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Snull4p, a yeast U5 small nuclear ribonucleoprotein
(snRNP) homologous to the ribosomal GTPase EF-2, was
recently found to play a part in the dissociation of U4
small nuclear RNA (snRNA) from U6 snRNA. Here, we
show that purified Snull4p binds GTP specifically. To
test the possibility that binding and hydrolysis of GTP
by Snull4p are required to stimulate the unwinding of
U4 from U6, we produced several mutations of Snull4p.
Residues whose mutations led to lethal phenotypes were
all clustered in the P loop and in the guanine-ring bind-
ing sequence (NKXD) of the G domain, which in elonga-
tion factor-G is required for the binding and hydrolysis
of GTP. An arginine residue in domain I, which in EF-G
forms a salt bridge with a residue of the G domain, when
mutated in Snull4p (R487E), led to a temperature-sen-
sitive phenotype. The substitution D271N in the NKXD
sequence is predicted to bind XTP instead of GTP. Spli-
ceosomes containing this mutant, isolated by affinity
chromatography after heat treatment, retained U4
snRNA paired with the U6 snRNA. U4 snRNA was re-
leased efficiently only when these arrested spliceosomes
were reactivated by lowering the temperature in the
presence of a mixture of ATP and XTP. Because non-
hydrolyzable XTP analogues did not consent the release
of U4, we conclude that the release requires hydrolysis
of XTP. This suggests that Snull4p needs GTP to influ-
ence, directly or indirectly, the unwinding of U4 from
U6. An additional role for Snull4p is also demonstrated:
after growth of the D271N and R487E strains at high
temperatures, we observed decreased levels of the U5
and the U4/U6-U5 snRNPs. This indicates that, before
splicing, Snull4p plays a part in the assembly of both
particles.

Splicing of mRNA precursors (pre-mRNA) proceeds by two
consecutive transesterification steps that are catalyzed by the
spliceosome. The spliceosome is formed by the ordered interac-
tion of the U1, U2, U5, and U4/U6 snRNPs! (in which the U4
and U6 RNAs are base paired) and of several splicing factors,
with the pre-mRNA (1). The spliceosome is assembled by the
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initial interaction of the Ul snRNP with the 5’ splice site,
thereafter the U2 snRNP recognizes and binds to the branch
site, forming the pre-spliceosome. Spliceosome assembly is
completed by the subsequent association of the U4/U6 and U5
snRNPs in the form of a U4/U6-U5 tri-snRNP complex.

Activation of the assembled spliceosome into a catalytically
functional machine requires extensive reorganization of the
components. Thus, during spliceosome activation, base-pairing
between U4 and U6 is disrupted and a new base-pairing be-
tween U2 and U6 occurs (reviewed in Ref. 2). Concomitantly
with these events, base-pairing of Ul with the 5’ splice site is
exchanged for base-pairing between U6 and the 5’ splice site (3,
4). After these rearrangements, Ul and U4 snRNPs are re-
leased from the spliceosome prior to catalysis. The conserved
loop I of U5 RNA makes contact with exonic sequences at the 5’
and 3’ splice sites, while the splicing reaction proceeds (5).

The unwinding of the U4/U6 snRNA duplex is an important
step toward the activation of the spliceosome and depends on
the functioning of a large number of protein factors. In addition
to the putative U4/U6 helicase Brr2p, five splicing factors in
yeast have already been implicated in the release of U4 snRNA
during spliceosome activation. These are the U4/U6 snRNP
protein Prp4p (6), the non-snRNP protein Prp19p (7), the tri-
snRNP protein Prp38p, and the U5 snRNP proteins Prp8p and
Snull4p (8-11).

Previously we showed that the G domain-containing protein
Snull4p and its human orthologue protein U5-116K are close
homologues of the ribosomal elongation factor EF-2 (10). Con-
sistently with this, the U5-116K protein cross-links specifically
to GTP in purified U5 snRNP particles, and this cross-linking
is stimulated by poly(U) (10). Remarkably, as predicted by its
homology with EF-2, we found that Snull4p is involved in
rearranging the spliceosomal RNP structure. Indeed, a temper-
ature-sensitive deletion mutant of Snull4p (snull14AN), led to
the accumulation of arrested, precatalytic spliceosomes in
which U4 is still base-paired with the U6 snRNA. This sug-
gested that Snull4p is involved in the transition to an active
form of the spliceosome by influencing factors that are directly
required for the unwinding of the U4/U6 duplex (11).

As described above, Snull4p is involved in this rearrange-
ment step together with several additional factors, and there is
increasing evidence for a link between Snull4p and some of
these factors, for example, between Prp8p and the putative
U4/U6 helicase Brr2p. The most direct evidence for this link is
the strong RNA-independent protein-protein interaction that
has been detected in the human system between the proteins
220K/Prp8p, 200K/Brr2p, and 116K/Snul14p after dissociation
of these proteins as a stable complex from the U5 snRNP in
high salt buffer (12). In yeast, several studies have shown that
Snull4pisin contact with Prp8p and that Prp8p interacts with
Brr2p (13, 14). Therefore, we had hypothesized (11) that
Snulldp is a crucial factor, acting in an earlier step to trigger

This paper is available on line at http://www.jbc.org
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the function of Prp8p/220K and/or of the Brr2p/200K RNA
unwindase, in this intricate network of factors involved in the
U4/U6 unwinding during spliceosome activation.

To define the details of the reaction that Snull4p catalyzes
in concert with other factors, and primarily to test the possi-
bility that binding and hydrolysis of GTP by Snull4p are
required for spliceosome activation, we replaced or deleted
several amino acids in evolutionarily conserved domains of
Snull4p. We found that residues that led to lethal phenotypes
are all clustered in the G domain, more precisely, in the P loop
and in the guanine-ring-binding sequence (NKXD), which in
EF-G are required for GTP binding and hydrolysis (15, 16). We
also found that an arginine in domain II, which in EF-G forms
a salt bridge with a residue of the G domain, when mutated in
Snull4p (R487E), led to a weakly viable, temperature-sensi-
tive phenotype even at 25 °C. Surprisingly, all of the point
mutations made in the other domains did not lead to any
significant effect, except for a residue in domain IV.

We also replaced aspartic acid 271 with asparagine, in the
NKLD sequence of the G domain of Snull4p, to give the mu-
tant snull4-D271N. An analogous substitution in several
GTPases changes their specificity of binding and hydrolysis
from GTP to xanthosine triphosphate (XTP) (17). Because this
mutant does not lead to a lethal phenotype, we tried to address
the interesting question of whether GTP hydrolysis (XTP in
this case) is required to trigger the unwinding of U4 from U6.
This mutant should allow the identification of the XTP-depend-
ent function of mutated Snull4p and the characterization of
this function in a crude extract containing a variety of AT-
Pases, some of which are known to bind and hydrolyze GTP as
well.

