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The Effect of Lipid Demixing on the Electrostatic Interaction of Planar
Membranes across a Salt Solution
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ABSTRACT We study the effect of lipid demixing on the electrostatic interaction of two oppositely-charged membranes in
solution, modeled here as an incompressible two-dimensional fluid mixture of neutral and charged mobile lipids. We calculate,
within linear and nonlinear Poisson-Boltzmann theory, the membrane separation at which the net electrostatic force between
the membranes vanishes, for a variety of different system parameters. According to Parsegian and Gingell, contact between
oppositely-charged surfaces in an electrolyte is possible only if the two surfaces have exactly the same charge density (s1 ¼
�s2). If this condition is not fulfilled, the surfaces can repel each other, even though they are oppositely charged. In our model of
a membrane, the lipidic charge distribution on the membrane surface is not homogeneous and frozen, but the lipids are allowed
to freely move within the plane of the membrane. We show that lipid demixing allows contact between membranes even if there
is a certain charge mismatch, js1j 6¼ js2j, and that in certain limiting cases, contact is always possible, regardless of the value of
s1/s2 (if s1/s2 \ 0). We furthermore find that of the two interacting membranes, only one membrane shows a major
rearrangement of lipids, whereas the other remains in exactly the same state it has in isolation and that, at zero-disjoining
pressure, the electrostatic mean-field potential between the membranes follows a Gouy-Chapman potential from the more
strongly charged membrane up to the point of the other, more weakly charged membrane.

INTRODUCTION

Adhesion between biological membranes is governed by

a manifold of interactions, which include specific binding

and unspecific repulsion by macromolecules (Guttenberg

et al., 2001), as well as bending undulations of the membrane

(Helfrich, 1978). A further important contribution originates

from electrostatics, which is the key issue of this article. On

average, ;10% of all lipids in biomembranes carry a neg-

ative charge. The actual charged lipid fraction depends

strongly on cell type and the organelles. Due to its high

cardiolipin content the average lipid charge density of

mitochondrial membranes is;43 larger than that of plasma

membranes (Sackmann, 1995). There are essentially no

positively-charged lipids in biomembranes. In contrast,

many membrane-associated proteins carry a net positive

charge, as, for example, the eight net positive charges of

cytochrome c, which is associated to the negatively-charged

mitochondrial membranes.

Although positively-charged lipids are not abundant in

biomembranes, liposomes of artificially synthesized cationic

lipids play an important role as putative nonviral gene car-

riers (vectors) for therapeutic purposes (Felgner et al., 1987;

Li and Huang, 2000). They serve as targets for negatively-

charged nucleic acids (Wetzer et al., 2001; Safinya, 2001;

Chesnoy and Huang, 2000). The likely reason for the high

efficiency of gene transfer is the electrostatic interaction of

the positively-charged carrier liposomes with the biological

cell membranes, which, on average, are negatively charged

(Safinya, 2001). In artificial systems DNA binds to

positively-charged liposomes in a multilayer arrangement,

where negatively-charged DNA layers and positively-

charged membranes stack in an alternating manner (Rädler

et al., 1997; Koltover et al., 1999). It has been demonstrated

that the release of counterions is an important factor for the

electrostatic free energy of such lamellar complexes (Wagner

et al., 2000).

In general, lipids do not mix ideally, but instead form

domains, sometimes called rafts (Brown and London, 1998;

Simons and Ikonen, 1997). These domains exist on nano-

scopic and mesoscopic length scale and there is a yet-

ongoing discussion concerning their lifetimes and length

scales. In biomembranes, rafts display a distinct lipid and

protein composition, and it is likely that the formation of

these domains depends on the nonideal mixing properties of

the membrane components (Rietveld and Simons, 1998).

Such domains have also been identified in artificial mem-

branes by confocal microscopy (Korlach et al., 1999). The

physical chemistry of such demixing processes is based on

interactions between adjacent lipids (Sugar et al., 1999). The

diffusion behavior of lipids can well be altered by domain

boundaries which serve as diffusion barriers (Almeida and

Vaz, 1995) The finding that membranes containing anionic

lipids and basic proteins form domains is an indication that

biomembranes may contain positively- and negatively-

charged regions.

The analysis of membrane electrostatics is, however, sig-

nificantly complicated by the fact that lipids may not mix

ideally. For this reason the theoretical treatment has so

far been restricted to systems with ideally mixing compo-

nents, e.g., diacyl phosphatidylcholine mixtures with diacyl-

phosphytidylglycerols (Cutsforth et al., 1989; Mosior and

Submitted July 17, 2002, and accepted for publication November 25, 2002.

Address reprint requests to H. H. von Grünberg. E-mail: hennig.

vongruenberg@uni-konstanz.de.

� 2003 by the Biophysical Society

0006-3495/03/06/3730/13 $2.00



McLaughlin, 1992; Montich et al., 1993; Heimburg et al.,

1999). In these experimental systems unfavorable mixing

properties of membrane components can be neglected. Like-

wise, in the following we focus on membranes containing

ideal mixtures of negatively- and positively-charged mole-

cules.

Charged biomembranes interact with other charged objects

like soluble proteins via Coulomb forces. These forces are

screened by the microions of the electrolyte solution, but for

membranes this is not the only screening mechanism pos-

sible. As mentioned, biomembranes consist of many different

types of lipids with a rich variety of attached alkane chains

and a variety of headgroup areas, some of which are charged

(Sackmann and Lipowsky, 1995; Safran, 1994).

According to our present knowledge, membranes are pre-

dominantly in a fluid state in which the individual membrane

components are free to move within the plane of the mem-

brane. In ideal mixtures the lateral diffusion is not hindered

by domain boundaries. If another charged object approaches

the surface of such a multicomponent (mixed) membrane,

charged lipids are allowed to migrate toward, or away from,

the interaction zone. This demixing of charged and neutral

lipids results in a locally varying lipid composition profile on

the membrane. One may consider the demixing as a kind of

two-dimensional screening of the electrostatic forces by

charged lipids confined within the plane of the membrane,

which supplements the more familiar screening that is due to

the electrolyte ions in the three-dimensional space of the

solution. Such local demixing has been observed for several

peripherals such as prothrombin (Cutsforth et al., 1989) and

cytochrome c (Heimburg et al., 1999), as well as for integral

proteins using electron spin resonance methods (Marsh,

1987), e.g., for Na1,K1-ATPase (Esmann et al., 1988; Arora

et al., 1989), bacteriophage M13 coat protein (Wolfs et al.,

1989), and myelin basic protein (Sankaram et al., 2002).

