. For example, the Redfield theory is

Here . is the characteristic time between the jump®r the  modified by using expansio@?) at 7~ 7. in Eq. (14), which
stochastic jumps of finite length there always exists a diffureplaces Eq(42) by

sional tail at long times, and the “infinite” means that we do()
g

(54
o(t=0)=o0y,

d— _
2; P(0,0o:7) = LP(0,do; 7) + 8(1) (4~ o). (59

restrict ourselves to the exponential partﬁ(lg,qo;t):] — = iR e(0)] - (1+ Ry MR o), t>7,,
Then Egs.(21) and (51) are equivalent in the time do-
main to the following set of differential equations, (63
da(t) o with the new “slipped” initial conditions,
—ar Moot §(t)—I[H,0(t)]—IJ [W(a),7(q,t)]dq, o (1—Re) . (64)
o 67 Here we have used conventiofabngeneralized functiohs
dn(q,t) the relaxation operatdk is defined as before, see Eg2),

= —i[H,72(q,t)]—i[W(q),o(t)]+[U(q), (1) ]+

at while the “slippage” operator is of the form,

Re=— f rM(re M dr,

— o0

+| Y(q),i[H,a(t)]+ ? (65

+Lgn(a,t), (58

Thus, both the initial conditions and the relaxation operator
are modified if the early time evolution is accounted for, and,
therefore, the problem cannot be reduced just to the
“slipped” initial conditions.

The differential quantum-classical formulation in form

where;(t) is an auxiliary matrix with the same dimension-
ality as the QDS density matriex(t), and

Jia) =i Ckm| Sk o) pm
U(q)—lg,n tani‘( 2T)P“W(q)P ,

o . (59) of the two auxiliary local-time equation®0) and (61) uti-
o 1 D PKW(q)P™ lizes approximations only with respect to the characteristic
2T PR time 7,, but fully retains memory effects due to the dynam-
VD=7 2 — 7, b, but full ffects due to the d
COSV?(ﬁ) ics of the classical degrees of freedom. In other words, it is

not the same as Redfield theory, which is Markovian with
see also Eqs49) and (50). The mathematical proof of the respect to the entire memory effects. Needless to say, that the
equivalence of Eqgs(57), (58), and (21), (51), where the Redfield approach is more restrictive. On the other hand, our
retarded correlation function is identified with its classicalformulation provides an efficient quantum-classical treat-
analog(53), is given in Appendix C. Despite the fact that a ment with a wide range of applicability and fully accounts
simple factorized form of the QDS—bath coupling Hamil- for the memory effects due to the dynamics of the classical

tonian (24) was used to obtain Eq$57) and (58), they are
valid for arbitrary(nonfactorizedl forms of W(q).

For the following it is convenient to rewrite Eq&7)
and (58) in terms of conventionalnongeneralized func-

degrees of freedom without solution of the integrodifferential
memory type equations.

The information about memory effects on the QDS evo-
lution is coded in the matrix elements of the auxiliary matrix

tions. The resulting equations take the same form, but with+(t) [it cannot be called “auxiliary density matrix” since the
out instant source terms, which are replaced by the initiatrace of 7(t) is not conserveld Note, however, thaty(t)

conditions att=0, that is fort>0 one gets

contains information only about correlations specific to the
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given QDS-bath coupling, while the source tef(h) in Eq.  Substituting the QDS density matrix, corresponding to the
(60) may reflect arbitrary types of initial correlations. The Boltzmann equilibrium one, i_eq:exp(_ﬂm, and using

propagation of the QDS density matrix can be restarted a§q gefinition ofJ(q), see Eq(59), we get from Eq(66) the
any time, provided that the matrix elementspére known. following relation to prove
The restriction of the time scale ,), employed to
obtain differential NQCA given by Eq$60)—(62), is not a . @km) A A A _
serious limitation, since the bath degrees of freedom arbk% ta”"(ﬁ) PKW(q)P™M(e Em/T+ e Ei/T)
treated classically. Strictly speaking, the classical description
of the bath modes at very short timess(r,) cannot be s Sk M a—Em /T _ a—Ex/T
justified. In other words, the parametey determines the Ik,Em PW(@)P™(e e, €7
boundary between the time scales, when the bath behave%1 . .
itself as a quantum-mechanidak<7/(kgT)] or a classical where we have also used the identity,
[t>7%/(kgT)] system. Thus, the NQCA implicitly assumes . o .
the applicability time scalé> 7, and, in this sense, Egs. W(Q)Ekz PAW(q)P™. (68)
(60—(62) have the same applicability range as the non- "