As a prerequisite to these studies, we determined first that
Snull4p, similar to its human orthologue, binds GTP in vitro
in a specific manner, as analyzed by UV cross-linking. Thus, we
show that Snul14p is a genuine GTP-binding protein. Next, we
studied the D271N mutant in more detail, and found that this
mutant leads to a slow growth phenotype that at high temper-
atures results in arrested splicing in vivo. Importantly, we
show that heat treatment of the D271N extract leads also to a
defect of splicing in vitro that is reversed by lowering the assay
temperature. We establish that the in vitro thermal inactiva-
tion results in accumulation of arrested spliceosomes in which
U4 is not released, because it is still base-paired with the U6
snRNA. These precatalytic complexes are isolated by affinity
chromatography, depleted of residual nucleoside triphosphates
(NTPs), and finally reactivated by adding back a mixture of
ATP/XTP and by lowering the assay temperature. Using this
system, we show that U4 is released efficiently from the spli-
ceosome only when a mixture of ATP (required for the heli-
cases) and hydrolyzable XTP (required by snul14-D271N) is
added. Thus, these experiments suggest that snul14-D271N
needs hydrolyzable XTP (and wild-type Snull4p needs GTP) to
influence the unwinding of U4 from UB6.

We also found an additional role for Snul1l4p. Growth of the
D271N and R487E mutant strains at high temperatures leads
to extracts that have reduced levels of U5 and tri-snRNP par-
ticles, thus suggesting that Snull4p is, directly or indirectly,
involved in maintaining proper amounts of U5 and tri-snRNP
as well.

EXPERIMENTAL PROCEDURES

Glycerol Gradient Centrifugation—2.5 mg of yeast splicing extract
was diluted to reduce the concentration of glycerol from 20% to 8% and
loaded on a 10-30% (w/w) glycerol gradient containing 20 mm Hepes
(pH 7.9), 200 mm KCI, 0.2 mm EDTA, 1.5 mm MgCl,, 0.5 mMm dithiothre-
itol, and 0.5 mM phenylmethylsulfonyl fluoride. After centrifugation at
108,000 X g, for 18 h at 4 °C, the gradients were fractionated into 24
fractions of 500 ul. Each fraction was phenol-chloroform-extracted, and
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their RNA composition was analyzed by Northern blotting. The proteins
were acetone-precipitated and assayed by Western blotting.

Yeast Strains—Strains were YPF39, trp1-Al; his3-A; ura3-52; lys2—
801; ade2-101; snull14A::HIS (TRP1 pRS424-GPD1/SNU114, 6his N-
terminal, ARS, CEN); YPF37, trp1-Al; his3-A; ura3-52; lys2-801;
ade2-101; snull4A::HIS (TRP1 pRS314/snul14D271N, 6his N-termi-
nal, ARS, CEN); and YCK13, trp1-AI; his3-A; ura3-52; lys2-801; ade2-
101; snull4A::HIS (TRP1 pRS314/snull4R487E, Flu-tag C-terminal,
ARS, CEN).

Mutagenesis—Most of the mutations in the SNUI114 gene were in-
troduced by the QuikChange site-directed mutagenesis method (Strat-
agene), as described previously (10). Two oligonucleotide primers, each
complementary to opposite strands of SNUI114 and containing the de-
sired substitution, were designed. The PCR cycling parameter sug-
gested by the QuikChange method was employed, using native Pfu
DNA polymerase. The mutant allele was screened for the desired mu-
tation by sequencing. A PCR-based strategy was used to delete 162
amino acids of domain IV, from position 700 to 862. Plasmids pRS314/
SNU114, containing the desired substitution or deletion, were se-
quenced and separately transformed into strain YPF8. The plasmid-
shuffling strategy was applied (18). After selection at 25 °C in medium
lacking tryptophan, transformants were streaked once on medium lack-
ing tryptophan and grown at 25 °C. Patches were streaked three times
on 5-fluoroorotic acid plates to select for cells lacking of the URA3
plasmid. Cells that survived on 5-fluoroorotic acid plates were streaked
on rich medium, and their growth phenotypes were analyzed by incu-
bating cells and dilutions (5 X 10%, 5 X 10%, and 5 X 102 at 37, 30, 25,
and 17 °C for 1-2 days or longer). A good temperature-sensitive strain
was one that did not grow in -Ura plates at any of the temperatures and,
in addition, did not grow in rich medium at 30 or 37 °C but grew at
25 °C.

Antibody Production—The SNUI114 BamHI Snabl fragment from
plasmid pBSIISK(—)/SNU114, was cloned into vector pQE-30 (Qiagen)
between BamHI and Smal restriction sites. The resulting plasmid was
transformed into Escherichia coli strain M15 (pREP4) and used to
overexpress a histidine tag containing Snull4p fragment of 59.5 kDa
bearing the N-terminal acidic domain, the G domain, and part of do-
main II. The protein was purified from crude cell lysates by Ni-NTA
chelate chromatography, according to the instructions of the manufac-
turer (Qiagen), and used to immunize a rabbit. The polyclonal anti-
serum obtained was specific for Snull4p, as tested by Western blot
analysis and ECL detection (Amersham Biosciences) of total yeast
snRNPs and purified Snull4p. The protein could be clearly detected
when the serum was diluted 1:5000.

Purification of Snull4p—His-tagged Snull4p was purified from
YPF39 extracts by Ni-NTA chelate chromatography according to the
protocol supplied by Novagen. The binding buffer contained 20 mm
Tris-HC1, 500 mm NaCl, and 5 mM imidazole (pH 8.0). In the wash
buffer the imidazole concentration was increased to 10 mm. In a second
washing step, 50 mm NaH,PO,, 300 mM NaCl, and 10 mM imidazole
were used instead. Elution was performed with the latter buffer con-
taining in addition 10% glycerol and 50, 100, 150, 200, or 250 mMm
imidazole. Most of Snull4p was eluted between 100 and 150 mM imid-
azole. To the eluted protein, glycerol and B-mercaptoethanol were
added to give a final concentration of 20% and 20 mwm, respectively. For
further purification, the peak fractions of the nickel column eluate were
loaded separately on a Superdex G-200 column (Amersham Bio-
sciences). The running buffer contained 50 mm NaH,PO, and 300 mm
NaCl. Fractions of 100 ul were collected, and a 30-ul aliquot of each
fraction was analyzed by SDS-PAGE.