That membrane demixing can have an enormous im-

pact on the electrostatic adsorption free energy has been

recognized and emphasized mainly in the literature on

protein and DNA binding on membranes (May et al., 2000;

Fleck and von Grünberg, 2002; Menes et al., 1998; Denisov

et al., 1998; Heimburg and Marsh, 1995; Heimburg et al.,

1999; Takamoto et al., 2001; Last et al., 2001; Huster et al.,

2000). For example, it has been shown that protein-induced

lipid demixing is responsible for the formation of huge lipid-

protein domains in membranes (Denisov et al., 1998); these

are regions with a large lateral density of adsorbed proteins,

coexisting with other regions of lower protein density. A

similar partitioning phenomenon has recently been observed

in systems consisting of negatively-charged latex spheres

and positively-charged mixed bilayer vesicles (Aranda-

Espinoza et al., 1999; Ramos et al., 1999). Whereas initially

the spheres adsorb without preference everywhere onto the

vesicles, adhesion saturation has been found at a later stage

and the membrane partitioned into attractive and repulsive

zones where additional incoming spheres were attracted to,

or repelled from, respectively. Again, lipid demixing has

turned out to be crucial for the understanding of the under-

lying mechanism (Chen and Nelson, 2000). It should be

noted that similar lipid reorganization phenomena may occur

close to the tips of atomic force microscopes close to charge

surfaces (Butt, 1991; Xu et al., 1997; Müller et al., 1999).

Another recent experiment that must be mentioned in this

context is that of Nardi et al. (1998, 1997) who have studied

the adhesion process between a cationic vesicle and an

anionic membrane, both simple binary mixtures of neutral

and charged lipids serving as model systems for cationic

gene delivery vectors. Measurements of the membrane ten-

sion have revealed that due to the adhesion-induced re-

organization (or demixing) of the membranes, adhesion of

multi-component membranes is fundamentally different

from that of single-component membranes.

The aforementioned experiments have motivated the

present theoretical study. The article addresses the rather

general question of how lipid demixing affects the in-

teraction between two oppositely-charged membranes,

modeled here as two planar and parallel surfaces. That this

is an interesting nontrivial physical question can be seen

already from the case of two membranes with a frozen lipid

composition, that is, if the two membranes are considered as

two uniformly-charged planar surfaces immersed in an elec-

trolyte solution. If the two surfaces are oppositely charged

with exactly the same charge density, then their interaction is

always attractive. This is, however, not the case if they are

oppositely charged but with surface charge densities that are

not equal. Then, the interaction is attractive at large surface

separations only and becomes repulsive at close approach.

That oppositely-charged surfaces can interact repulsively is

a surprising and counterintuitive effect which has first been

discovered and analyzed by Parsegian and Gingell (1972).

These authors have shown that the observed repulsion is due

to the osmotic pressure of counterions that must remain

within the gap between the surfaces to ensure the electro-

neutrality of the system. Parsegian and Gingell, starting

from the linearized Poisson-Boltzmann (PB) equation, have

systematically calculated that distance separation between

the charged surfaces where attraction changes over to re-

pulsion, i.e., where the disjoining pressure between the

surfaces is zero.

In the present article we elaborate and extend the study of

Parsegian and Gingell by examining if and how their ideas

apply to mixed membranes consisting of laterally mobile

lipids. We thus consider the interaction of two oppositely-

charged planar surfaces hosting a two-dimensional system of

screening of lipidic charges. Two-dimensional lipid screen-

ing here competes with three-dimensional screening by

microions belonging to the salt solution between the sur-

faces. We will show that lipid demixing increases the region

in parameter space where oppositely-charged membranes

attract each other; that, in particular, it allows oppositely-

charged membranes to make touching contact even if there
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is a certain charge mismatch between the surfaces; that

a switching between contact/noncontact situations can be

regulated via the salt concentration of the solution; and,

finally, that the results obtained in linear PB theory remain

qualitatively correct if the calculation is based on the full

nonlinear PB equation.

The effect of demixing on the interaction of oppositely-

charged membranes has previously been studied by Lau and

Pincus (1999) for the case of no added salt, a restrictive

assumption that allowed them to obtain exact solutions to the

nonlinear PB equation. A brief theoretical discussion of the

thermodynamic and kinetic aspects of adhesion between

oppositely-charged binary membranes is also given in Nardi

et al. (1998). The phenomenon of repulsion between

oppositely-charged surfaces has recently been discussed by

Ben-Tal (1995). Related free energy expressions can be

found in Stahlberg et al. (1991), Jönsson and Stahlberg

(1999), and Oshima (1975), derived in linear but also in

nonlinear PB theory (Jönsson and Stahlberg, 1999). A

theoretical discussion of adhesion processes of multicom-

ponent membranes, also related to our problem, is given in

Weikl and Lipowski (2001). Here the interplay between

membrane reorganization and adhesion is considered for

a system of two interacting model membranes, with one

membrane having components that are attracted by the

second membrane, thus acting as local stickers; see also Bell

(1988) and Lipowski (1996a).

The validity of the PB theory, upon which our calculations

are based, for treating the interaction between charged sur-

faces in aqueous salt solutions has been examined by various

authors by comparison to computer simulation studies; for

reviews see Andelman (1995) and Vlachy (1999). In es-

sence, these studies confirm that PB theory is adequate for

monovalent salt ions and salt concentrations not exceeding�
0.1 M.

The article is organized as follows. We first introduce our

model and formulate the problem (Model and Notation).