Markovian quantum-classical approximation in form of Eqs.HereP" andE,, are the projector operators on the eigenstates
(21), (39—(40). of the QDS Hamiltonian and the corresponding eigenvalues,
Although Egs.(57) and (58) are local-time differential respectively, see E433). Relation(67) holds for any term in

equations which can be directly solved in time domain with-the sum, i.e., at fixed indicds m, since
out constructing/diagonalizing Liouville space operators,

—En/T_ o E¢/T
their practical applications are complicated by the necessity & ™ —€ ‘ =tan|‘(wi“) (69)
to solve the partial differential equatidb8), which requires e /T e B/t 2T

additional grids over phase space coordinates. NevertheIeSﬁ,]us’ the Boltzmann equilibrium density matrix is indeed the

application of MD methods to model the bath dynamics re'stationary solution to Eq$60) and (61)

solves the problem, as it will be shown in subsequent article. Using the semigroup approach originating from Lind-
blad’s work?® it has been shown that the Markovian master

VI. NQCA AND BASIC PROPERTIES equation, which preserves positivity and satisfies the transla-

OF THE DENSITY MATRIX tional invariance, is incompatible with the approach to the

The differential NQCA in the form of the two aux”iary canonical equilibrium Stat@. This is well known fact in
differential equation$60) and(61) preserves the basic prop- Redfield theory, which may violate the positivity of the den-
erties of the density matrix. First of all, the tracecft) is  Sity matrix for some extreme, but physically admissible ini-
conserved, since the traces from the commutator terms dii@l conditions**~** It was also demonstratéd,that the
the right-hand side of Eq60) are identically zero. The same breakdown of the positivity in the Redfield master equation
is true for the trace of the time-extended source t&¢t), as ~ arises from the lack of memory effects in the early time
it is of a commutator form as well, see E35). Second, the evolution. In other words, at the initial non-Markovian stage
Hermiticity of o(t) is also preserved, as it can be seen byof the density matrix evolution the initial conditions are
taking the Hermitian conjugate of the equations and usingnapped into those for which Markovian master equation pre-
the properties AB)T=B'AT [operatorsJ(q) and¥(q), de-  S€Tves positivity. For the s'pln-boson'model the problem can
fined in Eq.(59), are Hermitiar. be overcome by_constrL_Jc_tl_on of a ‘_‘s_llppage" operator WhICh

The last required property, namely, the positive definitePrePares the_“shpped_” initial conditions for the Markowar_1
ness of the diagonal elementsft) (positivity) is difficult master equation and incorporates the effect of the short-time

to prove in a general case. Nevertheless, for the simple ex2volution of the density mgtri%'gl_Ngyerthelegg, there is no
ample, considered in Sec. VII, the positivity breakdown hagd€neral proof that the “slipped” initial conditions preserve
happened only when using parameter values outside the a ositivity of th.e Redfleld_ theory. Moreoyer, a proper account
plicability range of the developed approach. This raises th&o" thg short—tlme evolutloq of the density matrix leads to the
question, whether the positivity breakdown can occur insigdnedification of the relaxation operator as well, see Sec. V.
the applicability range of the differential NQCA, or not. In _1he problem of handling the initial correlations is well
the latter case the more general integrodifferential formulakNoWn in - nonequilibrium statistical mechanfst was

tion of NQCA, see Eqs(21), (39)—(40), is likely to resolve shown, thgt for_a _Wide class _of dynamic systems in the ther-
the problem, but at the same time is more difficult for theModynamical limit there exists a so-calldd-operator of
numerical solution. subdynamics, which projects correlations onto the two sub-