GTP Cross-linking Assays and Immunoprecipitation—15 pmol of
purified Snull4p was incubated in 25 ul of 50 mm Tris-HCI (pH 8.0),
150 mm KCl, 1.3 mm dithiothreitol, 2.5 mm MgCl,, and 0.6 ug/ul poly(U)
with 20 uCi (6.6 pmol) of [a-*?P]GTP (Amersham Biosciences, specific
activity, 3000 Ci/mmol) for 5 min at room temperature. The subsequent
UV cross-linking reaction was performed essentially as described pre-
viously (19), except that the cross-linking time was extended to 7 min
with the sample at a distance of 4.5 cm from the UV lamp. The cross-
linked proteins were then immunoprecipitated with the anti-Snull4p
antibody or non-immune serum. For the immunoprecipitations, 5-10 ul
of anti-Snull4p antisera were coupled to 20 ul of protein A-Sepharose
in 500 ul of buffer NET2-150 (50 mm Tris-HCI, pH 7.5, 150 mm NacCl,
0.05% Nonidet P-40) for 1.5 h at 4 °C and subsequently washed with
three times 1 ml of NET2-150. The cross-linked samples or splicing
extracts (400 pg of total proteins, see Figs. 3C and 5A) were added
together with 500 ul of NET2-150 buffer to the washed beads, and
Snull4p was precipitated from the reactions for 2 h at 4 °C. The beads
were subsequently washed four times with 1.5 ml of NET2-150 and
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Fic. 1. Purified Snull4p binds GTP specifically. A, SDS-PAGE of purified Snull4p, which was overexpressed in yeast and purified via
Ni-NTA chromatography (Ni*>*, lane 1) and size-exclusion chromatography (gel filtration, lane 2). For visualization the gel was stained with
Coomassie Blue. The position of Snull4p is indicated with an arrow. The purity of the protein preparation was checked by mass spectrometry,
which confirmed that Snull4p is 90-95% pure. The asterisk indicates a frequently detected contamination (alcohol dehydrogenase-1-P). In
addition, traces of glyceraldehyde-3-phosphate dehydrogenase, cyclin-dependent protein kinase 33, and alkaline phosphatase 8 were found. B,
binding of GTP to purified Snull4p. Snulldp was incubated with radioactively labeled GTP (lanes 1-12) or ATP (lane 13) in the absence or
presence of 10X (66 pmol), 25X (165 pmol), and 50X (330 pmol) excess of unlabeled nucleotides. After cross-linking Snull4p was immunopre-
cipitated with anti-Snul14p antibody (lanes 1-10, 12, and 13) or non-immune serum (lane 11). The precipitates were loaded on a 10% SDS-PAGE
and radioactive Snull4p (cross-linked to GTP or ATP) was detected by autoradiography. The lines indicate degradation products of Snull4p.

precipitated proteins were extracted with phenol/chloroform/isoamyl
alcohol (50:49:1, v/v). After acetone precipitation, the proteins were
separated by SDS-PAGE. The gel was stained with Coomassie Blue,
and cross-linked proteins were detected by autoradiography.

Splicing Extracts, in Vitro and in Vivo Splicing, Temperature Inac-
tivation, and Complementation Assays—Splicing extracts of YPF36
(11), YPF37, YPF39, and YCK13 were prepared by grinding frozen cells
under liquid nitrogen (20). For extract preparation the cells were grown
at 25 or 30 °C. In vitro splicing reactions were performed as described
previously (21), generally using actin pre-mRNA transcribed in the
presence of [a->P]UTP. For in vitro thermal inactivation according to
Ref. 8, the prepared extracts were incubated in 120 mm KPO, at 37 °C
for the times indicated prior to the splicing reaction. When time-de-
pendent measurements were made, the samples taken at each time
point were placed on ice until the splicing reaction was initiated. As a
control, the extract was incubated in 120 mm KPO, on ice for the whole
period of heat treatment. The splicing reactions after thermal inactiva-
tion were performed under standard splicing conditions (60 mm KPO,,
3% polyethylene glycol 8000, 2 mMm ATP, 2.5 mMm MgCl,, and 2 mMm
spermidine). Complementation was achieved by mixing equal volumes
of the two thermally inactivated extracts before the splicing reaction
was carried out. In the experiment shown in the left panel of Fig. 3B,
thermal inactivation was performed by directly incubating the splicing
reaction at 32 °C instead of at 25 °C. In vivo accumulation of unspliced
pre-U3A and pre-U3B RNA transcripts was measured by primer exten-
sion as described previously (10).

Affinity Purification of Spliceosomes—For affinity purification of
spliceosomes, actin pre-mRNA was transcribed in the presence of bio-
tin-16-UTP (Roche Applied Science) with a UTP/biotin-16-UTP ratio of
20:1 (22). Standard splicing reaction mixtures (100 ul) contained 40 ul
of extract and 270 fmol of biotinylated actin pre-mRNA. After incuba-
tion for 25 min at 32 °C, ATP was depleted by adding 4 mm glucose and
incubating the samples for an additional 10 min. Subsequently, sam-
ples were added, together with 500 ul of NET2-75, to 25 ul of washed
streptavidin beads (Roche Applied Science) in siliconized tubes. For
affinity purification, the samples were rotated for 90 min at 4 °C. The
precipitates were washed extensively with NET2-75, and 25 ul of 1X
splicing buffer was added together with the indicated concentrations of
different nucleotides. Subsequently, the samples were incubated for 25
min at 25 °C, and the precipitates were washed another three times
with NET2-75. The precipitates were treated with proteinase K and
extracted with phenol/chloroform. The RNAs were ethanol-precipitated
and separated on a 10% denaturing gel. The gels were then blotted onto
a nylon membrane (Amersham Biosciences), which was UV-irradiated
at 120 mdJ/cm?. Northern analyses with uniformly radiolabeled DNA
probes specific for snRNAs U1, U2, U4, U5, and U6 was performed.

RESULTS

Binding of GTP by Snull4p—Because Snull4p exhibits the
same domain structure as the ribosomal GTPase EF-2, includ-
ing the GTP-binding and -hydrolyzing G domain (10), we asked
whether GTP is required for Snull4p function in splicing.
First, we investigated whether Snull4p binds GTP. It was
previously shown that the human homologue of Snull4p, the
U5-116K protein, binds GTP when it is a part of the U5 snRNP
(10), but until now it was unclear whether the yeast protein
Snull4p binds GTP independently of the other proteins and
RNA present in the U5 snRNP complex. To address this ques-
tion, we overexpressed Snull4p in yeast and purified it from
the extract in two steps, nickel-agarose chromatography and
size-exclusion chromatography (Fig. 14).

Fig. 1B shows that [a-2?P]GTP cross-links to purified
Snull4p after UV irradiation (lanes 1 and 2, 6-10, and 12).
Radiolabeled Snul14p, cross-linked to GTP, can be specifically
immunoprecipitated with anti-Snull4p antibodies (Fig. 1B,
lanes 1-10 and 12) but not with the non-immune serum (lane
11). The observed cross-link is stimulated, as in the case of the
human U5 snRNP (10), in the presence of poly(U) (compare
lane 2 with lane I). To determine the specificity of the cross-
link obtained with labeled GTP, we performed competition
experiments by adding an excess of unlabeled NTPs. Fig. 1B
(lanes 3-5) shows that the [a->?P]GTP cross-linked to Snull4p
can be competitively displaced by a 10-, 25-, and 50-fold excess
of unlabeled GTP, but not by unlabeled ATP (lanes 6-8) or CTP
or UTP (lanes 9 and 10). This result suggests that purified
Snull4p has very high affinity for GTP only.

Some [a-32P]ATP also became cross-linked to Snull4p, al-
though to a lesser extent, corresponding to about 5% or less of
the cross-linked [a-32P]GTP (Fig. 1B, lane 13). This cross-link
could reflect a low affinity of Snull4p for ATP. Preliminary
results indicate that this cross-link to ATP is prevented by
competition from all of the unlabeled NTPs used, suggesting
that Snul14p has unspecific affinity for ATP (data not shown).

