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Quantum-classical approximation beyond Redfield theory
A. A. Neufelda)
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Am Fassberg, D-37077 Go¨ttingen, Germany

~Received 9 January 2003; accepted 6 May 2003!

A quantum-classical approximation, capable of describing the evolution of open quantum systems
well beyond the applicability limits of Redfield theory is suggested. The theory is based on the short
lifetime of the quantum correlations between the quantum and the classical subsystem, caused by
energy dispersion~per degree of freedom! of the canonical bath. The resulting quantum-classical
approximation has the form of two auxiliary differential equations and fully accounts both for the
arbitrary long memory of the heat reservoir and detailed balance. These equations allow direct
solution in the time domain without constructing/diagonalizing Liouville space operators, and, in
combination with molecular dynamics techniques to simulate bath dynamics, may be applied to
quantum subsystems with a fairly large number of levels. A simple example of a two-level system,
coupled to a single correlation time canonical bath, was considered to demonstrate different regimes
of approaching the canonical equilibrium state. ©2003 American Institute of Physics.
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I. INTRODUCTION

A consistent treatment of condensed phase reactions
a great importance for chemistry, physics, and biology. D
to the complexity of such systems, where interactions
tween reactants and the surrounding molecules cannot b
glected, the kinetics and dynamics of elementary reaction
liquids/dense gases still is not completely understood. Un
reactions in rarefied gases, liquid state processes are affe
by complicated many-body interactions, resulting in cage
fect, solvent-induced vibrational energy relaxation, etc.

The fully quantum-mechanical treatment of many-bo
systems is inaccessible, as the computational cost grows
ponentially with the number of degrees of freedom. Ho
ever, in many cases the reacting systems in condensed p
may be represented by a relatively small subset of quan
modes~usually the internal states of the reactants, the re
tion coordinates! and a thermal reservoir~bath!. The theory
of open quantum systems, coupled to a dissipative envi
ment, is being developed by many research groups.

There exist a variety of approaches to open quan
systems, ranging from rigorous methods with known ap
cability limits ~Redfield theory1 and its extensions,2–5 non-
Markovian theories,6–12 Golden-Rule perturbation
approach,13 forward–backward initial value representatio
method14! to some semiempirical schemes~surface
hopping,15 time-dependent self-consistent field,16,17 Car–
Parrinello density functional,18 Gaussian wave packet19 ap-
proaches!. The choice between them depends on the p
nomenon under consideration and the character
parameter values.

In the present article we mainly focus on vibrational e
ergy relaxation~VER! of molecules in solutions and dens
gases. This problem puts quite specific demands on the

a!Electronic mail: aneufel@gwdg.de
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oretical approach. First, a finite temperature of the bath
to be taken into account, since the splittings between vib
tional energy levels are often comparable to the mean en
of heat reservoir and, thus, an equilibrium~relaxed! state
exhibits considerable population differences. Besides,
lack of the detailed balance principle in the description
VER leads to continuous heating of the vibrational degr
of freedom, as the energy spectrum is unrestricted fr
above. Second, VER is very sensitive to the character
motion of the surrounding molecules, and the approa
should allow for realistic modeling of the bath dynamic
Usually VER processes occur in the picosecond time ran
and classical molecular dynamics~MD! seems to be mos
suitable for theab initio simulation of the bath at moderate t
long time scales and at sufficiently high temperatures
avoid quantum effects in the dynamics of the heat reserv

Up to now only Redfield theory, modified to account f
the finite temperature of the bath, seems to meet the
mands. An appealing feature of the Redfield approach is
it allows a straightforward modification to incorporate a cla
sical description of the bath dynamics, see Ref. 5, for
stance. Nevertheless, the Redfield approach is based o
Markov approximation with respect to memory effects an
therefore, has rather narrow applicability limits, concerni
both the allowed strength of the system–bath interacti
and the time resolution. Recently there appeared several
Markovian theories, suitable to describe a short-time evo
tion of the quantum subsystem, which, however, either o
the detailed balance principle or represent the bath as a s
uncoupled harmonic oscillators. The latter assumption is r
sonable when studying ultrafast processes in liquids, as
very short time scales the motion of molecules in solutio
mainly consists of their vibrations. However, both the anh
monicity of bath modes and the coupling between them se
to be important characteristics of the bath dynamics at lon
times. Thus, there is no reliable method to simulate V
8 © 2003 American Institute of Physics
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processes beyond the limitations of Redfield theory, and
present article attempts to fill up this gap.

The outline of the article is as follows: The small para
eter of the theory, its physical sense, and the applicab
limits are discussed in Sec. II. The closed integrodifferen
master equation for the evolution of the reduced density
trix of the quantum-dynamical subsystem~QDS! is obtained
in Sec. III. Although the general procedure of the derivat
is well known, see for example Ref. 4, we repeat it here
self-consistency and to ensure that the approximations m
are compatible with the desired applicability range. T
memory kernel is explicitely evaluated in Sec. IV, assum
the bilinear form of the QDS–bath coupling Hamiltonia
This assumption, however, was made only to present
results in a more compact form, while the quantum-class
formulation, see Sec. V, remains in force for a general fo
of the QDS–bath interaction as well.

The application of non-Markovian theories to simula
the kinetics of VER is rather difficult. Usually the linea
integrodifferential equations are solved via the Fouri
Laplace transform technique. Unfortunately, it requires
inversion of the Liouville space operator and, therefore
computationally expensive even for QDSs with moder
number of the states. However, if the bath is treated cla
cally, the derived non-Markovian master equation can be
duced to two auxiliary differential equations without narro
ing the applicability limits, see Sec. V.

Basic properties of the density matrix~conservation of
the trace, hermiticity, positivity! are discussed in Sec. VI in
connection to the suggested non-Markovian quantu
classical approximation~NQCA!. A simple model of the two
level system~as the QDS!, interacting with a single correla
tion time canonical bath, was used to demonstrate basic
tures of the relaxation kinetics towards to the equilibriu
state, Sec. VII. A more realistic description of the bath v
molecular dynamics technique and in the frameworks of
developed NQCA will be applied in subsequent article. T
main results and their possible applications are summar
in Conclusion.

II. GENERAL REMARKS

Strictly speaking, any physically justified separation
the QDS and the bath requires their weak correlation. Ma
ematically this is equivalent to the smallness of the cor
sponding off-diagonal elements in the total (QDS1bath)
density matrix%. These elements in the basis of the dire
product of the QDS and the bath states are of the form,

% ik
ab[^au^ i u%uk&ub&, aÞb, iÞk, ~1!

where Latin and Greek letters label the QDS and the b
states, respectively. Indeed, the elements% ik

aa describe the
correlations inside the QDS, while% i i

ab correspond to the
correlations between bath states. The specific mechan
providing weak QDS–bath correlations depends on the
tem under consideration. The most widely used assumpti
however, are the weak coupling limit and the fast decay
correlations due to bath dynamics. In the former case,
matrix elements of the QDS–bath interactionsŴ are as-
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
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sumed to be small compared to the splitting between co
sponding levels, while in the latter case one requires

uWik
abutb /\!1, aÞb, iÞk, ~2!

wheretb is a characteristic lifetime of the QDS–bath corr
lations. None the less, both approaches actually utilize
weak correlation of the QDS and the bath.

It is often believed, see Refs. 20, 21, for instance, t
the lifetime of the QDS–bath correlationstb is of order of
the correlation time of the heat reservoirtc , i.e., defined by
the bath dynamics. Usually the correlation time for the ro
tional motion of molecules and their fragments in solutio
lies in the picosecond time range, while for the translatio
motion ~cage effect! tc may fall into nanoseconds. Howeve
such correlations have purely ‘‘classical’’ character, they
readily determined via the two-dimensional condition
probability densityP(q,tuq0 ,t0) of generalized set of coor
dinatesq at time t, beingq0 at the initial instant of timet0 .
In other words, the ‘‘classical’’ correlations correspond to t
correlations between bath states, i.e., to the elements% i i

ab in
the fully quantum-mechanical picture. On the other hand,
factorization of the total density matrix into the direct pro
uct of the density matrices of the QDS and the bath requ
their weak cross-correlations~1!. In the following, we shall
call them ‘‘quantum’’ correlations as they do not have cla
sical counterparts.