The properties discussed above must be fulfilled for any?Paces invariant with respect to the time evolution. The time

density matrix. The suggested NQCA additionally preserve€volution in thell-subspace satisfies the Markovian master
the detailed balance principle, i.e., the Boltzmann equilib-€auation, which is exact on the entire time axis, while evo-

rium is established between all levels, involved in the relax Ution in the complimentary subspace is of rather compli-
ation. Indeed, the stationary solution of the E¢g0) and cated charactér. The factorized initial state has commonly
(61) requires{= =0 and components |n_b<_)th _subsp_aces, while th_e Marl_<qv_|an master
equation description is valid only for particular initial corre-
[U(q),o].=i[W(q),o]. (66) lations. The “slippage” operatdt>! can be considered as
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some analog ofl-operator for the spin-boson model, pro- VIl. TWO-LEVEL SYSTEM AND A SINGLE
jecting the initial state onto the subspace, which allows acCORRELATION TIME BATH
curate description by the Markovian master equation.

Thus, at short times the description of the QDS evolution “f]d order .to tlest the Sthgg(iste? d|f|ferent|?l NSCA' Wel
via local-time differential equations is, in general, not valig, CONSIder a simple case of a two-lever quantum-dynamica

The duration of this initial stage depends on the method iqs;u?hsylsr:etr;,tcoup;::e{ E a gngeE co(rg(e)l)atlgg (grlr;e cr?nbomcal
use, and is defined by for the suggested differential an. at caséq=1/re, a as- a can be

NQCA, while being correlation time, of the bath for the reduced to twaordinary differential equations,

Redfield theory. None the less, everrik 7, the description do(t) A A

of the QDS evolution by the Markovian master equation pro-  ~ gt —i[H,a(O)]=i[V,n(D)], (70)
vided by the Redfield theory is accurate only for the times g

> i t ~ ~ ~

t>7,. Indeed, for a(S-correIat'ed bath t.hg Fou_ner transform nt) LR (01— [V (01410001,

of the symmetrized correlation functiofi{ w) = const, but dt

Eq. (39 still contains the memory kernel describing the de- DS

cay of the quantum correlations on the time scalerpf —ILY, LV, (O 114 = 9(O/ 7¢, (71
Therefore, the assumption oféacorrelated bath is not suffi- ith the initial conditions,

cient to obtain a Markovian master equation in the case of .

finite temperature of the heat reservoir. The dynamical and o(t=0)=0g, #n(t=0)=[Y,00]. . (72

the statistical properties of the bath are not independent, b S A
related to each other. Increasing the temperature of the he'ﬁtere’ for the simplicity, we assumed tha(q) has factor

reservoir changes the equilibrium distribution over the battZzed form(52), so thatU and’ are given by Eqs(49) and
states which, in turn, accelerates the dynamics of the batip?®): respectively, and we also explicitely substituted time
and vice versa. In this sense, the assumption@tarrelated ~ derivative in the right-hand side of EG71).

bath implicitly assumes the infinite temperature of the bath, 11en, the Hamiltonian of the QDS and the QDS part of
whenr,—0 and the Redfield master equation is of Lindblad!h® coupling are chosen to be

form. . 1/-wg O . 1/0 V,
The factorized initial conditions for the differential H= 5( 0 o ) V= E(V 0 ) (73
NQCA eliminate the time-extended source tefift) from 0 0
Eqg. (60). Nevertheless, at short timés- 7, some specific and, therefore,
correlations between the QDS and the bath are formed, 1 0 —iv
which is reflected in the creation of nonzero elements of the (j— —tanl‘(@) ( 0)
auxiliary matrix z(t). The suggested NQCA is automatically 2 2T)\iVe 0 )
supplied by such “slipped” initial conditions, given by Eq. 1 1 0 vV (74)
(62). The “slippage” consistently vanishes at—« as the ¥= _—( 0)
duration of the initial stage tends to zero in this limit. The 4T [ @o| Vo 0
role of the “slipped” initial conditions(62) is well demon- cos 2T

strated in Sec. VII, but anyway it is difficult to prove that
they guarantee the positivity even within the apphcab'“tytween levels po=0) and infinite temperature of the bath. In

limits of the suggested NQCA. 2 JN i ,
The short-lifetime quantum correlations between theth@t caseH=0, U=Y=0 and the relaxation regimes are