Mutagenesis of the G Domain of Snull14p—The finding that
Snull4p indeed binds GTP in a highly specific manner (see
above) and that a point mutation in Snul14p G domain leads to
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TABLE 1
Summary of all of the mutants of Snulldp
Motif Mutation Phenotype In vivo defect In vitro defect Reference
G1 G145R Lethal Fabrizio et al. (10)
K146E Lethal This work
D233K Viable This work
G4 N268I Lethal This work
N268D Viable This work
K2691 Viable This work
K269E Viable This work
D271IN Slow growth Splicing defect at 37 °C ~ Splicing inhibition prior ~ This work
to first step at 37 °C
60% less tri-snRNP U4 unwinding inhibition
when strain is grown at  at 32 °C
30 °C
Domain II R487E ts at 30 and 37 °C  Splicing defect at 37 °C ND« This work
and cs at 17 °C
85% less tri-snRNP
when strain is grown at
25 °C
Domain III  E649K Viable This work
Domain IV~ Deletion (700-862) Lethal This work
G73IS Viable This work
1740D Viable This work
R745W Viable This work
R752W Viable This work
L808A Viable This work
E8591 Lethal This work
Domain V R884A Viable This work
916TDLR919 to 916AAAA919  Viable This work
F932A + (R973W) Viable This work

N-terminal  Deletion (2-128) ts at 37 °C

Splicing inhibition prior

Bartels et al. (11)

to first step at 36 °C

“ Not determined.

a lethal phenotype (10), raised the intriguing question whether
Snull4p hydrolyzes GTP, in analogy to the ribosomal translo-
cases, during its function in splicing.

Up to now GTP has never been reported as an essential
cofactor for splicing. This could, however, be due to the fact that
GTP is already available in the extract, or to the complexity of
the splicing process. The non-hydrolyzable analogue of GTP,
GTP~S, is not suitable to clarify this question, because it can
inhibit splicing by binding not only to Snull4p but also to any
of the numerous RNA unwindases that are involved in the
splicing process and that are known to bind and hydrolyze
promiscuously several of the NTPs (23).

To address the complex question of GTP requirement in
splicing, we performed site-directed mutagenesis of Snull4p G
domain. This mutagenesis revealed that the G domain is far
more sensitive to mutation than the other conserved domains
of Snull4p (see below). Several single-residue substitutions in
the P loop (G145R and K146E) and in the NKLD (N268I)
sequence of Snull4p G domain are lethal, whereas most of the
point mutations in domains II-V did not lead to any detectably
deviant phenotype (see below and Table I for a summary). The
lethal phenotypes observed by mutating specific amino acids of
the G domain are consistent with the ones observed in other G
proteins. For example, the corresponding N268I substitution in
the NKXD sequence of the yeast GTPase Yptlp led to a similar
lethal phenotype, with loss of GTP binding (24). These results
underscore the possibility that GTP binding, and probably GTP
hydrolysis, are important for the function of Snull4p
in splicing.

To investigate in more detail the role of GTP in the function
of Snull4p, we substituted the aspartic acid at position 271 in
the NKLD sequence with an asparagine, to produce the mutant

snull14-D271N. The NKXD sequence in other G proteins is
known to interact with the guanine ring of the bound GTP.
The equivalent amino acid replacement in EF-Tu (D138N)
and in several other well characterized GTPases, produces an
XTP-dependent protein that is converted from a GTPase into
a xanthosine triphosphatase (17, 25). In several other sys-
tems, this mutation allowed the analysis of the function of
individual GTPases in extracts from whole cells. Unex-
pectedly, the D271N mutation in Snull4p did not lead to a
severely impaired phenotype but to a slow growth phenotype
at all of the temperatures tested (17, 25, 30, and 37 °C; data
not shown).

Mutagenesis of Snull4p Domains I1, I11, IV, and V—Because
the crystal structures of EF-G from Thermus thermophilus
have been determined (26), a sequence comparison could be
made between Snull4p and ribosomal translocases, focusing
on the folding domains of EF-G (10). Using these EF-G struc-
tural domains for orientation, we have designed and generated
substitutions in highly conserved residues of domains I1-V.

In domain II, a consensus sequence for translational
GTPases was identified by Zvarsson (26). Within this domain,
the conserved arginine 329 in EF-G was found to form a salt
bridge with an aspartate residue of the G domain. We have
exchanged the corresponding arginine of Snull4p with a glu-
tamic acid (R487E). This substitution leads to a temperature-
sensitive and a cold-sensitive phenotypes (see Table I).

In the ribosomal elongation factor EF-G, domain IV is crucial
for coupling GTP hydrolysis to the translocation of peptidyl-
tRNA from the A to the P site of the ribosome (27). Deletion of
the equivalent domain IV from Snul14p leads to a lethal phe-
notype, suggesting that this domain is important for the func-
tion of Snull4p as well. Point mutations in this domain have
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Fic. 2. Phylogenetic conservation of Snull4p domain IV and V. A, sequence alignment between Snull4p domain IV (amino acids
684-784) and elongation factor EF-G domain IV from 7. thermophilus (amino acids 484-576), using the ClustalW program. B, EF-G domain IV
(amino acids 512-541) is aligned with a region of the ribosomal protein S5 from Bacillus stearothermophilus (amino acids 96—115), which
correspond approximately to the evolutionarily conserved amino acids 714-745 of Snull4p domain IV. C, sequence alignment between EF-G
domain V (amino acids 614—672), the ribosomal protein S6 from 7. thermophilus (amino acids 31-98), and Snull4p domain V (amino acids
880-932). Identical amino acids are marked by gray boxes. Amino acid positions are indicated at the left. Boldface characters in A-C indicate amino

acids that have been substituted in Snull4p (see also Table I).

also been obtained (see Table I). The E859] mutation has a
lethal effect. However, several other mutations in domain IV
have no effect (Table I). All of these mutations were designed
on the basis of the phylogenetic conservation of domain IV
between EF-G and Snull4p (Fig. 2A) and EF-G and the ribo-
somal protein S5 (28) (Fig. 2B); the most highly conserved sites
were chosen for mutation. Two residues, glycine 104 and argi-
nine 112, are highly conserved among S5 proteins and, when
mutated in E. coli S5, have important effects on translation
(29). We changed the corresponding amino acids in Snull4p
domain IV as shown in Table I. Surprisingly, these substitu-
tions also failed to produce a clear temperature-sensitive
growth phenotype.

Likewise, substitutions of highly conserved amino acids
within domains III and V do not exhibit any significant effect
(Table I), even when substitutions at highly conserved posi-
tions were designed on the basis of the homology of domain V of
Snull4p and EF-G to the ribosomal protein S6 (15) (Fig. 2C).
The crystal structure of S6 showed that this protein has a
folding scheme identical to that of the RNA-binding domain of
the UlA snRNP protein, which comprises an RNA recognition
motif (Ref. 30 and references therein). The amino acids of S6
that correspond to those we have changed in Snull4p are
conserved residues suggested to participate in RNA interac-
tions. Thus, these Snull4p residues may similarly be involved
in contacting RNA (pre-mRNA or one of the snRNAs).

Characterization of the D271N Mutant—As described above,
the D271N mutant may be a unique tool to dissect precisely the
one or more steps at which binding and/or hydrolysis of GTP is
required in the splicing of pre-mRNA (17). Although this mu-
tation does not lead to a lethal or temperature-sensitive phe-
notype, we expected that a distinctive phenotype could be re-
vealed. For this reason, we investigated whether an in vivo

splicing defect could be shown and exacerbated by treatment at
high temperatures.