The decay of the quantum correlations depends stron
on the statistical properties of the bath. In particular, if t
bath is well described by the Gibbs canonical~constant tem-
perature! ensemble, there exists an efficient mechanism le
ing to the decay of the QDS–bath cross-correlations. Inde
the distribution of energies~E! per bath degree of freedom i
the canonical ensemble is proportional toE exp(2E/kBT),
wherekB andT are the Boltzmann constant and the absol
temperature, correspondingly, and is plotted schematicall
Fig. 1. The maximum of the distribution is located atE
5kBT, and the mean square deviation of the energy iskBT
as well.

Since the energies of the bath degrees of freedom h
an uncertainty ofkBT, the quantum correlations decay with
characteristic timetb;\/(kBT) due to the phase cancella
tion at longer times. Thus, averaging over canonical
sembleprior to the actual simulations provides fast decay
the quantum correlations, at room temperature\/(kBT)
;10 fs, which is much shorter than the typical classical c

FIG. 1. Energy distribution per degree of freedom in the Gibbs canon
ensemble.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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2490 J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 A. A. Neufeld
relation times. This is in contrast to the approaches, wh
averaging over the bath is takenafter propagation in time
~wave function based methods, etc.!. The qualitative differ-
ence between the methods can be demonstrated by some
log from classical mechanics. Many processes, affected
the stochastic motion of molecules in liquids/dense ga
may be modeled either via the Fokker–Planck equation o
molecular dynamics methods. In the former case, avera
over the stochastic process is done at the stage of the
vation of the equation, while in the MD approach simu
tions are performed along deterministic trajectories with
subsequent averaging of the results. The Fokker–Pla
equation contains the correlation time parameter, which
be used to develop certain approximations~Markov limit, for
instance!. On the other hand, the correlation time parame
does not exist for the single MD trajectory, as it characteri
the statistical ensemble, but not the single trajectory.

The theory developed in the present article is based
assumption~2!, wheretb is the lifetime of the quantum cor
relations provided by the energy dispersion of the bath
grees of freedom. Note, thattb is not a relaxation time of the
bath, but characterizes its statistical properties. The re
ation requires energy flow between the bath degrees of f
dom, and, therefore, depends on the coupling of the b
modes. On the other hand, energy dispersion of the deg
of freedom is a characteristics of the bath in the equilibriu
i.e., when all relaxation processes are finished, that is whtb

is an universal function of temperature. In the following w
assume that the bath is not affected by the QDS evolut
though there are many situations when the feedback of
QDS evolution on the dynamics of the classical degrees
freedom can not be neglected. Examples are charge tra
in polar media, conformational changes of molecules,
The full feedback between the quantum and the class
degrees of freedom will be considered elsewhere.

III. GENERAL QUANTUM MASTER EQUATION

The density matrix formalism is the most consistent w
to describe a QDS interacting with a thermal bath. The st
ing point is the Liouville–von Neumann equation for th
total density matrix%(t),

d%~ t !

dt
52

i

\
@Ĥ1F̂1Ŵ,%~ t !#, %~0!5%0 , ~3!

whereĤ, F̂, andŴ are the Hamiltonians of the QDS, ba
and QDS–bath coupling, respectively. In the following w
set \51, which corresponds to the common practice
working in frequency units. Besides, we also set the Bo
mann constantkB51 and measure the temperature in fr
quency units as well. Then, one has 1 K5kB /\51.31
31011 rad/s.

From now on, it is convenient to formulate the proble
in Liouville space.22 It greatly reduces intermediate deriv
tions and allows to present results in a compact form. Mo
over ~although this is not used in the present article!, the
Liouville formalism makes it possible to include non
Hamiltonian dynamics~like spontaneous radiative decay
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
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the states! at no extra cost. Nevertheless, all equations
practical interest are finally transformed back into the ori
nal Hilbert space representation.

In the Liouville representation Eq.~3! takes the form,

d%̄~ t !

dt
5 i ~Ĥ1F̂1Ŵ!%̄~ t !1d~ t !%0 , ~4!

whereĤ, F̂, andŴ are the Liouville operators, denoted b
the corresponding calligraphic symbols. The relations
tween matrix elements of the operators in the Hilbert and
Liouville spaces are given in Appendix A. Here we also e
tended the definition of the density matrix for negative tim
using the stepwise Heavisideu-function, i.e.,

%̄~ t !5u~ t !%~ t !. ~5!

Thus,%̄(t) is a generalized function of time and allows for
two-sided Fourier transform. The theory of the generaliz
functions and their properties can be found in Ref. 23.

The Liouville–von Neumann equation~3! or ~4! is not
well suited to develop approximations and, therefore,
transformed into an equivalent integrodifferential one as f
lows. The Fourier transform of Eq.~4! gives

~ iv2 i Ĥ2 i F̂!%̃~v!2 iŴ %̃~v!5%0 , ~6!

where

%̃~v!5E
2`

`

%̄~ t !e2 ivt dt. ~7!

Introducing the free resolventĜ̃0(v),

~ iv2 i Ĥ2 i F̂! Ĝ̃0~v!51̂, ~8!

which describes evolution of the QDS and the bath in
absence of their coupling, we rewrite Eq.~6! in the following
form:

%̃~v!5 Ĝ̃0~v!%01 Ĝ̃0 iŴ %̃~v!. ~9!

The proof of Eq.~9! is evident, it is sufficient to act on both
sides of Eq.~9! by (iv2 i Ĥ2 i F̂), and from Eq.~8! we
immediately come to Eq.~6!.

Substituting Eq.~9! into the last term on the left-han
side of Eq.~6!, and taking the inverse Fourier transform, w
get the exact integrodifferential equation, fully equivalent
the original Liouville–von Neumann Eq.~4!. It takes the
form,

d%̄~ t !

dt
5~d~ t !1 iŴ Ĝ0~ t !!%01 i ~Ĥ1F̂!%̄~ t !

2E
2`

`

K̂~t!%̄~ t2t!dt, ~10!

where

K̂~t!5Ŵ Ĝ0~t!Ŵ, Ĝ0~t!5u~t!ei Ĥt ei F̂t. ~11!

Bath variables are present in Eq.~10!, but the kernelK̂(t) is
known explicitly. This is in contrast to the Nakajima
Zwanzig generalized master equation,24 where the bath vari-
ables are excluded at the expense of a complicated struc
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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2491J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 Quantum-classical approximation
of the memory kernel. The required perturbation expans
over weak QDS–bath cross-correlations to their lowest or
is easy to make using the factorized density matrix of
form ~we neglect the feedback of the QDS evolution on
dynamics of the bath degrees of freedom!

%̄~ t2t!5s̄~ t2t!3rb ~12!

in the integrand on the right hand side of Eq.~10!. Here,

rb5
e2F̂/T

Zb
, Zb5Trb~e2F̂/T! ~13!

is the equilibrium density matrix of the canonical bath (Tb

denotes the trace over the bath degrees of freedom!. Then we
get the closed integrodifferential equation for the reduc
density matrix of the QDS, which is obtained from Eq.~10!
by taking the trace over the bath states to give

ds̄~ t !

dt
5d~ t !s01 z̄~ t !2 i @Ĥ,s̄~ t !#

2E
2`

`

M̂~t!s̄~ t2t!dt, ~14!

where

s̄~ t !5Trb %̄~ t !, s05Trb %0 ,
~15!

z̄~ t !5Trb~ iŴ Ĝ0~ t !%0!,

and the reduced memory kernel

M̂~t!5Trb~K̂~t!rb!5Trb~Ŵ Ĝ0~t!Ŵrb!. ~16!

Despite the fact, that the factorized density matrix~12!
was used to obtain the closed integrodifferential equa
~14! for the QDS evolution, the quantum correlations b
tween the QDS and the bath are taken into account pertu
tively. Indeed, the cross-correlations between the QDS
the bath appear due to the interactions between them an
generally strictly proportional to the quadratic power of t
interaction. But the exact kernel in Eq.~10! is already pro-
portional to the second power of the coupling, and, therefo
the effect of the cross-correlations on the dynamics of Q
is retained in Eq.~14! up to their lowest order.