QDS and the bath play a decisive role for the establishmerfiiStinguished by the value of the dimensionless parameter
of the Boltzmann equilibriunithe detailed balangdetween @ =VoTc. There exists a simple analytical solution for the
energy levels of the QDS in the course of time. The quantuniMiting case under consideration. It is of the form,

phase, responsible for the dynamic transitions between en- sinh(\t)

First of all, we consider the case of zero splitting be-

ergy levels, oscillates with the frequency corresponding to  N(t)=ng e~ "™)| costixt)+ e | (79
the energy difference. When this frequeney,, is small ¢

compared to the inverse quantum correlations lifetimg, 1/ where

(or whenwy,m,<<1), the QDS does not “feel” the quantum N(t) = 0ry5(t) — o polt)

state of the bath, and the relaxation proceeds in the direction H 2250 (76
of level equilibration(in that caseU~0). In the opposite V1-4a? 1 5

situationw,,7,= 1, however, phase evolves on a time scale - 2—7'(:4 le_%_VOTC* a=VoTe.

comparable or shorter thar,, and the transitions account
for the quantum state of the bath, which results in detailedrigures 3, 4 show the kinetics of the relaxation for three
balance between the levels. For the canonical bath different values of the parameter and the initial condition
~hl(kgT), which means equilibration between levels with ng=1. In the first casex=0.1, which corresponds to the
AE/(kgT)<1, and the detailed balance between levels withapplicability range of Redfield theofyvhen the parametey,
AE/(kgT)=1. In other words, the information about quan- defined in Eq(76), can be expandédgdthe kinetics has expo-
tum state of the bath is transferred into the QDS via theimential character(with a relaxation rate equal t()/(z)rC
short-lifetime quantum correlations. =0.01r.), Fig. 3. In the second and the third cages1 and
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FIG. 3. Relaxation kinetics of the population difference for the applicability FIC. 5. Relaxation kinetics of the population difference in a weak coupling

region of Redfield theoryT=c, wy=0, Vo7,=0.1<1, andn,=1. The limit. The parameters arg,=1.27 ps,wq7,=100, Vy/w=0.2. The initial

kinetics is exponential with the decay rate equavﬁrc. conditions for the density matrix are of the fora,,(0)=1, 0q4(0)
=015(0)=0 (np=—1), while the corresponding initial conditions for the
auxiliary matrix » are taken from Eq(72). For the infinite temperature of
the bath(solid line) relaxation proceeds in the direction of the levels equili-

_ - " .___bration, while in the case of finite temperature of the heat resefsashed
a=10, reSpeCtlvely’ and Redfield theory cannot be applledand long dashed lingshe QDS relaxes towards the canonical equilibrium

The parametek becomes complex and the kinetics exhibits state.

transient oscillations, while the relaxation time scale is inde-

pendent of the QDS—bath coupling strength fer’4-1 and .

is determined by the correlation time, see Fig. 4. may serve as a good test of the quality of the quantum-
Next we consider the situation where the splitting be-classical equatior&:* The attention in this case should be

tween levels is large enough to exhibit a considerable Boltfocused on the fundamental von Neumann condition for the

zmann equilibrium population difference. Figure 5 shows thedensity matrix elements,
kinetics of the relaxation forr,=1.27 ps, wq7r.=100, 011025=| 0152, (78)

Vo/wy=0.2, and different temperatures of the heat reservoir,

indicated in the figure. Two stages in the relaxation kineticsVhich guarantees absence of negative eigenvalues of the
are clearly seen, at the initial non-Markovian stager, ~ density matrix of a two-level QDpositivity). Figures 68

there appear transient oscillations, while on a longer tim&how the value,

scalet= 7 the kinetics turns to be exponential. In the case of loria()|?