Following Parsegian and Gingell (1972), the main theoret-

ical task is to calculate the intermembrane distance where the

force between the membranes vanishes. This is first done in

Effective Interaction in Linear Theory, resorting to the

simpler linear PB theory to uncover the underlying physics,

and then repeated in Effective Interaction in Nonlinear

Theory, now starting from the full nonlinear PB equation.

MODEL AND NOTATION

We consider the interaction between two charged mem-

branes embedded in an aqueous electrolyte solution. We

model the membrane surface as an incompressible two-

dimensional fluid mixture composed of different types of

lipidic surface groups. In principle our treatment also applies

to charged or uncharged membrane peptides or proteins.

However, in the following we restrict our notation to lipids.

The membranes are assumed to interact with each other only

locally; that is, the interaction is governed by a membrane

area Aint, which is small compared to the total surface Atot of

the membrane, Aint � Atot. This small area, the interaction

region, is treated here as the system, whereas those parts of

the membranes that are not involved in the interaction are

treated as the reservoir for the surface groups. These groups
can freely move between the interaction region and the

reservoir. The interaction regions are furthermore taken to be

planar stiff sheets, oriented parallel to each other and

separated by a relative distance l. Thus, we assume that

surface undulation forces can be neglected. These planar

interaction regions, though being small compared to Atot, are

still large enough that one can safely ignore effects, which

might occur due to the finite size of the interaction zone. The

first membrane (i¼ 1) is located at x¼ 0 and the other (i¼ 2)

at x ¼ l. Fig. 1 shows a schematic view of the whole

arrangement.

Let us first introduce the notation for those parts of the

membranes whose surface properties are not affected by the

presence of the other membrane, i.e., whose surface groups

belong to the reservoir. For simplicity we consider here

membranes composed of just two types of mobile surface

groups; one type is neutral, the other charged. hi denotes the

surface fraction of the charged lipids on both membranes (i
¼ 1,2). With qi being the valency of the charged lipid, the

surface charge density (given in units of the elementary

charge e) becomes si ¼ qihi=a
2
i (i ¼ 1,2), where a2i is the

headgroup area per charged lipid on membrane i ¼ 1,2.

FIGURE 1 Schematic view of our model of two membranes. The

membranes interact only locally via interaction zones, assumed to be planar

and parallel surfaces, located at x¼ 0 (membrane 1) and x¼ l (membrane 2).
We consider only electrostatic interactions. Outside the interaction zones,

the membranes are characterized by their surface potentials (F‘
i ), their

surface-charge densities (si), the valency of the lipidic charges (qi), and the

surface fraction of charged lipids (hi) (i¼ 1,2). In our model, we allow lipids

to freely flow between the interaction zones and those parts of the membrane

not involved in the interaction (reservoir), so the surface potentials in the

interaction zone (F(0) for membrane 1 and F(l) for membrane 2) as well as

the surface charge densities (sint
1 and sint

2 ) can be different from their

corresponding values in the reservoir.
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Through this relation, the quantities si, a
2
i , qi, and hi are

linked, and we thus have three independent variables to

characterize the surface properties of the membranes which,

in the following, we choose to be si, qi, and hi. Finally, the

surface potentialsF‘
1 andF‘

2 are related to the ratio between

si and the screening constant to be introduced below (Eqs. 7

and 11). We remark that hi can be tuned via the pH of the

solution. If fi is the total surface fraction of those lipids that

are allowed to dissociate, then

hi ¼ fiai; (1)

where ai is the degree of dissociation, which is determined

by the appropriate dissociation constants and the pH value

of the solution via the law of mass action (Fleck and von

Grünberg, 2002). Since the pKA of charged lipids depends

on the electrostatics of the environment, we assume in the

following that the pH of the aqueous medium is far away

from the pKA of the lipids.

The first quantity to be calculated is the reduced elec-

trostatic potential F (i.e., the potential multiplied by e and

the inverse temperature b ¼ 1/kT ) on and between the two

membranes. If the interaction zones of the two membranes

are separated by a finite distance l, small enough for them to

start interacting with each other, charged lipids will either

come into or escape from the interaction region, depending

on what is energetically more favorable. This redistribution

of charges results in a difference of potential between the

membrane surface potentials in the interaction region and

those in the reservoir F‘
i ,

DF1 ¼ Fðx ¼ 0Þ �F
‘
1 ; DF2 ¼ Fðx ¼ l Þ �F

‘
2 : (2)

It can be shown (May et al., 2000; Fleck and von Grünberg,

2002) that the lipid distribution minimizing the total free

energy follows the relation

s
int

i ¼ si

e
�qiDFi

hie
�qiDFi 1 ð1� hiÞ

; (3)

where sint
i (i ¼ 1,2) is now the surface charge density in the

interaction region, to be distinguished from si, the surface

charge density on the noninteracting parts of the membranes

in the reservoir. Eq. 3 results from the balance of two terms

in the free energy functional (Fleck and von Grünberg,

2002), the electrostatic energy and the mixing entropy of

lipids. In our case where the difference DFi is caused by the

interaction of oppositely-charged objects, this specifically

means that an entropy penalty in the total free energy

prevents too strong an accumulation of lipidic charges in the

interaction zone, which, from the electrostatic point of view,

would be rather favorable. The nominator of Eq. 3 is rec-

ognized as the Boltzmann factor, while the denominator

takes account of the finite size of the lipidic groups, prevent-

ing that the local surface density of lipids in the interaction

zone exceeds the maximum packing value 1/hi (close pack-

ing). We observe that sint
i reduces to its reservoir value, si,

(i) if the difference of potential is zero as it is the case for

immobile lipids, or (ii) if all lipids are fully charged (hi ¼ 1),

in which case lipid mobility is, of course, of no consequence

to our problem.