Pre-mRNA splicing was studied in vivo by primer-extension
analysis of U3 transcripts from wild-type cells and from cells
bearing the D271N mutation (Fig. 3A). Unspliced U3A and
U3B precursors accumulate after shifting the mutant strain to
37 °C for 2 and 4 h, respectively (Fig. 3A, lanes 5 and 6). Thus,
although the D271N substitution does not lead to a discernibly
temperature-sensitive phenotype, it does cause a splicing de-
fect, which is revealed by increasing the temperature. No ac-
cumulation of unspliced pre-USA and pre-U3B transcripts
could be seen with the wild-type parental control (Fig. 3A,
lanes 1-3).

Because the splicing inhibition in vivo may be the result of
an indirect effect on splicing, we carried out further character-
ization of the steps affected by the D271N mutation using an in
vitro system. We prepared a splicing extract from the mutant
strain, which was grown at 23 °C, and analyzed its ability to
carry out splicing in vitro (Fig. 3B). Under standard splicing
conditions, the D271N extract was able to splice the actin
pre-mRNA as well as the wild-type parental control (lanes I, 2,
and 7). The observation that an increase in temperature re-
sulted in an accumulation of unspliced precursors in vivo led us
to analyze the effects of heat on the in vitro splicing reaction.
The heat treatment was performed according to protocols pub-
lished by others (Kuhn et al. (9) or Xie et al. (8), see also
Ref. 11).

According to the first protocol, to obtain thermal inactiva-
tion, we simply increased the splicing temperature from 25 to
32 °C (left panel). According to the second protocol, the splicing
extracts are incubated prior to the splicing reaction in 120 mm
KPO, at 37 °C for different times. The subsequent splicing
reactions are then performed for 25 min at 25 °C (right panel).
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Fic. 3. The D271N mutation leads to splicing defects in vivo and in vitro. A, total RNA was extracted from wild-type (lanes 1-3) and
D271N cells (lanes 4-6), which were grown at 25 °C (lanes I and 4) and afterward shifted to 37 °C for 2 or 4 h (lanes 2, 3, 5, and 6). To measure
the levels of spliced and unspliced (pre-) USA and U3B transcripts, primer extension analysis was performed. B, the snul14-D271N extract can
be heat-inactivated in vitro using two different conditions. Left panel: splicing activity of wild-type and snull4-D271N extracts at different
temperatures. Splicing reactions, including the pre-mRNA, were either performed for 25 min at 25 °C (lanes I and 2) or at 32 °C (lanes 3-6). After
25 min of incubation at 32 °C, aliquots of the reactions shown in lanes 3 and 4 were shifted back to 25 °C for 25 min (lanes 5 and 6). Right panel:
snull4-D271N or prp5-1 extracts were incubated prior to the splicing reaction at 37 °C for the times indicated above the figure. The following
splicing reaction was performed for 25 min at 25 °C. Complementation was achieved by mixing equal volumes of two heat-treated extracts prior
to the addition of pre-mRNA (lanes 16-18). The identity of the ?P-labeled RNA species (intron-lariat-exon 2 intermediate, excised lariat-intron,
pre-mRNA, mature mRNA, and cleaved exon 1 intermediate) are indicated. C, heat treatment does not affect the association of snul14-D271N with
tri-snRNP particles nor the stability or abundance of the tri-snRNP particles in the extract. Immunoprecipitations of U5 and tri-snRNP particles
were performed with anti-Snul14p antibodies (lanes 2-9) and anti-Prp8p antibodies (lanes 10-17). Prior to immunoprecipitation the extracts were
either incubated for 45 min on ice (lanes 2-5 and 10-13) or at 37 °C (lanes 6-9 and 14-17). After immunoprecipitation the reactions were washed
with 150 mm or 250 mMm NaCl, and the RNA content of the precipitates was assayed by Northern blotting using U1, U2, U4, U5, and U6 probes

indicated on the left.

Both methods led to a dramatic decrease of splicing before the
first step if the reaction mixture was, or had been, at the
non-permissive temperature (Fig. 3B, lanes 4 and 10-12). The
splicing reactions shown in the left panel were performed with
the wild-type Snul14p (lanes 1 and 3) and with D271N extracts
(lanes 2 and 4) at 25 °C (lanes I and 2) or at 32 °C (lanes 3 and
4). At 25 °C the splicing activity of the mutant extract is only
slightly less than that of the wild-type (compare lanes 1 and 2).
However, although splicing at 32 °C is considerably decreased
in the mutant extract, it is only barely reduced in the wild-type
(compare lanes 3 and 4). In addition, we investigated whether
the observed inhibition of splicing at 32 °C can be reversed by
shifting the reaction back to 25 °C (lanes 5 and 6). Aliquots of
the reactions shown in lane 3 and 4 were afterward incubated
for an additional 20 min at 25 °C. Indeed, the blockage of
splicing was reversed efficiently in the mutant extract. This
indicates that the high temperature leads not to a dead-end
splicing reaction but, rather, to a reaction that is inhibited at
32 °C and can be reactivated, at least in part, by lowering
the temperature.

In the experiment shown in Fig. 3B (right panel) during heat
inactivation in the absence of precursor, aliquots of the reaction

were withdrawn at the times indicated (heat time) and kept on
ice. The precursor was then added, and splicing reactions were
performed for 25 min at 25 °C. After 45 min or more of heat
treatment, the mutant showed a significant decrease in splic-
ing activity before the first step (lanes 10-12). To determine
whether this inhibition was due to a specific inactivation of
snull4-D271N, we tested whether splicing activity could be
restored by complementing two heat-inactivated extracts. The
combination of the thermally inactivated prp5-1 extract (31,
32) with heat-inactivated snull4-D271N extract, efficiently
reversed the splicing defect (Fig. 3B, right-hand panel, lanes
16-18). We conclude that the splicing defect observed in vitro is
due to the specific inactivation of the snul14-D271N mutant
and not to an accidental inactivation of other factors. Again, we
investigated whether the achieved inactivation is reversible.
After heat treatment, but before the addition of precursor, the
mutant extract was incubated at the permissive temperature.
The inactivation was found to be irreversible (data not shown),
most probably because these conditions damage irreversibly
the structure of the D271N mutant.

In summary, we found two independent conditions for the
specific inactivation of snul14-D271N in vitro: incubation at
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37 °C before splicing or at 32 °C during the splicing reaction.
One possible explanation for the two forms of inactivation is
that the mutant protein is structurally damaged such that
lowering the temperature after thermal inactivation only al-
lows it to recover if mild inactivation conditions have been
used. The observation that the D271N extract is splicing-com-
petent at 23 °C, even without the addition of exogenous XTP,
may be explained with the fact that there are low levels of XTP
in living cells, and it is therefore likely that enough XTP is
present in yeast extracts to complete at least one round
of splicing.