The right-hand side of Eq.~14! contains both an instan
source term due to the initial conditions and the tim
extended sourcez̄(t). Potential renormalization is require
to provide fast decay of the additional source. Indeed,
free propagatorĜ0(t) has the following property

Ĝ0~ t !%0 .
t@tb

ei Ĥts03rb , ~17!

which leads to

z̄~ t ! .
t@tb

Trb~ iŴ rb!ei Ĥts0 . ~18!

Thus, the renormalization of the form,

Ĥ→Ĥ1Trb~Ŵrb!, Ŵ→Ŵ2Trb~Ŵrb!, ~19!
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
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where the trace is taken only over the bath variables, eli
nates the source term on a time scale larger than the qua
correlations lifetimetb . In the following we assume that th
renormalization is done, i.e., that

Trb~Ŵ rb!50. ~20!

Then, the source termz̄(t) is nonzero only in the presence o
the initial correlations between the QDS and the bath a
then rapidly decays at times exceedingtb . We would em-
phasize, however, that the renormalization concerns only
diagonal over bath variables part of the QDS–bath coupli
which does not induce transitions between bath states.

The derived non-Markovian master equation~14! for the
reduced density matrix can be solved via Fourier transfo
method, which yields algebraic equation of the form,

ivs̃~v!1 i @Ĥ,s̃~v!#1M̂̃~v!s̃~v!5s01 z̃~v!, ~21!

and provided that the Fourier transform of the memory k
nel and of the source term,

M̂̃~v!5E
2`

`

M̂~ t !e2 ivt dt,

~22!

z̃~v!5E
2`

`

z̄~ t !e2 ivt dt

are known. Here

s̃~v!5E
2`

`

s̄~ t !e2 ivt dt ~23!

is the Fourier transform of the reduced density matrix.
Nonetheless, the detailed information about energy l

els of the bath, necessary to determine the bath propag

ei F̂t, is not available for realistic heat reservoirs, especia
in the thermodynamic limit. In reality, the information abo
dynamics of the heat reservoir enters either via the spec
density of the bath or via the autocorrelation function of t
QDS–bath coupling. An explicit evaluation of the memo
kernel~16! in a form suitable to introduce quantum-classic
treatment of the bath is given in the next section.

IV. EVALUATION OF MEMORY KERNEL

The explicit evaluation of the memory kernel~16! is
done assuming a simple~factorized! form of the QDS–bath
coupling HamiltonianŴ, when it can be written as a produc
of two operators which have matrix elements only in t
QDS or the bath subspaces, i.e.,

Ŵ5V̂ B̂, Ŵik
ab5V̂ik B̂ab. ~24!

However, the above assumption is made only to provid
transparent derivation of the kernel structure, while the m
results of the article, see Sec. V, remain valid for the gene
form of Ŵ as well.

Taking into account a bilinear form of the QDS–ba
coupling Hamiltonian~24! and successively applying Eqs
~A9! and ~A13!, we derive from Eq.~16! the following ex-
pression for the integral term on the right-hand si
of Eq. ~14!,
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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E
2`

`

M̂~t!s̄~ t2t!dt

5E
2`

`

u~t!~@V̂,e2 iĤ tV̂ s̄~ t2t!eiĤ t# j 1~t!

2@V̂,e2 iĤ ts̄~ t2t!V̂ eiĤ t# j 2~t!!dt, ~25!

where j 1,2(t) have the sense of the ‘‘quantum’’ correlatio
functions, and are defined as

j 1~t!5
1

Zb
Trb~B̂h~t!B̂h~0!e2F̂/T!,

~26!

j 2~t!5
1

Zb
Trb~B̂h~0!B̂h~t!e2F̂/T!.

Here

B̂h~t!5eiF̂ tB̂ e2 i F̂ t ~27!

is the bath operator in the Heisenberg representation.
The quantum correlation functions are not independe

but related to each other. First,

j 2~t!5 j 1~2t!. ~28!

The second relation is established using the two-sided F
rier transform, i.e., when we consider the entire time ax
including negative times. It gives25

j̃ 2~v!5ev/T j̃ 1~v!, ~29!

where

j̃ 1,2~v!5E
2`

`

j 1,2~t!e2 ivt dt. ~30!

Mathematical proofs of Eqs.~28! and ~29! are given in Ap-
pendix B. The established relation~29! allows to rewrite the
Fourier transform of Eq.~25! solely via j̃ 1(v). The resulting
expression takes the form,

M̂̃~v!s̃~v!5(
k,m

~@V̂,P̂kV̂s̃~v!P̂m#2@V̂,P̂ks̃~v!V̂P̂m#

3e(v1vkm)/T! j̃ 1~v1vkm1 i«!, «→10.

~31!

Here we used the following identity for the operator exp
nent:

e6 iĤ t[(
n

P̂ne6 iEnt, ~32!

whereP̂n are the projector operators on the eigenstates of
QDS Hamiltonian, whileEn are the corresponding eigenva
ues, i.e.,

P̂n5un&^nu, Ĥun&5Enun&, vkm[Ek2Em . ~33!

In principle, Eqs.~21! and~31! are sufficient to describe
the kinetics of the QDS relaxation towards to its Boltzma
equilibrium, if j̃ 1(v) is known. For the spin-boson mode
and when the spectral density of the bath has smooth oh
form with frequency cutoffvc ,26 it is of the form
Downloaded 03 Jun 2010 to 134.76.223.56. Redistribution subject to AIP
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j̃ 1~v!5
2 p h v e2uvu/vc

12e2v/T , ~34!

whereh is a phenomenological friction coefficient. Howeve
in case the bath is treated classically, e.g., by molecular
namics methods, the information aboutj̃ 1(v) is not imme-
diately available, since the quantum correlation functio
j 1,2(t), defined by Eqs.~26!, do not have classical analog
Indeed, the quantum correlation functions are defined on
entire time axis~including negative times!, and are the aver-
ages of the corresponding time-ordered products of the b
operators. This is in contrast to the classical correlation fu
tions, which are defined from a given moment of time, p
viding the retarded or the advanced evolution. Besides, in
classical limit bath operators commute with each other, a
therefore, the time-ordered averages~26! do not have classi-
cal counterparts.

Nevertheless, the memory kernel can be rewritten us
quantities which may be directly identified with the classic
correlation functions. For this purpose we introduce the sy
metrized correlation functionJ~t! along the entire time axis

J~t!5~ j 1~t!1 j 2~t!!/2, J~2t!5J~t!, ~35!

where the last property follows from Eq.~28!, and the cor-
responding retarded and advanced correlation functions,

J̄ret~t!5u~t!J~t!, J̄adv~t!5u~2t!J~t!, ~36!

which possess all necessary properties to be identified
the classical correlation functions. The Fourier transform
Eq. ~35! gives

J̃~v!5~11ev/T! j̃ 1~v!/2,
~37!

J̃~v!5E
2`

`

J~t!e2 ivt dt,

where we have also used Eq.~29!. Thus, the Fourier trans
form of the quantum correlation functionj̃ 1(v) is expressed
via the Fourier transform of the symmetrized correlati
function J̃(v) as

j̃ 1~v!5
2J̃~v!

11ev/T . ~38!

Substituting Eq.~38! into Eq. ~31! we obtain

M̂̃~v!s̃~v!5(
k,m

S @V̂,P̂k@V̂,s̃~v!# P̂m#2tanhS v1vkm

2T D
3@V̂,P̂k@V̂,s̃~v!#1P̂m# D J̃~v1vkm1 i«!,

~39!

where@ . . . , . . .#1 denotes anticommutator.
The derived non-Markovian master equation for the

duced density matrix of the QDS, given by Eqs.~21! and
~39!, is based on the quantum-mechanical description bot
the QDS and the bath. However, unlike Eq.~31!, it allows for
classical treatment of the bath degrees of freedom. In
case the Fourier transform of the symmetrized correlat
function is replaced by its classical analog,27 i.e.,
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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J̃~v!5J̃ret~v!1J̃adv~v!→J̃ ret
classical~v!1J̃ adv

classical~v!.
~40!