The electrostatic potential can be calculated from the PB

equation, which for a 1:1 electrolyte takes the form

F0ðxÞ ¼ k
2
sinhFðxÞ; (4)

where the prime denotes differentiation with respect to x.
k2 ¼ 8plBcs is the screening constant with lB ¼ e2b/e the
Bjerrum length and cs the salt concentration in the reservoir.

lB is the distance where the interaction energy of two

elementary point charges in the solvent under consideration

equals kT, and can thus be regarded as a measure for the

relative significance of electrostatic forces in this specific

solvent. The potential is taken to be zero deep in the bulk

of the electrolyte, far away from any charged surface. The

solution to Eq. 4 for the case of one planar membrane with

a charge density s, is the famous Gouy-Chapman potential

(Evans and Wennerström, 1994),

tanh
FGCðxÞ

4
¼ e

�kx
tanh

FGCð0Þ
4

; (5)

with the first derivative

F9GCðxÞ ¼ �2k sinhðFGCðxÞ=2Þ; (6)

where 2 sinhðFGCð0Þ=2Þ ¼ 4plBs=k. Therefore the rela-

tionship between si and F‘
i is given by

2 sinh
F

‘
i

2

� �
¼ 4plBsi

k
: (7)

Returning now to our problem of two interacting planar

membranes, we formulate a complete boundary value

problem by specifying the boundary conditions for solving

for F,

F9jx¼0 ¼ �4plBs
int

1

F9jx¼l ¼ 14plBs
int

2 ; (8)

with the effective surface charge densities from Eq. 3. At this

point, it becomes clear that the principal problem of our

calculation lies in the fact that the potential to be calculated

not only appears in Eq. 4, but via Eqs. 2 and 3, also on the

right-hand side of the boundary conditions. In fact, the

boundary conditions mark the point where the two-di-

mensional system of screening lipid charges is coupled to the

three-dimensional system of screening electrolyte ions.

Once F(x) is known for a given membrane-membrane

distance l, one can eventually turn to the quantity that is of

central interest in this article, the pressure, which at a given

point in the electrolyte solution relative to the bulk pressure,

is (Evans and Wennerström, 1994):

bp ¼ � 1

8plB

ðF9Þ2 1 2csðcoshF� 1Þ: (9)
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Negative values for p at a given distance l indicate an

effective attraction between the membranes; positive values,

a repulsive interaction.

EFFECTIVE INTERACTION IN LINEAR THEORY

We first restrict ourselves to the condition F \ 1, which

allows linearization of the sinhF in Eq. 4 and of the

exponentials in Eq. 3. This greatly simplifies our problem

while still preserving its qualitative features. The boundary

value problem introduced above now reads,

F0ðxÞ ¼ k
2
FðxÞ

F9jx¼0 ¼ �4plBs1 1� q1ðFð0Þ �F
‘
1 Þð1� h1Þ

� �
F9jx¼l ¼ 4plBs2 1� q2ðFðlÞ �F

‘
2 Þð1� h2Þ

� �
; (10)

where the surface potentials in the reservoir F‘
i follow from

Eq. 7,

F
‘
i ¼ 4plBsi

k
: (11)

The Gouy-Chapman potential, Eq. 5, simplifies in linear

theory to

FGCðxÞ ¼ 4plBs

k
e�kx

; (12)

and the equation for the pressure, Eq. 9, to

bp ¼ � 1

8plB

ðF9Þ2 1 csF
2
: (13)

The general solution to the PB equation in Eq. 10 is

FðxÞ ¼ Ae
kx 1Be

�kx
; (14)

so that Eq. 13 reduces to just

bp ¼ 4csAB: (15)

Case of immobile lipids

To set the stage, we start by considering the limiting case of

immobile lipids when F(0) ¼ F‘
1 and F(l) ¼ F‘

2 . This

important case is discussed by Parsegian and Gingell (1972),

the major points of which we now briefly repeat to lay the

ground for our considerations further below. As in Parsegian

and Gingell (1972), we wish to determine that specific

distance lmin where the effective intermembrane force

changes its sign, i.e., we seek to find the distance where p
in Eq. 15 becomes zero. Obviously, this is the case if either A
¼ 0 or B ¼ 0. If A ¼ 0, then the boundary conditions in Eq.

10 together with Eq. 14 lead to

� kB ¼ �4plBs1

� kBe
�klmin ¼ 4plBs2; (16)

from which we conclude that

FðxÞ ¼ 4plBs1

k
e�kx

; (17)

and

s1=s2jp¼0 ¼ �eklmin : (18)

The last equation specifies the distance lmin at which the

pressure vanishes. Clearly, this equation cannot be satisfied

for like-charged surfaces, but only for oppositely-charged

surfaces. One recognizes that for s1¼�s2, the point of zero

force is at contact. If, however, s1 differs slightly from �s2,

then the point of zero pressure is at some finite distance lmin,

meaning that even oppositely-charged membranes can repel

each other at distances l \ lmin. This is due to the

electroneutrality condition which, in cases where s1 �
�s2, requires a few counterions to stay in the slab between

the two membranes, thus leading to a repulsive osmotic

pressure if l\ lmin. We furthermore observe from Eq. 18 that

js1j$ js2j since eklmin $ 1; that is, the case A¼ 0 corresponds

to the situation where the magnitude of the surface charge

density of the first membrane located at x ¼ 0 is higher than

that of the other membrane at x ¼ lmin. The potential, Eq. 17,

is the linearized Gouy-Chapman potential for a single,

isolated membrane, Eq. 12, as if the second membrane were

nonexistent. In other words, the effective intermembrane

force vanishes if the less charged membrane is at a distance

lmin where its surface charge density just equals the net

surface charge density one would obtain by integrating the

Gouy-Chapman profile in front of an isolated membrane

from lmin to ‘. The surface charge density of the second

membrane thus replaces the missing tail of the Gouy-

Chapman density profile of an isolated membrane. This has

been pointed out by Jönsson and Stahlberg (1999) in another

context.

It is readily seen that the other case leading to zero

pressure, B ¼ 0, corresponds to the situation where js2j $
js1j. Then for l ¼ lmin there is an unperturbed Gouy-

Chapman layer in front of the second membrane and the

surface charge density of the membrane at x ¼ 0 takes the

role of simulating the cut tail of the Gouy-Chapman profile.