finite temperature of the bath the QDS relaxes to its canoni-  ¥(t)= m (79

cal equilibrium state, while in the case of infinite temperature 122

of the bath the levels are equilibrated in the course of relaxa@s a function of time, and the conditiofy8) means 0
ation. ForT= 150 the QDS—bath coupling strength satisfies< ¥(t)<1. Figures 6 and 7 demonstrate the role of the initial
V7p/2=0.13<1, and, therefore, the applicability criterion conditions(72) for the auxiliary matrixz. The initial condi-

(44) is fulfilled. tions for theo are taken from Eq.77), while the elements of
It was pointed out several times, that the initial condi-

tions of the form, 11
0117 090= 015~ 021 =1/2 (77 1.0

' initial conditions:
: — slipped
L e non--slipped

0.0 T T T T . T

4 6
47

1/ (ksT)

FIG. 6. Demonstration of the effect of the initial conditions for the auxiliary

T T T T . matrix ». Time evolution of the parametex(t), see Eq(78), is shown,y

4 6 8 10 >1 andy<O0 indicate positivity breakdown. Solid line corresponds to the
t/7, “slipped” initial conditions, defined by Eq(72), while dashed line corre-

sponds to a zero auxiliary matrix at the initial instance of tiftneglect of

FIG. 4. Relaxation kinetics of the population difference beyond the appli-the memory effects from the earlier time evolutiohe parameters are

cability limits of Redfield theory. The parameters afle=», wy=0, n, wo=10"rad/s,Vo=1.5 wgy, 7,=10"1*s, T=300 K. The initial conditions

=1, andVy7,=1 (dashed lingor Vy7.= 10 (solid line). for the density matrix are taken from E.7).

-1.0
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1.0
" _VgTb/2:0.3
initial conditions: 304 & -~ Vo /2=04
— slipped N Vo1, /2=0.5
PR non--slipped i
~ = 2.0 1 :
\?: 0 5 T = "‘
1.0 i
\~ 0y
Hoa 0.0 N -
0.0 S T T T
0 1 2 3 4 5 0 10 y 20 30
/7 Te

FIG. 8. Demonstration of the positivity breakdown outside applicability
limits of the developed approach. All parameter values are the same as for
Fig. 6, except the values of the QDS—bath coupling strekgth, indicated

in the figure ¢,=8fs).

FIG. 7. Same as Fig. 6, but with 10 times longer correlation time, 4 €.,
=10"8s,

the auxiliary matrix at the initial instant of time are deter-

mined either from Eq(72) (*slipped” initial conditions) or 3 principal impossibility of Markovian description at times
set to zero. In the former cagsolid line) O< y(t)<1, while  t<7/(k,T) the differential master equation approaches may
in the latter cas¢dashed lingthe positivity is violated, see |ead to the positivity breakdown for some extreme but physi-
Figs. 6 and 7. The parameter values are indicated on thgyly allowed initial conditions. Hence, the Lindblad form of
figure captions. Thus, the neglect of the memory effects inaster equation, which preserves positivity by construction,
the early time evolutiont( 7,) may indeed lead to the posi- s not adequate for the case of finite temperature of the bath.
tivity breakdown. The use of differential description on the time scale,
In the simple cases, considered above, the NQCA with ggrger than the lifetime of the quantum correlations, requires
“slipped” initial conditions (72) preserved the positivity. g proper account for an early time evolution to preserve posi-
Nevertheless, the suggested NQCA does not preserve posjyity of the density matrix, and the developed approach is
tivity by construction, unlike the Lindblad master equatio”-automatically supplied by such a “slipped” initial condi-
Figure 8 shows the time evolution of the paramef&t)  tions. We also suggested the corresponding improvement of
increasing the QDS-bath coupling strengy/2. It is  the Redfield theory, where both the initial conditions and the
readily seen, that the “slipped” initial condition§’2) pre-  relaxation operator are modified. Simple example of a two-
serve positivity only within the applicability range@4) of  |evel quantum subsystem coupled to a single correlation time
the developed approach, which for the model under considcanonical bath well served to explore capabilities of the de-

eration isVo7p/2<1. veloped method, while applications to multilevel systems of
practical interest together with molecular dynamics tech-
VIII. CONCLUSION nigue to simulate the bath dynamics are considered in the

A quantum-classical approximation, capable to describéUbsequem article.