To characterize the D271N tri-snRNP particle, immunopre-
cipitations were performed. Fig. 3C shows immunoprecipita-
tion experiments carried out with the active extracts utilized
above (wild-type and D271N), using anti-Snull4p and anti-
Prp8p antibodies (Fig. 3C, lanes 2-9 and 10-17, respectively).
The D271N tri-snRNP particle is efficiently immunoprecipi-
tated, and the U5 (L and S), U4, and U6 snRNAs are clearly
detected by Northern analysis even after heat treatment of the
extract for 45 min at 37 °C prior to immunoprecipitation (Fig.
3C, compare lanes 8-9 with 6-7, and lanes 16—-17 with 14-15).
Glycerol gradient centrifugation confirmed this result (data not
shown). This demonstrates that the abundance and stability of
U5 and tri-snRNP particles (containing snull14-D271N), in
extracts heat-treated in vitro, are substantially similar to those
of comparable wild-type extracts.

The D271N Mutation Leads to Accumulation of Precatalytic
Spliceosomes That Can Be Activated, at Least in Part, by the
Addition of a Combination of ATP and XTP—We demonstrated
recently that Snull4p is involved in the unwinding of U4/U6
during catalytic activation of the spliceosome (11). Although
the mutant that we have used in our previous work had an
intact G domain, the complexity of the system prevented us
from finding out whether GTP is required for the U4/U6 un-
winding in vitro. In the present work, we use the D271N XTP
mutant as a tool to dissect this intricate system.

We anticipated that the splicing defect observed in vitro by
treating the D271N extract at high temperatures (32-37 °C)
could be due to the inhibition of the unwinding of U4/U6. To
prove this, we assembled spliceosomes by using biotinylated
actin pre-mRNA in a standard in vitro splicing reaction per-
formed at 32 °C instead of 25 °C. Assembled splicing complexes
of the D271N mutant were subsequently affinity-purified with
streptavidin and analyzed by denaturing gel electrophoresis.
These experiments show that the tri-snRNP particles of the
D271N mutant join the pre-spliceosomes as expected, but that
the dissociation of U4 from U6 (the subsequent step toward
spliceosome activation) is inhibited, and the U4 snRNA is no
longer efficiently released from the spliceosome in the mutant
extract (Fig. 4A, lane 1, see also the working model above the
figure). Analysis of the purified snRNAs in a non-denaturing
gel shows clearly that this was due to inhibition of the U4/U6
unwinding (data not shown). Thus, by using non-permissive
conditions, it is possible to inhibit the catalytic activation of the
spliceosome, which leads to the accumulation of splicing com-
plexes from which U4 has not been released.

Most importantly, because the splicing defect observed in
vitro is reversible upon shifting the reaction back to 25 °C when
“mild” heat treatment was used (Fig. 2B, left panel), we could
test the possibility of reactivating these assembled and ar-
rested splicing complexes. In addition, this system allowed us
to investigate the nucleotide dependence of this reactivation.
After 25 min of splicing at 32 °C (see working model), ATP was
removed by adding glucose, and the assembled complexes were
bound to streptavidin beads. The beads were washed thor-
oughly to remove all of the remaining NTPs, and the isolated

D271N XTP Mutant of GTP-binding Protein Snull4p

splicing complexes were incubated for a further 20 min at 25 °C
in the presence of 1X splicing mixture containing the desired
NTPs. The reactions were then stopped and the snRNA content
was analyzed by using Northern blots.

In the absence of nucleotides, the shift back to 25 °C did not
lead to any change in the snRNA composition of the assembled
splicing complexes (Fig. 4A, compare lanes I and 2). In con-
trast, the addition of 1 mm ATP led to a partial release of the U4
snRNA from the precatalytic splicing complexes (lane 3). Ex-
actly the same effect was observed even when much higher
concentrations of ATP were used (2—4 mwM, data not shown).
Remarkably, the combination of 1 mm ATP with 1 mm XTP led
to a small, but reproducible, enhancement of the release of U4
(lane 4), whereas the addition of XTP alone had no effect (lane
5). The combination of ATP and GTP resulted merely in the
same effect that had been observed following the addition of
ATP alone (compare lanes 6 and 3). We quantified the U4
signals in each lane, and a graphical representation of the
results is shown next to the figure.

In the reactions in which U4 dissociates from the purified
complexes, a small loss of U6 snRNA was also detected in all of
the experiments performed. Furthermore, in none of the reac-
tions was the expected release of Ul (simultaneous with the
dissociation of U4) observed. The same observations were de-
scribed previously (9). Kuhn et al. (9) hypothesized that factors
required for a stable incorporation of unwound U6 into the
RNA structure essential for catalysis were removed by the
extensive washing steps. Likewise, factors required for the
release of Ul may be removed by washing. Another explanation
for the retention of Ul could be that pre-spliceosomes are
co-isolated that contain U1l and/or U2 (11).

To verify that the addition of ATP and ATP/XTP leads to a
predominant release of the U4 snRNA and not to dissociation of
the complete U4/U6 di-snRNP from the precatalytic splicing
complexes, we also calculated the U4:U6 ratios in each lane
(Fig. 4A). Indeed, this ratio decreases only in the reactions in
which ATP or ATP and XTP are added. This suggests that
much more U4 than U6 is released.

In addition, we investigated the effects of other nucleotides:
CTP, UTP, and xanthosine diphosphate. None of these, when
added, resulted in a significant reactivation of the purified
complexes, and when they are combined with ATP no enhance-
ment of the U4 dissociation appeared (data not shown). This
indicates that the observed enhancement of U4 release is due
specifically to the addition of XTP. Moreover, because non-
hydrolyzable XMP-PNP did not lead to enhanced dissociation
of U4 (data not shown), we hypothesize that the enhancement
of the U4 release after addition of a combination of ATP and
XTP implies hydrolysis of XTP; this indicates that the mutant
snull14-D271N takes part in the process, which in turn impli-
cates GTP hydrolysis by Snul14p in the wild-type spliceosome.
Taken together, our results show that the stalled precatalytic
spliceosome can be reactivated and that this reactivation is
dependent only in part on the lowering of the temperature in
the presence of ATP. Most importantly, an additional activa-
tion is observed if (and only if) hydrolyzable XTP is mixed with
ATP.

To exclude the possibility that an independent protein, in
addition to snul14-D271N, is present in the purified complexes
and utilizes XTP to enhance the U4/U6 unwinding, we used
another mutant of Snull4p, the N-terminal deletion mutant
snull4AN. This mutant lacks about 130 amino acids at its N
terminus, but it possesses an intact G domain, so it should still
retain its GTP-binding activity. We showed recently that heat
treatment of snull4AN extracts also prevents the unwinding
of U4/U6, which is in this case most probably due to a loss of
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crucial protein-protein interaction between the N terminus of
Snull4p and other factors that regulate the this unwinding
(11).

Fig. 4B, lane 10, shows that the corresponding precatalytic
complexes purified from snull4AN extracts could be reacti-
vated only in part by the addition of ATP. No enhancement of
the U4 dissociation was observed, either when both ATP and
GTP (see “Discussion”) or both ATP and XTP (lane 11 and 12)
were used. Taken together, these data support the earlier find-
ing that Snul14p is involved in the U4/U6 unwinding during
catalytic activation of the spliceosome (11), and they strongly
link snul14-D271N to the effect of XTP that we observe on the
release of U4.