It is a matter of common knowledge, that all mixe
quantum-classical treatments use some uncontrolled app
mations and are not equivalent. Thus, the formulation of
quantum-classical approximation presents a big challen
However, the identification of the symmetrized correlati
function with the sum of classical correlation functions~40!
seems to be a quite natural way to introduce classical
scription of the bath degrees of freedom. Finally, Eqs.~21!,
~39! can be used if the bath is treated both quantu
mechanically and classically. In the former case, the Fou
transform of the symmetrized correlation function is e
pressed via the known Fourier transform of the quantum c
relation function j̃ 1(v) using Eq.~37!, while in the latter
case it is replaced by the sum of Fourier transforms of
classical correlation functions~40!.

The derived Eq.~39! effectively decouples the statistica
and the dynamical properties of the heat reservoir. T
former enter via universal~dynamics independent! function
of the temperature, while the information about bath dyna
ics is contained in the Fourier transform of the symmetriz
correlation functionJ̃(v) which, however, implicitly de-
pends on the temperature as well. Thus, the classical t
ment is introduced only to describe the dynamical proper
of the heat reservoir, while the statistical properties of
bath are taken into account quantum-mechanically.

V. DIFFERENTIAL FORM OF THE
QUANTUM-CLASSICAL APPROXIMATION

Although the non-Markovian master equation~14! can
be directly solved by the Fourier transform technique, it
not convenient for practical purposes. First of all, in order
solve Eq. ~21! one requires to find the inverse Liouvill
space operator, and the unfavorable scaling~the dimension-
ality of the Liouville space operators isN23N2, N is the
number of the states in the QDS! makes it possible only for
rather small systems. Besides, the solution has to be fo
for many distinct values of the Fourier transform parame
v, for the subsequent use in the inverse transform to res
the kinetics.

The reduction of the non-Markovian master equation
a Markovian one usually calls for some additional appro
mations and can be done in several ways. The most pop
approximation utilizes fast decay~on the time scalet;tc ,
where tc is the characteristic correlation time! of the bath
correlation function, and requires weak effect of the QD
bath interactions on the time scale oftc . Then, the following
approximation:

s̄~ t2t!.e2 i Ĥts̄~ t !5eiĤ ts̄~ t !e2 iĤ t ~41!

can be made in the integral term of Eq.~14!, which result in
the Markovian master equation@contribution from the initial
correlationsz̄(t) can be neglected for large times as well# of
the form,
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ds̄~ t !

dt
5d~ t !s02 i @Ĥ,s̄~ t !#2R̂ s̄~ t !,

~42!

R̂5E
2`

`

M̂~t!e2 i Ĥt dt, t@tc ,

well known as the Redfield theory. It can be directly solv
in the time domain, and, besides, the explicit construction
the full Redfield tensorR̂ can be avoided,5 which allows
application to a fairly large QDSs. The deficiency of th
Redfield approach concerns its rather severe restricti
both for the allowed strength of the system–bath interacti
and for the applicability time scale (t@tc). Many processes
in condensed phase, however, occur in a subpicosecond
period, while the shortest~rotational! classical correlation
times are usually about ten picoseconds. The non-Markov
master equation, Eqs.~21! and ~31!, allows for a larger
strength of the QDS–bath interaction and is valid for shor
times as well. In the case, when the bath is treated classic
it can be reduced to the differential form without narrowin
the applicability limits.

As it was pointed out in Sec. IV, Eq.~39! effectively
decouples the statistical and the dynamical properties of
heat reservoir. The information about the statistical prop
ties enters via dynamics independent function of the te
perature, which has the following forms in the time and t
Fourier domains,

f b~ t !5
1

ptb

1

sinh~ t/tb!
, tb5

1

pT
,

~43!

f̃ b~v!5 i tanhS v

2TD .

The generalized memory kernelf b(t), defined by Eq.~43!,
has a singularity att50 and sharply decays at longer time
with the characteristic timetb , see Fig. 2. It describes th
decay of the QDS–bath cross-correlations at the expens
the phase cancellation process due to the energy dispe
of the degrees of freedom of the canonical bath. The cha
teristic time tb was estimated in Sec. II to be;1/T (\
5kB51), while the accurate expression~43! yields an even
shorter lifetime of the quantum correlations. At room tem
perature (T5300 K), one hastb58 fs.

FIG. 2. Time behavior of the generalized kernelf b(t), defined by Eq.~43!.
It has singularity;1/t at t→0 and decays exponentially att→6`.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Then, the first term in the right-hand side of Eq.~39! can
be interpreted as a high temperature limit, when the ene
dispersion of the bath degrees of freedom is so large, tha
quantum correlations decay instantly~the Fourier transform
of d-function is constant, and is independent onv!. The sec-
ond term in the right-hand side of Eq.~39! accounts for the
finite lifetime of the quantum correlations, and the function
form of f b(t) is similar to the derivative ofd-function, but
has a finite width oftb .

The high temperature limit term describes irreversi
evolution, while the other term in the right-hand side of E
~39! accounts for the reversibility of the dynamics on t
time scaletb of the quantum correlations decay. Indeed, o
the Fourier transform of the retarded correlation funct
contributes to the high temperature part of the memory k
nel M̂(t.0), since the Fourier transform of the advanc
correlation function does not have singularities in the up
plane of the complex surface. The situation is quite differ
for the other term in Eq.~39!, as f̃ b(v) has own singularities
in the upper plane atvn52p i (n11/2)T, (n50,1,2,. . . )
and both the Fourier transform of the retarded and the
vanced correlation functions contribute to the inverse Fou
transform in the vicinities ofvn .

The assumption of the weak cross-correlations betw
the QDS and the bath, employed in the present article,
quires that the matrix elements of the QDS–bath interac
satisfy the condition,

uŴik
abutb5

uŴik
abu

pT
!1, iÞk, aÞb, ~44!

where the temperature and the QDS–bath coupling ar
frequency units. But it also means, that the evolution of
density matrix s̄(t) is weakly affected by the QDS–bat
interaction on the time scale of the quantum correlations
caytb , and the main effect of the QDS–bath coupling tak
place at timest@tb . Then, the second term on the righ
hand side of Eq.~39! can be further simplified as follows
First, we use the identity,

f̃ b~v1vkm!@V̂,P̂k@V̂,s̃~v!#1P̂m#

5E
2`

`

e2 ivtE
2`

`

f b~t!@V̂,P̂ke2 iĤ t

3@V̂,s̄~ t2t!#1eiĤ tP̂m#dt dt, ~45!

and expands̄(t2t) in the vicinity of t;0 using the fast
decay of the kernelf b(t). Note, that the off-diagonal ele
ments of the density matrix may evolve fast compared
1/tb , since the splittings between QDS levels can be a
trary. Hence, we expand the density matrix in the interact
representations̄ i , which is related tos̄ as

s̄ i~ t !5eiĤ ts̄~ t !e2 iĤ t, s̄~ t !5e2 iĤ ts̄ i~ t !eiĤ t, ~46!

to get
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s̄~ t2t! .
t;tb

e2 iĤ (t2t)S s̄ i~ t !2t
ds̄ i~ t !

dt DeiĤ (t2t)

5eiĤ tS s̄~ t !2 i @Ĥ,s̄~ t !#t2
ds̄~ t !

dt
t De2 iĤ t. ~47!

The obtained expansion is similar to Eq.~41!, but is more
accurate. The role of the additional terms in Eq.~47!, which
account for an early non-Markovian evolution of the dens
matrix, is explained later in this article.

Substitution of Eq.~47! in the right-hand side of Eq.~45!
eliminates convolution, which gives

f̃ b~v1vkm!@V̂,P̂k@V̂,s̃~v!#1P̂m#

.@V̂,P̂k~@Û,s̃~v!#1

1@Ŷ,i @Ĥ,s̃~v!#1 iv s̃~v!#1!P̂m#, ~48!

where

Û5E
2`

`

f b~t!e2 iĤ tV̂eiĤ t dt5 i(
k,m

tanhS vkm

2T D P̂kV̂P̂m,

~49!

and

Ŷ52E
2`

`

t f b~t!e2 iĤ tV̂eiĤ t dt5
1

2T (
k,m

P̂kV̂P̂m

cosh2S vkm

2T D .

~50!