The condition for lmin becomes

s1=s2jp¼0 ¼ �e
�klmin : (19)

Fig. 2 a shows the two curves�e�klmin and�e1klmin plotted

against klmin. These curves divide the parameter space

spanned by s1/s2 and kl into regions of attractive and

repulsive intermembrane interaction. Fig. 2 a represents the

central finding of Parsegian and Gingell (1972). It is obvious

from the preceding considerations that the plot contains

redundant information. The case js1j/js2j \ 1 is simply

a repetition of the case js1j/js2j [ 1 with interchanged

membranes, which is verified by the fact that by swapping

the labels of the membranes in Eq. 19 one indeed recovers

Eq. 18. Demanding that the membrane with the higher

magnitude of the surface charge density is located at x ¼ 0,
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one could, without loss of generality, concentrate on the case

A ¼ 0 and the part js1j/js2j [ 1 in parameter space.

Nevertheless, in the following discussion we will consider

the whole parameter space, mainly to keep close contact with

the familiar plot of Parsegian and Gingell.

Case of mobile lipids

We return to the boundary value problem, Eq. 10, seeking to

determine again the zero pressure line in the parameter space,

but now for the case of mobile lipids. From now on, we focus

on oppositely-charged membranes, because the case of like-

charged membranes leads always to repulsion, be the lipids

mobile or not (Parsegian and Gingell, 1972). Therefore, we

demand that q1/q2\0 and s1/s2 ¼F‘
1 /F

‘
2 \0. In addition,

0\h1 # 1 and 0\h2 # 1. Note that both q1F
‘
1 and q2F

‘
2

must be positive quantities. Again we start from the

expression for the pressure, Eq. 15, which is zero if either

A or B is zero. Assuming A to be zero, the first boundary

condition in Eq. 10 results in

�kB ¼ �4plBs1 1� q1ð1� h1ÞðB�F
‘
1 Þ

� �
: (20)

This equation is solved by

B ¼ F
‘
1 ; (21)

leading us to the potential FðxÞ ¼ F‘
1 e

�kx, which is again

the familiar Gouy-Chapman potential. So, like in the case of

immobile lipids, the potential (and thus the ion distribution)

in the slab 0\ x\ lmin between the membranes is identical

to that be found if membrane 1 were alone, provided of

course that the two membranes are separated just by the zero-

pressure distance lmin. We note that, due to this property, two

of the parameters specifying the surface properties of

membrane 1, namely q1 and h1, are now immaterial for the

following considerations.

Inserting the potential F(x) ¼ F‘
1 e

�kx into the second

boundary condition of Eq. 10 and using Eq. 11, yields

�F
‘
1 e

�klmin ¼ F
‘
2 1� q2ð1� h2ÞF‘

2 ðF‘
1 e

�klmin=F
‘
2 � 1Þ� �

;

(22)

and hence

s1

s2

����
p¼0

¼ F
‘
1

F
‘
2

¼ e
klmin

ð1� h2Þq2F
‘
2 1 1

ð1� h2Þq2F
‘
2 � 1

� �
: (23)

If h2 ¼ 1, the right-hand side of this equation reduces to

�eklmin ; and we recover Eq. 18. It is clear from our previous

discussion that the case B ¼ 0 cannot provide new in-

formation; one can check this by redoing the calculation

with B ¼ 0, which leads to a potential F(x) ¼ F‘
2 e

kx and

again to Eq. 23 but with the label �1� replacing the label �2�.
Fig. 2, b and c, show the zero-pressure line in the parameter

space calculated from Eq. 23 for four different values of h2,

forF‘
2 q2 ¼ 0.05 (Fig. 2 b) and forF‘

2 q2 ¼ 0.5 (Fig. 2 c). For
completeness, we have also added the curves for the case B
¼ 0 (js1j\ js2j, hatched region). Via Eq. 11, q2F‘

2 is related

to the two quantities characterizing the electrolyte solution,

lB and k, and can thus be experimentally changed through

variation of temperature, salt concentration, or the choice

of the solvent (e). In particular, q2F
‘
2 increases (with s2

remaining constant) on increasing lB, that is, if the

significance of electrostatic forces relative to thermal forces

increases.

We now discuss the findings of Fig. 2. We have seen that

the surface properties of the membrane having the higher

surface density of charged lipids remain completely un-

affected by the presence of the other membrane; that is, if, for

example, js1j[ js2j, then F(0) ¼ F‘
1 and sint

1 ¼ s1, so that

there is no difference between the lipid distribution on those

parts of the membrane belonging to the interaction region

and those belonging to the reservoir. However, on the other

membrane having the lower density of charged lipids

(membrane 2, if js1j [ js2j), the lipid surface density in

the interaction region changes in response to the presence of

membrane 1. Assuming that membrane 1 is positively

charged (q1[ 0, q2\ 0) and recalling that F‘
1 =F

‘
2 \ 0, we

see that DF2 ¼ F‘
1 e

�klmin �F‘
2 must be positive. Conse-

quently, the surface charge density in the interaction zone of

membrane 2,

s
int

2 ¼ s2 1� q2ð1� h2ÞDF2½ �; (24)

FIGURE 2 Regions of attraction and repul-

sion between two oppositely-charged mem-

branes consisting of immobile lipids (a) and

mobile lipids (b and c), as a function of the

intermembrane distance and the ratio of surface

charge densities. Fig. 2, b and c show the line of

zero net force for four different values of the

surface fraction of charged lipids h2 (h2 ¼ 1,

0.75, 0.5, and 0.25, from top to bottom for the

curves in the un-hatched region). The sign of the

effective intermembrane force in the hatched

region of the parameter space can be inferred

from a corresponding point in the un-hatched

region.
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must be larger in magnitude than its reservoir value, s2. In

other words, at l ¼ lmin additional lipids must have flowed

from the reservoir into the interaction zone of membrane 2.

One may say that the membrane with the higher density of

charged lipids, while itself remaining inert, attracts charged

lipids on the other membrane out of the reservoir into the

interaction zone. The other conceivable mechanism—that

one membrane expels charged lipids from the interaction

region of the other membrane—is not observed. That, of two

interacting membranes, only one membrane shows a major

rearrangement of lipids, is a surprising result. Lipid mobility

is thus completely irrelevant for the membrane with the

higher surface density of charged lipids; it suffices to model

this membrane just by a planar wall with a homogeneous

surface charge density.