the evolution of quantum-dynamical subsystem coupled with
dissipative environment well beyond the applicability limits ACKNOWLEDGMENT
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correlations between the quantum-dynamical subsystem and
the bath provided by the energy dispersion of the bath dez oo\ 1y 2| |oUVILLE SPACE FORMULATION
grees of freedom. This lifetime is proportional to the inverse
temperature of the heat reserv@t room temperature it is 8 The Liouville—von Neumann equation for the density
fs) and allows to study various relaxation processes since matrix (3) can formally be written in a form similar to the
subpicosecond time range. The short-lifetime “quantum”Schralinger equation in several ways. First, one can intro-
correlations, however, are responsible for the establishmemiuce a vector wittN? (N is the number of the states, in-
of the canonical equilibriuntthe detailed balangebetween cluded into consideratigrelements, composed of the matrix
energy levels of open quantum system, and are taken intelements of the density matrix. Then the operators in the
account. right-hand side of Eq(4) become regular linear operators
In recent years there has been an extensive discussion @hatrices in the Hilbert space, and with the dimensionality
the different approaches to the quantum dissipation in conN?x N?. This approach is widely used in numerical calcula-
nection to the Lindblad master equation, see Ref. 36. Wéions. Second, one can use the so-called Liouville space op-
have shown, that for the case of finite temperature of the hearators(superoperatojsin the latter case a matrix algebra is
reservoir, a master equation for the reduced density matrigimply replaced by a tensor algebra, i.e., operators in48q.
becomes non-Markovian even fowecorrelated bath. Due to become tensors.
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For our purposes we use Liouville operators in the basis The commutator derived superoperat@$)—(A3) have
of direct product between QDS and bath states. Matrix elean important property, the trace over all states yields zero.

ments between QDS states are denoted by the lower LatifFor QDS Liouvillian7 it is sufficient to take trace over the

indices, while matrix elements between bath states are d‘bDS states only, while for the bath Liouvillizfﬁ—only over
noted by the upper Greek letters. Thus, the Liouville operaine path statdsi.e.

tors are tensors of rank 8, and their matrix elements are ex- A A .
pressed via matrix elements of the corresponding Hilbert  Tr(Wg)=0, Tr,(He)=0, Tr(Fe)=0. (A12)

space operators by the following formulas: . . . .
P P y g It can be proved directly, using the explicit expressions for

Hi"l‘(ﬁ%”: Hmk0it 8= Hi* Skmdsy » (Al)  the matrix elementéA1l)—(A3), and reflects the particle con-
servation law by the Liouville—von Neumann equation.

f}‘f{ﬁ{fﬂ"”: Frkdi Sap~ Fit" Skmdpy (A2) Finally we give useful expression for the free evolution
WEBEY =WYE 81 8= Wi SO, (A3) o_peratorgo(t), defined by Eq(11). Its operation on the den-
Sity matrix,
where . . .
1 i:j’ Qo(t)g=¢9(t)e_i':te_i”tg etheiFt_ (A13)
Sij = 0 i#j, (Ad) For the proof of Eq.A13) it is sufficient to note, that the

R Hamiltonians(and Liouvilliang of the QDS and the bath
is the Kronecker delta. The QDS Hamiltoni&h has only  commute with each other, i.e.,

diagonal matrix elements between bath states, while the bath

HamiltonianF is diagonal between QDS states, i.e., Go()=To(t)x €Y, To(t)=6(t)e'™, (A14)
HE=H b5, Frb=F"28u. (A5)  and use the basis of the direct product of the eigenstates of

o ) ) the QDS and the bath Hamiltonians, i.e.,
The product of two Liouville operators is defined as

[Wn=Imla), HIN)=Eqln), Fla)=Ela), (A15)