Thus, Eq.~39! can be simplified to give

M̂̃~v!s̃~v!.(
k,m

@V̂,P̂k~@V̂,s̃~v!#1 i @Û,s̃~v!#1

1 i @Ŷ,i @Ĥ,s̃~v!#

1 iv s̃~v!#1!P̂m#J̃ret~v1vkm!, ~51!

which serves as a basis for the subsequent considerat
Here we replaced the Fourier transform of the symmetri
correlation function by the Fourier transform of the retard
correlation function, see discussion above Eq.~44!. In other
words, on the time scalet@tb the dynamics becomes irre
versible, which is related to the decay of the quantum co
lations.

Sometimes memory-type equations can be reduced
set of auxiliary differential equations. For a spin-bos
model and exponentially decaying kernel an equivalent se
differential equations was obtained in Refs. 7, 8. Below
derive differential form of NQCA for a more general case.
the classical limit Eq.~24! takes the form,

Ŵ~q!5V̂ B~q!, E B2~q!dq51, ~52!

where the normalization condition was introduced for t
sake of conveniency, while the correlation function of t
bath operators is determined via the two-dimensional pr
ability densityP(q,q0 ;t) of generalized coordinateq at time
t, given coordinateq0 at the initial instant of time. Here and
below q denotes the generalized set of coordinates, spec
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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ing the state of the system in its phase space, e.g., it
involve momenta of motion as well. Then, the classical c
relation function is defined as

J̄ret~t!5E E B~q!P̄~q,q0 ;t!B~q0! dq dq0 , ~53!

where we extended the definition ofP(q,q0 ;t) to negative
times via the Heavisideu-function, i.e.,

P̄~q,q0 ;t!5u~t!P~q,q0 ;t!. ~54!

In turn, the two-dimensional probability densityP̄(q,q0 ;t)
satisfies the classical equation of motion of the form

]

]t
P̄~q,q0 ;t!5LqP̄~q,q0 ;t!1d~ t !d~q2q0!, ~55!

whereLq is the linear functional operator, defining the ev
lution of the system in its phase space. In particular, for
simplest case, corresponding to stochastic jumps of infi
length, one has

Lq51/tc , P̄~q,q0 ;t !5u~ t !e2t/tcd~q2q0!. ~56!

Heretc is the characteristic time between the jumps.@For the
stochastic jumps of finite length there always exists a dif
sional tail at long times, and the ‘‘infinite’’ means that w
restrict ourselves to the exponential part inP̄(q,q0 ;t).]

Then Eqs.~21! and ~51! are equivalent in the time do
main to the following set of differential equations,

ds̄~ t !

dt
5d~ t !s01 z̄~ t !2 i @Ĥ,s̄~ t !#2 i E @Ŵ~q!,h̄~q,t !#dq,

~57!

]h̄~q,t !

]t
52 i @Ĥ,h̄~q,t !#2 i @Ŵ~q!,s̄~ t !#1@Û~q!,s̄~ t !#1

1F Ŷ~q!,i @Ĥ,s̄~ t !#1
ds̄~ t !

dt G
1

1Lqh̄~q,t !, ~58!

whereh̄(t) is an auxiliary matrix with the same dimensio
ality as the QDS density matrixs̄(t), and

Û~q!5 i(
k,m

tanhS vkm

2T D P̂kŴ~q!P̂m,

~59!

Ŷ~q!5
1

2T (
k,m

P̂kŴ~q!P̂m

cosh2S vkm

2T D ,

see also Eqs.~49! and ~50!. The mathematical proof of the
equivalence of Eqs.~57!, ~58!, and ~21!, ~51!, where the
retarded correlation function is identified with its classic
analog~53!, is given in Appendix C. Despite the fact that
simple factorized form of the QDS–bath coupling Ham
tonian ~24! was used to obtain Eqs.~57! and ~58!, they are
valid for arbitrary~nonfactorized! forms of Ŵ(q).

For the following it is convenient to rewrite Eqs.~57!
and ~58! in terms of conventional~nongeneralized! func-
tions. The resulting equations take the same form, but w
out instant source terms, which are replaced by the in
conditions att50, that is fort.0 one gets
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ds~ t !

dt
5z~ t !2 i @Ĥ,s~ t !#2 i E @Ŵ~q!,h~q,t !#dq, ~60!

]h~q,t !

]t
52 i @Ĥ,h~q,t !#2 i @Ŵ~q!,s~ t !#1@Û~q!,s~ t !#1

1F Ŷ~q!,i @Ĥ,s~ t !#1
ds~ t !

dt G
1

1Lqh~q,t !, ~61!

with the initial conditions,

s~ t50!5s0 , h~q,t50!5@Ŷ~q!,s0#1 , ~62!

where nonzero initial conditions for the auxiliary matrixh
arise from instant source term in Eq.~58!, provided by the
time derivative on its right-hand side. The initial condition
for auxiliary matrix accounts for the early (t&tb) non-
Markovian evolution, and their role is well demonstrated
Sec. VII. Note, however, that there also exists correspond
term in the right-hand side of Eq.~61!. Thus, the account for
the initial non-Markovian stage is reflected both in t
‘‘slipped’’ initial conditions and in the structure of the relax
ation operator as well. For example, the Redfield theory
modified by using expansion~47! at t;tc in Eq. ~14!, which
replaces Eq.~42! by

ds~ t !

dt
52 i @Ĥ,s~ t !#2~11R̂s!

21R̂ s~ t !, t@tc ,

~63!

with the new ‘‘slipped’’ initial conditions,

s0→~12R̂s!s0 . ~64!

Here we have used conventional~nongeneralized functions!,
the relaxation operatorR̂ is defined as before, see Eq.~42!,
while the ‘‘slippage’’ operator is of the form,

R̂s52E
2`

`

tM̂~t!e2 i Ĥt dt. ~65!

Thus, both the initial conditions and the relaxation opera
are modified if the early time evolution is accounted for, an
therefore, the problem cannot be reduced just to
‘‘slipped’’ initial conditions.

The differential quantum-classical formulation in for
of the two auxiliary local-time equations~60! and ~61! uti-
lizes approximations only with respect to the characteris
time tb , but fully retains memory effects due to the dynam
ics of the classical degrees of freedom. In other words, i
not the same as Redfield theory, which is Markovian w
respect to the entire memory effects. Needless to say, tha
Redfield approach is more restrictive. On the other hand,
formulation provides an efficient quantum-classical tre
ment with a wide range of applicability and fully accoun
for the memory effects due to the dynamics of the class
degrees of freedom without solution of the integrodifferent
memory type equations.

The information about memory effects on the QDS ev
lution is coded in the matrix elements of the auxiliary mat
h(t) @it cannot be called ‘‘auxiliary density matrix’’ since th
trace of h(t) is not conserved#. Note, however, thath(t)
contains information only about correlations specific to t
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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given QDS–bath coupling, while the source termz(t) in Eq.
~60! may reflect arbitrary types of initial correlations. Th
propagation of the QDS density matrix can be restarted
any time, provided that the matrix elements ofh are known.

The restriction of the time scale (t@tb), employed to
obtain differential NQCA given by Eqs.~60!–~62!, is not a
serious limitation, since the bath degrees of freedom
treated classically. Strictly speaking, the classical descrip
of the bath modes at very short times (t&tb) cannot be
justified. In other words, the parametertb determines the
boundary between the time scales, when the bath beh
itself as a quantum-mechanical@ t!\/(kBT)# or a classical
@ t@\/(kBT)# system. Thus, the NQCA implicitly assume
the applicability time scalet@tb , and, in this sense, Eqs
~60!–~62! have the same applicability range as the no
Markovian quantum-classical approximation in form of Eq
~21!, ~39!–~40!.

Although Eqs.~57! and ~58! are local-time differential
equations which can be directly solved in time domain wi
out constructing/diagonalizing Liouville space operato
their practical applications are complicated by the neces
to solve the partial differential equation~58!, which requires
additional grids over phase space coordinates. Neverthe
application of MD methods to model the bath dynamics
solves the problem, as it will be shown in subsequent arti

VI. NQCA AND BASIC PROPERTIES
OF THE DENSITY MATRIX

The differential NQCA in the form of the two auxiliary
differential equations~60! and~61! preserves the basic prop
erties of the density matrix. First of all, the trace ofs(t) is
conserved, since the traces from the commutator terms
the right-hand side of Eq.~60! are identically zero. The sam
is true for the trace of the time-extended source termz(t), as
it is of a commutator form as well, see Eq.~15!. Second, the
Hermiticity of s(t) is also preserved, as it can be seen
taking the Hermitian conjugate of the equations and us
the properties (ÂB̂)†5B̂†Â† @operatorsÛ(q) andŶ(q), de-
fined in Eq.~59!, are Hermitian#.