To understand the implication that the observed lipid

redistribution has on the effective interaction, let us return for

a moment to the case of immobile lipids (h2¼ 1) and assume

that the system of two membranes are at a state point in

parameter space where there is zero pressure (solid thick
curves in the js1j[ js2j regions of Fig. 2, b and c). If now
the lipid mobility is switched on (h2\1), additional charged

lipids are allowed to flow into the interaction zone of

membrane 2. This results in a change from zero pressure to

negative pressure at this particular point in parameter space;

the effective interaction between the membranes will now be

attractive. In other words, lipid mobility is responsible for an

additional attractive contribution to the effective intermem-

brane interaction potential, the latter being nothing but the

total free energy of the system as a function of kl. We see

from Fig. 2 that, as a result of this additional attractive

component in the free energy, the region in parameter space

where the two membranes attract each other increases with

decreasing h2 and/or increasing q2F
‘
2 . This statement, of

course, applies to the part of the parameter space where js1j
[ js2j; in the js1j\ js2j part (hatched region) the relevant

quantities to look at are h1 and q1F
‘
1 .

Lipid mobility allows contact in cases
where s1 � 2s2

The consequences of the fact that lipid mobility produces

some extra attraction can best be illustrated by plotting those

regions of parameter space where touching contact (i.e., kl¼
0) between the membranes is energetically possible. Fig. 3

shows the zero-pressure line calculated from Eq. 23 for kl ¼
0, now in the parameter space spanned, on the one hand, by

s1/s2 and, on the other hand, by h2 for js1j[ js2j and h1

for js1j\ js2j. For state points located to the left of this line,
contact between the membranes is possible; for those lying

on the right-hand side, two membranes at kl¼ 0 would repel

each other and contact is not possible. Again, we consider

the case q2F
‘
2 ¼ 0.5 and restrict the following discussion of

Fig. 3 to the js1j[ js2j part of the parameter space (i.e., we

assume the more strongly charged membrane to be mem-

brane 1 at x ¼ 0).

In case of immobile lipids (h2 ¼ 1), two oppositely-

charged membranes can come to contact without an

additional external force only if they have exactly the same

number of lipids per unit area, i.e., if, and only if, s1 is equal

to�s2. For membranes consisting of mobile lipids (h2\1),

we find, however, that there is a whole range of possible

values for s1/s2 over which touching contact between

membranes is possible. This means that a certain mismatch

between s1 and s2 is now allowed; it can be compensated by

charged lipids flowing in from the reservoir into the

interaction zone of membrane 2. Combining Eqs. 23 and

24, one recognizes that everywhere on the zero-pressure line

in a plot (s1/s2 versus h2) the surface charge density s2
int

just equals �s1. For state points to the right of the line, the

mismatch between s1 and �s2 becomes too large, and

contact is impossible, even if allowance is made for lipid

mobility. Entropy then prevents a further flow of lipidic

charges into the interaction zone, so that here jsint
2 j\ js1j.

Then, electroneutrality again requires counterions to stay in

the slab between the membranes, resulting in an effective

repulsion between the membranes at those state points. The

highest surface charge density possible in the interaction

zone of membrane 2 is s2/h2 when close packing of lipids in

the interaction region is reached. Therefore, the zero-

pressure line must be located always to the left of the curve

�1/h2 (dashed line in Fig. 3), regardless of the value of

q2F
‘
2 . We observe that for the case q2F

‘
2 ¼ 0.5, considered

in Fig. 3, close packing is the mechanism delimiting the

contact region only at rather high values of h2, where the

zero pressure is seen to approach the line �1/h2.

The range in s1/s2, over which a lipid redistribution can

compensate a mismatch, increases with decreasing h2 (see

Fig. 3) until, for h2 ! 0, the largest allowed mismatch is

reached,

FIGURE 3 Regions in parameter space where touching contact (kl ¼ 0)

between two oppositely-charged membranes corresponds to the equilibrium

configuration, as a function of s1/s2 and the surface fraction h2 of mobile

lipids on the membrane with the lower surface densities of lipids. The dashed

line is the function �1/h2. See text for details.
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s1

s2

����
p¼0;lmin¼0;h2¼0

¼ q2F
‘
2 1 1

q2F
‘
2 � 1

: (25)

The limit h2 ! 0 for finite values of F‘
2 implies that the area

per lipid headgroup goes to zero, and that one is thus

approaching the limit of pointlike lipids. Close packing then

ceases to work as a mechanism against the infinite

accumulation of charges in the interaction zone; entropy

alone is responsible for the fact that the largest possible

charge mismatch in Eq. 25 remains still finite. Only if q2F
‘
2

! 1 (q2F
‘
2\ 1), i.e., on approaching the limits of the range

of validity for linearization, Eq. 25 shows a divergence.

These findings have an interesting implication. We recall

that the surface fraction of charged lipids is linked to the

degree of dissociation of the lipids (Eq. 1). Hence,

s1

s2

¼ q1h1

q2h2

¼ q1f1a1

q2f2a2

: (26)

Suppose the lipids on the second membrane have a rate of

dissociation a2� 1 which depends only weakly on the pH of

the solution, whereas the charge state of the lipids on the first

membrane (i.e., the membrane with the higher surface charge

density) depends strongly on the pH via a1. Then, by

changing the pH of the solution, one can regulate the state of

charge of the first membrane, while h2 and thus s2 is kept

approximately fixed. Varying the pH, one is then moving in

vertical direction through the plot of Fig. 3. This means that

systems are conceivable where, by changing the pH of the

solution, one can switch between a contact and no-contact

situation of two membranes.

A similar effect has the variation of the salt content of the

electrolyte solution. Fig. 4 is meant to illustrate this point.

The zero-pressure line is shown now in the (s1/s2 versus

q2F
‘
2 ) plane of the parameter space; the curves are again

computed from Eq. 23 with kl ¼ 0 for various values of h2.