Requirement for Snull4p in the Assembly of Stable U5 and
Tri-snRNP Particles—Because in earlier studies the strain car-
rying the D271N mutation exhibited a slow growth phenotype
at all of the temperatures tested, it was routinely grown at
30 °C instead of at 25 °C before extract preparation. We ob-
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served that extracts prepared from these strains were consis-
tently inactive in splicing in vitro (data not shown). Fig. 5A
shows the immunoprecipitation of tri-snRNP particles ob-
tained from these extracts (400 pg of proteins), using anti-
Snulldp and anti-Prp8p antibodies. The reactions were
washed at various salt concentrations, and the precipitated
snRNAs were analyzed by Northern blotting.

In comparison with wild-type extracts only 40% of tri-snRNP
was present in the D271N mutant extract (Fig. 5A, compare
lanes 3 and 4 with lanes 1 and 2). An even more dramatic effect
was observed when the tri-snRNP of the domain II mutant
R487E was analyzed (Fig. 5A, lanes 5 and 6). To exclude the
possibility that the decreased levels of tri-snRNP were due to a
reduced association of the mutant proteins snul14-D271N and
R487E with the particle, or to inadequate recognition of the
mutants by the anti-Snull4p antibody, we also precipitated
the tri-snRNPs with anti-Prp8p antibodies (Fig. 5A); here too,
a similar effect was observed. In summary, Fig. 5A shows that
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Fic. 5. Strains containing the D271N and R487E snull4p mutants lead to low levels of U5 and U4/U6-U5 tri-snRNP particles when
grown at high temperatures. A, immunoprecipitation of U5 and tri-snRNP particles obtained from wild-type, D271N, and R487E strains grown
at 30 or 25 °C, respectively. Extracts (400 pg) were used in immunoprecipitation experiments using anti-Snull4p antibodies (lanes 1-6),
anti-Prp8p antibodies (lanes 8, 9, 11, 12, 14, and 15) or non-immune serum (lanes 7, 10, and 13). After immunoprecipitation the reactions were
washed with different salt concentrations, and the RNA content of the precipitates was analyzed by Northern blotting. The bands were quantified
by PhosphorImager analysis. B, wild-type, D271N, and R487E extracts (2.5 mg) obtained from the corresponding strains grown at 30 or 25 °C were
sedimented on a 10-30% glycerol gradient. The fractions were phenol-chloroform-extracted, and their snRNA content was analyzed by Northern
blotting using U4, U5, and U6 snRNA probes or Ul and U2 snRNA probes (see D). C, Western blot of the gradient fractions from wild-type and
D271N extracts using anti-Snull4p antibodies. The Western blot of the gradient fractions obtained from the R487E mutant extract showed very

low levels of protein, and it is not shown.

the D271N and R487E extracts have about 60 and 85% less
tri-snRNP than the wild-type extract. This result suggests that
Snulldp is required to maintain proper levels of the
tri-snRNP particle.

A similar or even more pronounced effect was obtained when
U5 and tri-snRNP particles were examined after loading equiv-
alent amounts of extracts, 2.5 mg of proteins, on each glycerol
gradient (Fig. 5B). Tri-snRNP particles and free 16 S U5
snRNPs are clearly less abundant in the D271N extract than in
those from the wild-type. Western blot analysis of these gradi-
ents revealed that there was no free protein at the top of the
gradients, suggesting that most of the snu114-D271N present
in the extract was associated with the U5 and tri-snRNP par-
ticles (Fig. 5C). However, Fig. 5B also shows that the reduced
levels of U5 and tri-snRNP particles in the D271N extracts
correlated with a reduced amount of mutant protein, which
appeared at about 40% of the wild-type level. To verify whether
this extract also contained reduced levels of Ul and U2
snRNPs, a Northern blot analysis was performed by using
probes that recognized the Ul and U2 snRNAs. Fig. 5D shows

that the levels of the Ul and U2 snRNPs were not affected in
the mutant extract. In addition, because the levels of Ul and
U2 snRNPs are similar in both gradients, this experiment
provides an internal control that confirms that equivalent
amounts of extracts were used.

Similar observations were made with the R487E extract
prepared from strains grown at 25 °C. Fig. 5B (lower panel)
shows that the effect due to this mutation is even more clearly
seen than with the mutant D271N; in fact, only minor amounts
of U5 and tri-snRNP particles were detected. Also with this
mutant, no effect on the level of Ul and U2 snRNAs, could be
seen (data not shown). Altogether, these results show that
Snull4p is required to assemble 16S U5 and tri-snRNP parti-
cles prior to splicing.

DISCUSSION

Dissociation of the U4/U6 snRNA duplex during spliceosome
activation allows the subsequent base-pairing of U6 with U2
snRNA to form the catalytic core. Snulldp, the spliceosomal
homologue of the ribosomal GTPase EF-2, is involved in the
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dissociation of U4 from U6 snRNA. To understand the function
of Snull4p in more detail, we performed mutagenesis of highly
evolutionarily conserved residues and domains. This brought to
light several previously unknown and potentially important
features of Snul14p function, including a possible involvement
of GTP in spliceosome activation and a role of Snull4p in
building the U5 and U4/U6.U5 tri-snRNP particles. The possi-
ble functional role of Snull4p as a GTPase involved in the
disruption of the U4/U6 RNA duplex during activation of the
spliceosome is presented and discussed.

Purified Snull4p Binds GTP Specifically—We have shown
that purified Snull4p, as predicted by its sequence, binds GTP
in vitro independently of the other splicing factors of the U5
snRNP. However, this activity is stimulated by RNA cofactors,
e.g. poly(U), and may be enhanced by protein cofactors. This is
reminiscent of the spliceosomal ATPases, the function of which
in vitro is also stimulated by RNA, indicating that all of these
spliceosomal enzymes interact with RNA. It is not known
whether Snull4p binds specifically and directly to RNA. As
observed for domains III, IV, and V in EF-G, the corresponding
domains in Snull4p probably also share structural homology
with RNA-binding proteins (15, 16) and may therefore interact
directly with RNA.

As expected for a GTP-binding protein containing a canonical
G domain, Snull4p has high affinity for GTP only. We think
that the modest amount of ATP binding observed in our UV
cross-linking studies is irrelevant and unspecific, because it
can be reversed by adding any of the unlabeled NTPs tested. In
addition, we investigated whether purified Snull4p not only
binds but also catalyzes the hydrolysis of GTP. Using the
purified Snull4p shown in Fig. 1A in a GTPase assay, we
reproducibly observed some GTP hydrolysis (data not shown).
Although this hydrolysis was slightly stimulated by the addi-
tion of poly(U), and competition experiments suggested some
specificity for GTP, we cannot rule out the possibility that this
activity is due in part to a contaminating protein. As deter-
mined by mass spectrometry, small amounts of other proteins
were detected together with Snul14p, such as the phosphatase
PHOS, and all the attempts to separate the two proteins com-
pletely from each other failed. Therefore, we cannot exclude the
possibility that this phosphatase was responsible for, or con-
tributed to, the observed GTPase activity. To circumvent these
technical difficulties, we pursued the question of whether
Snull4p hydrolyzes GTP in splicing, by performing site-di-
rected mutagenesis of the G domain.