The last required property, namely, the positive defin
ness of the diagonal elements ofs(t) ~positivity! is difficult
to prove in a general case. Nevertheless, for the simple
ample, considered in Sec. VII, the positivity breakdown h
happened only when using parameter values outside the
plicability range of the developed approach. This raises
question, whether the positivity breakdown can occur ins
the applicability range of the differential NQCA, or not. I
the latter case the more general integrodifferential formu
tion of NQCA, see Eqs.~21!, ~39!–~40!, is likely to resolve
the problem, but at the same time is more difficult for t
numerical solution.

The properties discussed above must be fulfilled for a
density matrix. The suggested NQCA additionally preser
the detailed balance principle, i.e., the Boltzmann equi
rium is established between all levels, involved in the rel
ation. Indeed, the stationary solution of the Eqs.~60! and
~61! requiresz5h50 and

@Û~q!,s#15 i @Ŵ~q!,s#. ~66!
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Substituting the QDS density matrix, corresponding to
Boltzmann equilibrium one, i.e.,s5exp(2Ĥ/T), and using
the definition ofÛ(q), see Eq.~59!, we get from Eq.~66! the
following relation to prove

i(
k,m

tanhS vkm

2T D P̂kŴ~q!P̂m~e2Em /T1e2Ek /T!

5 i(
k,m

P̂kŴ~q!P̂m~e2Em /T2e2Ek /T!, ~67!

where we have also used the identity,

Ŵ~q![(
k,m

P̂kŴ~q!P̂m. ~68!

HereP̂n andEn are the projector operators on the eigensta
of the QDS Hamiltonian and the corresponding eigenvalu
respectively, see Eq.~33!. Relation~67! holds for any term in
the sum, i.e., at fixed indicesk, m, since

e2Em /T2e2Ek /T

e2Em /T1e2Ek /T [tanhS vkm

2T D . ~69!

Thus, the Boltzmann equilibrium density matrix is indeed t
stationary solution to Eqs.~60! and ~61!.

Using the semigroup approach originating from Lin
blad’s work,28 it has been shown that the Markovian mas
equation, which preserves positivity and satisfies the tran
tional invariance, is incompatible with the approach to t
canonical equilibrium state.29 This is well known fact in
Redfield theory, which may violate the positivity of the de
sity matrix for some extreme, but physically admissible in
tial conditions.4,30–32 It was also demonstrated,31 that the
breakdown of the positivity in the Redfield master equat
arises from the lack of memory effects in the early tim
evolution. In other words, at the initial non-Markovian sta
of the density matrix evolution the initial conditions a
mapped into those for which Markovian master equation p
serves positivity. For the spin-boson model the problem
be overcome by construction of a ‘‘slippage’’ operator whi
prepares the ‘‘slipped’’ initial conditions for the Markovia
master equation and incorporates the effect of the short-t
evolution of the density matrix.21,31 Nevertheless, there is n
general proof that the ‘‘slipped’’ initial conditions preserv
positivity of the Redfield theory. Moreover, a proper accou
for the short-time evolution of the density matrix leads to t
modification of the relaxation operator as well, see Sec.

The problem of handling the initial correlations is we
known in nonequilibrium statistical mechanics.33 It was
shown, that for a wide class of dynamic systems in the th
modynamical limit there exists a so-calledP-operator of
subdynamics, which projects correlations onto the two s
spaces, invariant with respect to the time evolution. The ti
evolution in theP-subspace satisfies the Markovian mas
equation, which is exact on the entire time axis, while ev
lution in the complimentary subspace is of rather comp
cated character.33 The factorized initial state has common
components in both subspaces, while the Markovian ma
equation description is valid only for particular initial corre
lations. The ‘‘slippage’’ operator21,31 can be considered a
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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some analog ofP-operator for the spin-boson model, pr
jecting the initial state onto the subspace, which allows
curate description by the Markovian master equation.

Thus, at short times the description of the QDS evolut
via local-time differential equations is, in general, not val
The duration of this initial stage depends on the method
use, and is defined bytb for the suggested differentia
NQCA, while being correlation timetc of the bath for the
Redfield theory. None the less, even iftc,tb the description
of the QDS evolution by the Markovian master equation p
vided by the Redfield theory is accurate only for the tim
t@tb . Indeed, for ad-correlated bath the Fourier transfor

of the symmetrized correlation functionJ̃(v)5const, but
Eq. ~39! still contains the memory kernel describing the d
cay of the quantum correlations on the time scale oftb .
Therefore, the assumption of ad-correlated bath is not suffi
cient to obtain a Markovian master equation in the case
finite temperature of the heat reservoir. The dynamical
the statistical properties of the bath are not independent,
related to each other. Increasing the temperature of the
reservoir changes the equilibrium distribution over the b
states which, in turn, accelerates the dynamics of the b
and vice versa. In this sense, the assumption of ad-correlated
bath implicitly assumes the infinite temperature of the ba
whentb→0 and the Redfield master equation is of Lindbl
form.

The factorized initial conditions for the differentia
NQCA eliminate the time-extended source termz(t) from
Eq. ~60!. Nevertheless, at short timest;tb some specific
correlations between the QDS and the bath are form
which is reflected in the creation of nonzero elements of
auxiliary matrixh(t). The suggested NQCA is automatical
supplied by such ‘‘slipped’’ initial conditions, given by Eq
~62!. The ‘‘slippage’’ consistently vanishes atT→` as the
duration of the initial stage tends to zero in this limit. Th
role of the ‘‘slipped’’ initial conditions~62! is well demon-
strated in Sec. VII, but anyway it is difficult to prove th
they guarantee the positivity even within the applicabil
limits of the suggested NQCA.

The short-lifetime quantum correlations between
QDS and the bath play a decisive role for the establishm
of the Boltzmann equilibrium~the detailed balance! between
energy levels of the QDS in the course of time. The quant
phase, responsible for the dynamic transitions between
ergy levels, oscillates with the frequency corresponding
the energy difference. When this frequencyvkm is small
compared to the inverse quantum correlations lifetime 1tb

~or whenvkmtb!1), the QDS does not ‘‘feel’’ the quantum
state of the bath, and the relaxation proceeds in the direc
of level equilibration~in that caseÛ;0). In the opposite
situationvkmtb*1, however, phase evolves on a time sc
comparable or shorter thantb , and the transitions accoun
for the quantum state of the bath, which results in deta
balance between the levels. For the canonical bathtb

;\/(kBT), which means equilibration between levels wi
DE/(kBT)!1, and the detailed balance between levels w
DE/(kBT)*1. In other words, the information about qua
tum state of the bath is transferred into the QDS via th
short-lifetime quantum correlations.
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VII. TWO-LEVEL SYSTEM AND A SINGLE
CORRELATION TIME BATH

In order to test the suggested differential NQCA, w
consider a simple case of a two-level quantum-dynam
subsystem, coupled to a single correlation time canon
bath. In that caseLq51/tc , and Eqs.~60! and ~61! can be
reduced to twoordinary differential equations,

ds~ t !

dt
52 i @Ĥ,s~ t !#2 i @V̂,h~ t !#, ~70!

dh~ t !

dt
52 i @Ĥ,h~ t !#2 i @V̂,s~ t !#1@Û,s~ t !#1

2 i @Ŷ,@V̂,h~ t !##12h~ t !/tc , ~71!

with the initial conditions,

s~ t50!5s0 , h~ t50!5@Ŷ,s0#1 . ~72!

Here, for the simplicity, we assumed thatŴ(q) has factor-
ized form ~52!, so thatÛ and Ŷ are given by Eqs.~49! and
~50!, respectively, and we also explicitely substituted tim
derivative in the right-hand side of Eq.~71!.