The quantity q2F
‘
2 is linked through Eq. 11 to the screening

length 1/k which shrinks on increasing the salt concentration

in the electrolyte. To the right of the curves in Fig. 4, contact

between the membranes is possible while state points on the

left-hand side of the curves correspond to a situation of net

repulsion between the membranes at contact. For a given pair

of oppositely-charged membranes, characterized by the

value of s1/s2 and h2, increasing the salt concentration in

the system means moving from the right to the left on

horizontal lines in the plot. The state point where this

horizontal line crosses the corresponding zero-pressure curve

(labeled by h2) marks the point where the net intermembrane

force at contact switches from attraction to repulsion.

Therefore, increasing salt causes membranes, initially at

touching contact, to separate from each other; and vice versa,

decreasing the salt concentration in the electrolyte can induce

membranes to make contact. The salt concentration

necessary for inducing this change can be directly read off

from Fig. 4.

EFFECTIVE INTERACTION IN
NONLINEAR THEORY

We are now in the position to return to our initial nonlinear

boundary value problem, formulated in Eqs. 1–9. Again, we

want to calculate the distance lmin where the pressure p in Eq.
9 vanishes. Hence, from Eq. 9,

ðF9ðxÞÞ2 ¼ 2k
2ðcoshFðxÞ � 1Þ ¼ 4k

2ðsinhFðxÞ=2Þ2:
(27)

It is crucial for the following to realize that this equation

is nothing but the square of Eq. 6, which means that the

differential Eq. 27 is satisfied by the Gouy-Chapman po-

tential, Eq. 5. This result confirms our expectation based

on the results of the previous sections that at zero pressure,

i.e., if l ¼ lmin, the potential between the membranes follows

a Gouy-Chapman potential up to the point of the other

membrane, as if only one membrane in isolation were

present.

Eq. 27 must be satisfied everywhere in the region between

the membranes, also at the boundaries. Inserting the first

boundary condition of Eq. 8 in conjunction with Eq. 3 into

Eq. 27, taken at x ¼ 0, and using Eq. 7, results in

sinh
Fð0Þ
2

� �2

¼ sinh
F

‘
1

2

� �2
e
�q1ðFð0Þ�F

‘
1 Þ

h1e
�q1ðFð0Þ�F

‘
1 Þ 1 ð1� h1Þ

" #2

:

(28)

Evidently, one of two possible solutions to this equation is

Fð0Þ ¼ F‘
1 ; this is the solution we first focus on. Eq. 3

shows that the surface charge density in the interaction zone

is the same as in the reservoir, and the microionic distribution

FIGURE 4 Regions in parameter space where touching contact between

oppositely-charged membranes is energetically allowed. Plot is similar to

that in Fig. 3, but now the parameter space is spanned by s1/s2 and q2F
‘
2 ,

whileh2 is fixed to 0.1, 0.3, 0.5, 0.7, and 0.9. Variation of q2F
‘
2 ¼ q24plBs2/

k can be experimentally realized by controlling the salt concentration in the

electrolyte solution. State points to the left of the curves correspond to

systems where touching contact between the membranes is energetically

impossible; those to the right, energetically possible. Reducing the salt

concentration in the electrolyte can cause membranes to make contact.
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and the potential between the membranes looks as if only

membrane 1 were present. It follows that for this case, the

potential at x ¼ lmin is, from Eq. 5,

FðlminÞ ¼ 4arctanh e
�klmin tanh

F
‘
1

4

� �
; (29)

which one can use in the second boundary condition of Eq. 8

to obtain (using again Eq. 7)

sinh
FðlminÞ

2

� �2

¼ sinh
F

‘
2

2

� �2
e
�q2ðFðlminÞ�F

‘
2 Þ

h2e
�q2ðFðlminÞ�F

‘
2 Þ 1 ð1� h2Þ

" #2

:

(30)

Now, fixing the input parameters q2, h2, F
‘
1 , and F‘

2 , one

can solve Eqs. 29 and 30 for the only remaining unknown,

the zero-pressure distance lmin. A solution can be found

provided jF‘
2 j\ jF‘

1 j. Then s2 is lower in magnitude than

s1. If this were not the case, then the Gouy-Chapman profile

in the region between the membranes would be governed by

the second membrane; that is, (i), Eq. 30 would be satisfied

with F(lmin) ¼ F‘
2 ; (ii), Eq. 29 would change to

Fð0Þ ¼ 4arctanh e
�klmin tanh

F
‘
2

4

� �
;

and (iii), one would have to search for the second solution of

Eq. 28 which then determines the equilibrium distance lmin. It

is obvious that, as in the previous sections, the two solutions

expected from Eqs. 28 and 30 reflect the fact that either the

first or the second membrane can have a higher density of

charged lipids. Without loss of generality we can place the

more strongly charged lipid at x ¼ 0; i.e., we assume js1j[
js2j, allowing us to concentrate on just one of two possible

solutions in Eqs. 28 and 30. Then, F(0) ¼ F‘
1 , and lmin

follows from the two Eqs. 29 and 30.

If lipid mobility were not allowed for, then lmin would be

that distance where the surface charge density of membrane

2 just equals the net surface charge density of the Gouy-

Chapman profile integrated between x ¼ lmin and ‘ (see

Jönsson and Stahlberg, 1999). Here, the two-dimensional

system of mobile lipids offers another possibility to reduce

the total free energy. From this and the discussion of the

linear case treated in the previous section, one expects again

the equilibrium intermembrane distance to be shifted toward

smaller distances when lipids are allowed to move. In the

linear case we had to make a choice for two parameters only,

q2F
‘
2 and h2. Due to the nonlinearity in Eq. 3, we now need

to specify three parameters, q2, F
‘
2 , and h2, to be able to

calculate the zero-pressure line in the space spanned by s1/

s2 and kl. In the following, we assume for simplicity that

each charged lipid on the second membrane carries just one

elementary charge. Fig. 5 then shows the zero-pressure line

for various combinations of q2F
‘
2 and h2, calculated from

numerically solving Eq. 30 for lmin for given values of s1/s2

(i.e.,F‘
1 through Eq. 7). Only the part of the parameter space

is shown where js1j[ js2j.
With Fig. 5 a we first explore the effect of the nonlinearity