A R\aBiuv_ aB;éEnppénny
(AB)iiim _J,nE:&n Aik;jn”Bjr?;llr:”l ' (AB) whereE,, and&, are the corresponding eigenvalues. Then we
: : o . get
while the operation of the Liouville operator on the density . _ _
matrix is given by (Go() o) iP=0(t)e CaEpt g I(BimEBIt g aB
(A0)ef= 3 Abimrop. (A7) =g(t)(e"Fle~Htg gHtgiFtyas (A16)
’T'W In principle, Eqs(A9) and(A13) are sufficient to convert all
Unity operator lis defined as usual, Liouville space expressions, derived in the current article,
A aaA By into the Hilbert space representation.
Al:lA:A, ik;|yr/T1'L :5“ 5km 511# 6ﬁv (AS)
It can easily be seen, that for the Liouville operators, defined
by Eqgs.(A1)—(A3) one has APPENDIX B: QUANTUM CORRELATION FUNCTIONS
iVVQZ —i[W,Q], (A9) AND RELATIONS BETWEEN THEM
i.e., they are “commutator derived superoperators.” Indeed, ~ USing the basis of the eigenstates of the bath Hamil-
from Eqgs.(A3) and (A7) one has tonian, the quantum correlation functions, defined by Egs.

(26), can be written as

iOWe)iP=i W2 B 518, — WSy mds,) 0L
(We)i |,mz;,w( kit Sy~ Wii" SkmOp.) €fm jl(T):ZiE BABAgi vasTe CalT,
b

a,B
=i onWi—i S Wikop? 1 | (B
m;v K; ]2( T): Z_E BaﬁBBael Vaﬁfefé'ﬁ/T,
o b a.B
=—i((W.eDf’. (AL0)
where
The advantage of taking the Liouville operators in the
basis of the direct product is the simplicity of taking the trace Y™ Ea=Ep- (B2)
over the QDS or the bath subsystems. For example, For the proof of Eq(28) it is sufficient to change the sum-
R - mation indices &,B8)—(B,a) in the expression forj,
Tr(Ae)=2 | > AgsEroty (A1l)  (-17), given by the second equation in E&1) after inver-
o ,m;uv

sion of the time, since/g,=—v,45.

is a simplification of the tensor over first two upper indices  The relation between Fourier transforms of quantum cor-
(for the trace over QDS the simplification is carried out overrelation functions, see Eq29), is proved as follows. Fourier
first two lower Latin indices transforms ofj, , (30), and with account for Eq$B1) give
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~ 1
Ji@)=2-2 BB §(0—v,g)e 5T,
ZyaB
. 1 (B3)
j2(w)==2 B¥BF§(w—r,ze B/
ZyaB
Then we use the following identity:
5((1)_ Vaﬁ)eigB/TE 5((1)_ VuzB)eVHBIT e*SQIT
=e’'TS(w—v,z)e /T (B4)

in Eq. (B3) for ] ,(w) to get Eq.(29).

APPENDIX C: EQUIVALENCE OF DIFFERENTIAL
AND INTEGRODIFFERENTIAL FORMS OF
QUANTUM-CLASSICAL APPROXIMATION

The equivalence of Eq$21), (51) and Eqs(57)—(58) is
proved as follows. The Fourier transform of E¢57) and
(58) gives

0T (w)+i[H,7(w)]=00+ ()
= f i[W(q),7(q,0)]dg, (C1)

iaﬁy(q,w)-l—i[|:|,%(q,w)]—ﬁq'}'](q,w)ZO'X(q,w),

C2)
where we introduced the notation,
ox(0,0)=—1[W(q),5()]+[0(q),5(w)]+
+[Y(q),i[H, ()] +iwd(w)]. . (C3)

Then we introduce the resolvent opera@(q,qo;w),

(io—iTt—L4)G(a,00;0) = 5(q—ap), (C4)
which can be represented as
Gagoio)= | Pagovete ™ a9

whereﬁ(q,qo;t) satisfies Eq(55), and write the formal so-
lution of Eq.(C2) as

a0~ | Ga.0010)0,(00.0)00, )
Finally, we use in Eq(C6) the identity
Gi(0,00; @) 0(Go, @)

=§n P(0,00; 0+ wkm) PXoy(do, @) P™, (C7)

Quantum-classical approximation 2501

assume the bilinear form of QDS—bath couplifE®) and,
substituting the resulting expression in EG1), we get Egs.
(21) and(51), where the retarded correlation function is iden-
tified with the classical one, defined by E4S3) and (55).
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