Then, the Hamiltonian of the QDS and the QDS part
the coupling are chosen to be

Ĥ5
1

2 S 2v0 0

0 v0
D , V̂5

1

2 S 0 V0

V0 0 D , ~73!

and, therefore,

Û5
1

2
tanhS v0

2TD S 0 2 iV0

iV0 0 D ,

~74!

Ŷ5
1

4T

1

cosh2S v0

2TD S 0 V0

V0 0 D .

First of all, we consider the case of zero splitting b
tween levels (v050) and infinite temperature of the bath. I
that caseĤ50, Û5Ŷ50 and the relaxation regimes ar
distinguished by the value of the dimensionless param
a5V0tc . There exists a simple analytical solution for th
limiting case under consideration. It is of the form,

n~ t !5n0 e2t/(2tc)S cosh~lt !1
sinh~lt !

2ltc
D , ~75!

where

n~ t !5s11~ t !2s22~ t !,
~76!

l5
A124a2

2tc
.

4a2!1

1

2tc
2V0

2tc , a5V0tc .

Figures 3, 4 show the kinetics of the relaxation for thr
different values of the parametera, and the initial condition
n051. In the first casea50.1, which corresponds to th
applicability range of Redfield theory@when the parameterl,
defined in Eq.~76!, can be expanded#, the kinetics has expo
nential character~with a relaxation rate equal toV0

2tc

50.01tc), Fig. 3. In the second and the third casesa51 and
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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a510, respectively, and Redfield theory cannot be appl
The parameterl becomes complex and the kinetics exhib
transient oscillations, while the relaxation time scale is in
pendent of the QDS–bath coupling strength for 4a2.1 and
is determined by the correlation time, see Fig. 4.

Next we consider the situation where the splitting b
tween levels is large enough to exhibit a considerable B
zmann equilibrium population difference. Figure 5 shows
kinetics of the relaxation fortc51.27 ps, v0tc5100,
V0 /v050.2, and different temperatures of the heat reserv
indicated in the figure. Two stages in the relaxation kinet
are clearly seen, at the initial non-Markovian staget&tc

there appear transient oscillations, while on a longer ti
scalet*tc the kinetics turns to be exponential. In the case
finite temperature of the bath the QDS relaxes to its can
cal equilibrium state, while in the case of infinite temperatu
of the bath the levels are equilibrated in the course of re
ation. ForT5150 the QDS–bath coupling strength satisfi
V0tb/250.13!1, and, therefore, the applicability criterio
~44! is fulfilled.

It was pointed out several times, that the initial con
tions of the form,

s115s225s125s2151/2 ~77!

FIG. 3. Relaxation kinetics of the population difference for the applicabi
region of Redfield theory,T5`, v050, V0tc50.1!1, and n051. The
kinetics is exponential with the decay rate equal toV0

2tc .

FIG. 4. Relaxation kinetics of the population difference beyond the ap
cability limits of Redfield theory. The parameters are:T5`, v050, n0

51, andV0tc51 ~dashed line! or V0tc510 ~solid line!.
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may serve as a good test of the quality of the quantu
classical equations.34,35 The attention in this case should b
focused on the fundamental von Neumann condition for
density matrix elements,

s11s22>us12u2, ~78!

which guarantees absence of negative eigenvalues of
density matrix of a two-level QDS~positivity!. Figures 6–8
show the value,

g~ t !5
us12~ t !u2

s11~ t !s22~ t !
~79!

as a function of time, and the condition~78! means 0
<g(t)<1. Figures 6 and 7 demonstrate the role of the init
conditions~72! for the auxiliary matrixh. The initial condi-
tions for thes are taken from Eq.~77!, while the elements of

i-

FIG. 5. Relaxation kinetics of the population difference in a weak coupl
limit. The parameters aretc51.27 ps,v0tc5100, V0 /v050.2. The initial
conditions for the density matrix are of the forms22(0)51, s11(0)
5s12(0)50 (n0521), while the corresponding initial conditions for th
auxiliary matrixh are taken from Eq.~72!. For the infinite temperature o
the bath~solid line! relaxation proceeds in the direction of the levels equ
bration, while in the case of finite temperature of the heat reservoir~dashed
and long dashed lines! the QDS relaxes towards the canonical equilibriu
state.

FIG. 6. Demonstration of the effect of the initial conditions for the auxilia
matrix h. Time evolution of the parameterg(t), see Eq.~78!, is shown,g
.1 andg,0 indicate positivity breakdown. Solid line corresponds to t
‘‘slipped’’ initial conditions, defined by Eq.~72!, while dashed line corre-
sponds to a zero auxiliary matrix at the initial instance of time~neglect of
the memory effects from the earlier time evolution!. The parameters are
v051014 rad/s,V051.5 v0 , tc510214 s, T5300 K. The initial conditions
for the density matrix are taken from Eq.~77!.
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the auxiliary matrix at the initial instant of time are dete
mined either from Eq.~72! ~‘‘slipped’’ initial conditions! or
set to zero. In the former case~solid line! 0<g(t)<1, while
in the latter case~dashed line! the positivity is violated, see
Figs. 6 and 7. The parameter values are indicated on
figure captions. Thus, the neglect of the memory effects
the early time evolution (t&tb) may indeed lead to the pos
tivity breakdown.

In the simple cases, considered above, the NQCA wi
‘‘slipped’’ initial conditions ~72! preserved the positivity
Nevertheless, the suggested NQCA does not preserve
tivity by construction, unlike the Lindblad master equatio
Figure 8 shows the time evolution of the parameterg(t)
increasing the QDS–bath coupling strengthV0/2. It is
readily seen, that the ‘‘slipped’’ initial conditions~72! pre-
serve positivity only within the applicability range~44! of
the developed approach, which for the model under con
eration isV0tb/2!1.

VIII. CONCLUSION

A quantum-classical approximation, capable to descr
the evolution of quantum-dynamical subsystem coupled w
dissipative environment well beyond the applicability lim
of Redfield theory was suggested. It fully accounts for
arbitrary long memory of the heat reservoir, but is of diffe
ential form. The theory utilizes the fast decay of the cro
correlations between the quantum-dynamical subsystem
the bath provided by the energy dispersion of the bath
grees of freedom. This lifetime is proportional to the inver
temperature of the heat reservoir~at room temperature it is 8
fs! and allows to study various relaxation processes sinc
subpicosecond time range. The short-lifetime ‘‘quantu
correlations, however, are responsible for the establishm
of the canonical equilibrium~the detailed balance! between
energy levels of open quantum system, and are taken
account.

In recent years there has been an extensive discussio
the different approaches to the quantum dissipation in c
nection to the Lindblad master equation, see Ref. 36.
have shown, that for the case of finite temperature of the h
reservoir, a master equation for the reduced density ma
becomes non-Markovian even for ad-correlated bath. Due to

FIG. 7. Same as Fig. 6, but with 10 times longer correlation time, i.e.tc

510213 s.
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a principal impossibility of Markovian description at time
t&\/(kBT) the differential master equation approaches m
lead to the positivity breakdown for some extreme but phy
cally allowed initial conditions. Hence, the Lindblad form o
master equation, which preserves positivity by constructi
is not adequate for the case of finite temperature of the b

The use of differential description on the time sca
larger than the lifetime of the quantum correlations, requi
a proper account for an early time evolution to preserve p
tivity of the density matrix, and the developed approach
automatically supplied by such a ‘‘slipped’’ initial cond
tions. We also suggested the corresponding improvemen
the Redfield theory, where both the initial conditions and
relaxation operator are modified. Simple example of a tw
level quantum subsystem coupled to a single correlation t
canonical bath well served to explore capabilities of the
veloped method, while applications to multilevel systems
practical interest together with molecular dynamics te
nique to simulate the bath dynamics are considered in
subsequent article.
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APPENDIX A: LIOUVILLE SPACE FORMULATION

The Liouville–von Neumann equation for the dens
matrix ~3! can formally be written in a form similar to the
Schrödinger equation in several ways. First, one can int
duce a vector withN2 (N is the number of the states, in
cluded into consideration! elements, composed of the matr
elements of the density matrix. Then the operators in
right-hand side of Eq.~4! become regular linear operato
~matrices! in the Hilbert space, and with the dimensionali
N23N2. This approach is widely used in numerical calcu
tions. Second, one can use the so-called Liouville space
erators~superoperators!. In the latter case a matrix algebra
simply replaced by a tensor algebra, i.e., operators in Eq.~4!
become tensors.