New Insights into Snull4p Function Are Revealed by Mu-
tagenesis—Because sequence motifs provided clues to the func-
tions of some of the spliceosomal proteins, e.g. the DEX(D/H)
box family members, we probed the function of Snulldp by
replacing or deleting several amino acids in evolutionarily con-
served domains of Snull4p. Using the N-terminal deletion
mutant of Snull4p (snull4AN), we showed that Snull4p is
involved in the dissociation of U4 from U6 snRNA during
spliceosomal activation (11). However, we did not demonstrate
whether the binding and hydrolysis GTP are needed to trigger
spliceosomal activation. For this reason, we generated numer-
ous mutants of the G domain of Snull4p with the aim of
finding conditionally lethal mutants that might answer the
question of whether GTP hydrolysis is required during spliceo-
some activation.

In addition, we replaced some of the residues of the other
domains of Snul14p, especially residues that have been highly
conserved during evolution and that perform important tasks
in other systems. Domains IV and V of Snul14p are evolution-
arily highly conserved between EF-2 and EF-G. The fold of
EF-G domain IV shares a surprising similarity with the ribo-
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somal protein S5, whereas domain V has an RNA recognition
motif and is very similar to the ribosomal protein S6 (15, 28).
We expected that changing identical residues in Snull4p
would reveal important aspects of the function of Snull4p.
However, from all these data we conclude that only the G
domain is very sensitive to mutagenesis, and indeed, several
substitutions in this domain led to lethal or conditional
lethal phenotypes.

There are ten distinct examples in the literature of GTPases
that have been successfully engineered to accept XTP, and in
most of these cases the specificity was clearly shown to switch
from GTP to XTP (17). By making the corresponding substitu-
tion (D271N) in Snull4p we likewise generated an XTP mu-
tant (see below).

The Spliceosomal D271N XTP Mutant as a Tool to Under-
stand Whether XTP Hydrolysis Is Involved in Spliceosomal
Activation—We show that the D271N substitution in the gua-
nine-ring binding sequence of the G domain leads to a splicing
defect that is manifested in vivo and in vitro at high tempera-
tures and is associated with U4 snRNA remaining paired with
the U6 snRNA. We could further establish a specific require-
ment for XTP by isolating these stalled precatalytic spliceo-
somes from which U4 is not released, at high temperatures, by
isolating and freeing them completely from residual NTPs. We
show that U4 is released efficiently from these spliceosomes
only when a mixture of ATP and XTP is added and the assay
temperature is lowered, suggesting that Snul14p uses GTP to
activate the unwinding of U4 from U6. Because a non-hydro-
lyzable XTP analogue (XMP-PNP) did not lead to the enhance-
ment of the U4 dissociation, we speculate that the enhance-
ment of the U4 release after addition of a combination of ATP
and XTP implies hydrolysis of XTP (and therefore GTP for
wild-type Snull4p) and implicates snull4-D271N in
this process.

The requirement for ATP in the activation of the precatalytic
spliceosome was expected, because it is plausible that the
U4/U6 unwinding during spliceosome activation is catalyzed by
one of the spliceosomal DEX(D/H) box proteins. Results from
Lauber et al. (33) and Raghunathan et al. (34) implicate the U5
snRNP-specific protein U5—200K/Brr2p in the U4/U6 unwind-
ing. This is supported by the result of Laggerbauer et al., (35),
who showed that protein U5-200K unwinds U4/U6 duplexes in
vitro and that its RNA unwindase activity is only observed in
the presence of hydrolyzable ATP or dATP. Moreover, protein
U5-200K works less efficiently with CTP and dCTP and not at
all with GTP or UTP. In our experiments we could successfully
replace ATP by dATP but not with one of the other deoxynucle-
otides or with ATPyS (data not shown). Thus, the NTP speci-
ficity pattern observed for the U4/U6 unwinding resembles
that previously observed for the human homologue of Brr2p
and confirms an involvement of Brr2p in the described reacti-
vation (35). Similar observations were described by Kuhn et al.
(9), who found, in addition, that Prp8p also participated in the
U4/U6 unwinding.

The fact that XTP does not lead to an increase in the disso-
ciation of U4 when it is combined with ATP in the snul14AN
mutant extract underscores the specificity of XTP for the
D271N extract. The unexpected lack of enhanced U4 dissocia-
tion after the addition of a combination of ATP and GTP in the
snull4AN mutant extract may be due to the large size of the
snull4AN deletion, which compromises the structure to such
an extent that lowering the assay temperature can no longer
induce recovery. It could well be that its structure remains too
compromised in these purified precatalytic complexes, even
when the temperature is decreased.

We tried to overexpress the snull4p XTP mutant in yeast
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with the aim of studying the binding and hydrolysis of XTP in
vitro using purified mutant protein. These studies would have
been of primary importance to demonstrate directly whether
snul14-D271N binds and more importantly, whether it hydro-
lyzes XTP. Moreover, we would have circumvented the problem
that contaminating proteins would be responsible of the enzy-
matic activity, because additional xanthosine triphosphatases,
besides snul14-D271N, should not be present in the yeast
extract. However, we could not overexpress snull4-D271N in
yeast, because it is mostly unstable when overexpressed and
most of it is quickly degraded, at both 23 and 30 °C. It is thought
that nucleotide-free guanine nucleotide-binding proteins are usu-
ally unstable for extended periods of time (36), furthermore, we
expect that the intracellular levels of XTP are low when com-
pared with GTP.

An Additional Role of Snull4p: Building the U5 and U4/
U6.U5 Particles—As has been shown in the past for Prp8p (37),
we show here that Snul14p is required for the stable formation
of the tri-snRNP. In addition, growth at high temperatures of
mutant strains containing snul14-D271N (30 °C) and snul14-
R487E (25 °C) causes the levels of the 16 S U5 snRNP to
decline dramatically, while a U5 snRNP with a reduced sedi-
mentation velocity appears, the majority of these particles mi-
grating in approximately the same position as free U6 particles
(Fig. 5B). Very similar results were obtained in vivo by deplet-
ing cells of Prp8p (37). This indicates that, independently of its
role in splicing, Snull4p plays a part in building both the U5
and the tri-snRNP particles, perhaps again in concert
with Prp8p.

Although substantial amounts (40%) of assembled tri-snRNP
particles are present in the D271N extract prepared following
growth of the strain at 30 °C, the extract is reproducibly inac-
tive in splicing in vitro. This suggests that when snull4-
D271N is heated in vivo it suffers a structural or conforma-
tional defect that may impair not only its association with the
U5 and tri-snRNP particles but also its overall function within
these particles. At the growth temperature of 23 °C, snull4-
D271N is expressed and assembled in U5 and tri-snRNP par-
ticles as efficiently as in wild-type strains (Fig. 3C). Most prob-
ably, the incorporation of snull4-D271N into an snRNP
particle protects it from degradation. However, at the growth
temperature of 30 °C, snull4-D271N is expressed, but not
completely assembled, in U5 and tri-snRNP particles, most
probably because it is damaged. This damage may be induced
by the combination of the high temperature (which loosens the
protein structure) with the insufficient amount of XTP (an
insufficient amount would make the protein unstable, provided
that it is not immediately included in a particle). Indeed, we
show that the fraction of the snu114-D271N mutant that is not
incorporated into U5 and tri-snRNP particles is most probably
degraded, because no free protein is visible at the top of the
gradient (Fig. 5C).
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