FIG. 8. Demonstration of the positivity breakdown outside applicabil
limits of the developed approach. All parameter values are the same a
Fig. 6, except the values of the QDS–bath coupling strengthV0/2, indicated
in the figure (tb58 fs).
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For our purposes we use Liouville operators in the ba
of direct product between QDS and bath states. Matrix e
ments between QDS states are denoted by the lower L
indices, while matrix elements between bath states are
noted by the upper Greek letters. Thus, the Liouville ope
tors are tensors of rank 8, and their matrix elements are
pressed via matrix elements of the corresponding Hilb
space operators by the following formulas:

Hik; lm
ab;mn5Hmk

nbd i l dam2Hil
amdkmdbn , ~A1!

Fik; lm
ab;mn5Fmk

nbd i l dam2Fil
amdkmdbn , ~A2!

Wik; lm
ab;mn5Wmk

nbd i l dam2Wil
amdkmdbn , ~A3!

where

d i j 5H 1 i 5 j ,

0 iÞ j ,
~A4!

is the Kronecker delta. The QDS HamiltonianĤ has only
diagonal matrix elements between bath states, while the
HamiltonianF̂ is diagonal between QDS states, i.e.,

Hmk
nb5Hmkdnb , Fmk

nb5Fnbdmk . ~A5!

The product of two Liouville operators is defined as

~Â B̂! ik; lm
ab;mn5 (

j ,n;jh
Aik; jn

ab;jhBjn; lm
jh;mn , ~A6!

while the operation of the Liouville operator on the dens
matrix is given by

~Â% ! ik
ab5 (

l ,m;mn
Aik; lm

ab;mn% lm
mn . ~A7!

Unity operator 1ˆ is defined as usual,

Â 1̂51̂ Â5Â, 1ik; lm
ab;mn5d i l dkm dam dbn . ~A8!

It can easily be seen, that for the Liouville operators, defin
by Eqs.~A1!–~A3! one has

iŴ%52 i @Ŵ,%#, ~A9!

i.e., they are ‘‘commutator derived superoperators.’’ Inde
from Eqs.~A3! and ~A7! one has

i ~Ŵ% ! ik
ab5 i (

l ,m;mn
~Wmk

nbd i l dam2Wil
amdkmdbn!% lm

mn

5 i(
m;n

% im
anWmk

nb2 i(
k;m

Wil
am% lk

mb

52 i ~@Ŵ,%# ! ik
ab . ~A10!

The advantage of taking the Liouville operators in t
basis of the direct product is the simplicity of taking the tra
over the QDS or the bath subsystems. For example,

Trb~Â % !5(
a

(
l ,m;mn

Âik; lm
aa;mn% lm

mn ~A11!

is a simplification of the tensor over first two upper indic
~for the trace over QDS the simplification is carried out ov
first two lower Latin indices!.
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The commutator derived superoperators~A1!–~A3! have
an important property, the trace over all states yields ze
~For QDS LiouvillianĤ it is sufficient to take trace over th
QDS states only, while for the bath LiouvillianF̂—only over
the bath states!, i.e.,

Tr~Ŵ% !50, Trq~Ĥ% !50, Trb~F̂% !50. ~A12!

It can be proved directly, using the explicit expressions
the matrix elements~A1!–~A3!, and reflects the particle con
servation law by the Liouville–von Neumann equation.

Finally we give useful expression for the free evolutio
operatorĜ0(t), defined by Eq.~11!. Its operation on the den
sity matrix,

Ĝ0~ t !%5u~ t !e2 i F̂ te2 iĤ t% eiĤ teiF̂ t. ~A13!

For the proof of Eq.~A13! it is sufficient to note, that the
Hamiltonians~and Liouvillians! of the QDS and the bath
commute with each other, i.e.,

Ĝ0~ t !5T̂0~ t !3ei F̂t, T̂0~ t !5u~ t !ei Ĥt, ~A14!

and use the basis of the direct product of the eigenstate
the QDS and the bath Hamiltonians, i.e.,

uc&n
a5un&ua&, Ĥun&5Enun&, F̂ua&5Eaua&, ~A15!

whereEn andEa are the corresponding eigenvalues. Then
get

~ Ĝ0~ t !% ! ik
ab5u~ t !e2 i (Ea2Eb)t e2 i (Ei2Ek)t% ik

ab

5u~ t !~e2 i F̂ te2 iĤ t% eiĤ teiF̂ t! ik
ab . ~A16!

In principle, Eqs.~A9! and~A13! are sufficient to convert al
Liouville space expressions, derived in the current artic
into the Hilbert space representation.

APPENDIX B: QUANTUM CORRELATION FUNCTIONS
AND RELATIONS BETWEEN THEM

Using the basis of the eigenstates of the bath Ham
tonian, the quantum correlation functions, defined by E
~26!, can be written as

j 1~t!5
1

Zb
(
a,b

BabBbaeinabte2Ea /T,

~B1!

j 2~t!5
1

Zb
(
a,b

BabBbaeinabte2Eb /T,

where

nab5Ea2Eb . ~B2!

For the proof of Eq.~28! it is sufficient to change the sum
mation indices (a,b)→(b,a) in the expression forj 2

(2t), given by the second equation in Eq.~B1! after inver-
sion of the time, sincenba[2nab .

The relation between Fourier transforms of quantum c
relation functions, see Eq.~29!, is proved as follows. Fourie
transforms ofj 1,2 ~30!, and with account for Eqs.~B1! give
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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j̃ 1~v!5
1

Zb
(
a,b

Bab Bba d~v2nab!e2Ea /T,

~B3!

j̃ 2~v!5
1

Zb
(
a,b

Bab Bba d~v2nab!e2Eb /T.

Then we use the following identity:

d~v2nab!e2Eb /T[d~v2nab!enab /T e2Ea /T

[ev/T d~v2nab!e2Ea /T ~B4!

in Eq. ~B3! for j̃ 2(v) to get Eq.~29!.

APPENDIX C: EQUIVALENCE OF DIFFERENTIAL
AND INTEGRODIFFERENTIAL FORMS OF
QUANTUM-CLASSICAL APPROXIMATION

The equivalence of Eqs.~21!, ~51! and Eqs.~57!–~58! is
proved as follows. The Fourier transform of Eqs.~57! and
~58! gives

ivs̃~v!1 i @Ĥ,s̃~v!#5s01 z̃~v!

2E i @Ŵ~q!,h̃~q,v!#dq, ~C1!

ivh̃~q,v!1 i @Ĥ,h̃~q,v!#2Lqh̃~q,v!5sx~q,v!,
~C2!

where we introduced the notation,

sx~q,v![2 i @Ŵ~q!,s̃~v!#1@Û~q!,s̃~v!#1

1@Ŷ~q!,i @Ĥ,s̃~v!#1 ivs̃~v!#1 . ~C3!

Then we introduce the resolvent operatorĜ̃f(q,q0 ;v),

~ iv2 i Ĥ2Lq! Ĝ̃f~q,q0 ;v!5d~q2q0!, ~C4!

which can be represented as

Ĝ̃f~q,q0 ;v!5E
2`

`

P̄~q,q0 ;t !ei Ĥt e2 ivt dt, ~C5!

whereP̄(q,q0 ;t) satisfies Eq.~55!, and write the formal so-
lution of Eq. ~C2! as

h̃~q,v!5E Ĝ̃f~q,q0 ;v!sx~q0 ,v!dq0 . ~C6!

Finally, we use in Eq.~C6! the identity

Ĝ̃f~q,q0 ;v!sx~q0 ,v!

5(
k,m

P̃~q,q0 ;v1vkm!P̂ksx~q0 ,v!P̂m, ~C7!
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assume the bilinear form of QDS–bath coupling~52! and,
substituting the resulting expression in Eq.~C1!, we get Eqs.
~21! and~51!, where the retarded correlation function is ide
tified with the classical one, defined by Eqs.~53! and ~55!.
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