alone, without making allowance for the demixing of the

membrane (that is, we set h2 ¼ 1). We recall that in linear

theory for h2 ¼ 1 the zero-pressure line is given by Eq. 18,

and that there is thus no dependence on q2F
‘
2 . By contrast,

we observe that nonlinear theory predicts the region of

attractive interactions in parameter space to considerably

expand with increasing values of q2F
‘
2 . Whereas the curve

for q2F
‘
2 ¼ 0.01 is practically identical to �ekl from Eq. 18,

a small difference between the zero-pressure lines predicted

by linear theory/nonlinear theory is already observable at

q2F
‘
2 ¼ 0.5 for high values of s1/s2. Although for q2F

‘
2 ¼

0.5 linear theory is still supposed to be valid for the second

membrane, this is not necessarily the case for the first

membrane, where at high values of s1 the surface potential

can become considerably[1. Note that if the surface charge

densities of both membranes are equal in magnitude, js1j ¼
js2j, the membranes will be always in contact at equilibrium,

regardless of the value of q2F
‘
2 . Note, on the other hand, how

dramatically the predictions of linear theory fail for q2F
‘
2 ¼

5.0.

Fig. 5, b and c, illustrate the effect of lipid demixing on the

interaction: for fixed values of q2F
‘
2 (q2F

‘
2 ¼ 0.5 in Fig. 5

b and q2F
‘
2 ¼ 1.0 in Fig. 5 c), we have calculated zero-

pressure lines for various values of h2. Fig. 5 b can be

directly compared to the results of linear theory depicted in

Fig. 2 c. One recognizes at a glance that for this value of

q2F
‘
2 , linear theory makes qualitatively correct predictions,

with only minor corrections at high values of s1 necessary to

account for nonlinear effects. The thin solid line in Fig. 5,

b and c, give the results of linear theory for h2 ¼ 1. The huge

difference between the results of linear/nonlinear theory for

h2 ¼ 1 (thin and thick solid line, respectively) in Fig. 5 c
indicate that linear theory becomes questionable for highly

charged membranes, something we have already noticed in

Fig. 5 a. Fig. 5 c demonstrates that, in this highly nonlinear

parameter regime, demixing has a marked effect on the

effective interaction between the membranes. For the lowest

value of h2 and the highest value of q2F
‘
2 , the interaction

between the membranes is attractive almost over the whole

region in parameter space investigated here (0 \ kl \ 1.5

and �5\ s1 / s2\ 0).

Fig. 6 shows again various zero-pressure state lines for kl
¼ 0 in the plane spanned by s‘

1 /s2 and h2, obtained now

from Eqs. 28–30. The state line for q2F
‘
2 ¼ 0.5 of Fig. 3,

calculated in linear theory, is also shown (thin solid line). A
major result of the previous section has been that due to lipid

demixing, membrane contact is possible even in cases of

a certain charge mismatch. Comparison of the thin solid

curve of linear theory with the corresponding curve of

nonlinear theory (thick solid line) now reveals that the

nonlinearity of the problem tends to even enhance this effect:

the contact region in parameter space becomes much larger.
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Notice that the curve for q2F
‘
2 ¼ 2.0 lies on top of the curve

�1/h2, indicating close packing. So, here, close packing is

really limiting the contact region in parameter space. Indeed,

inspection of Eq. 30 reveals that for q2F
‘
2 ! ‘ the zero-

pressure state line tends to �1/h2, for finite h2. Another

interesting limit is h2 ! 0 for finite q2F
‘
2 . As can be seen

from Fig. 6, the zero-pressure line for h2 ! 0 terminates at

finite values of s1/s2 for low values of q2F
‘
2 . However, Eq.

30 predicts that this termination point goes exponentially to

�‘ if q2F
‘
2 ! ‘.

This implies that if the more weakly charged membrane

exceeds a certain surface potential F‘
2 , and if the surface

fraction of charged lipids on this membrane vanishes (h2 !
0), then the two membranes will always make contact,
regardless of the charge mismatch between the membranes.

This important result should be contrasted to the behavior

one finds ignoring lipid demixing, i.e., for a membrane

model consisting of two planar surfaces with homogeneous

surface charge densities, where contact requires s1 ¼ �s2.

CONCLUSION

We have studied the effect of lipid demixing on the

electrostatic interaction of two oppositely-charged mem-

branes, modeled here as two planar and parallel planes,

hosting a two-dimensional binary mixture of neutral and

charged mobile lipids. The lipids in the interaction zone are

assumed to be in contact with a reservoir of lipids from those

parts of the membrane not involved in the interaction. We

have been guided by the classical article of Parsegian and

Gingell in our search for state points in the parameter space

wherein the two membranes neither repel nor attract each

other.

This is a summary of our main results:

1. Demixing adds an attractive component to the effective

interaction between the membranes.

2. Therefore, the distance separation where there is a zero

net force between the membranes is generally reduced

when compared to calculations ignoring lipid demixing.

For separations smaller than this zero-pressure distance,

the osmotic pressure of counterions, remaining between

the membranes, leads to repulsion, even though the

membranes are oppositely-charged.

3. According to Parsegian and Gingell, oppositely-charged

membranes are in contact at equilibrium only if s1 ¼
�s2. Lipid demixing, however, allows contact between

membranes even if there is a certain charge mismatch,

js1j � js2j.
4. In certain limiting cases, contact is always possible,

regardless of the value of s1/s2 (if s1/s2 \ 0).

5. Provided the surface potentials of both membranes are

low enough, linear theory produces qualitatively correct

results. We give analytical expressions, based on the

linear theory, for the zero-pressure state line in param-

eter space.

6. The predictions of linear theory has been compared to

those of nonlinear theory. The main effect of the

nonlinearity of the underlying Poisson-Boltzmann

equation is that it further expands the region of attractive

interactions in parameter space, compared to the pre-

dictions of linear theory.

7. The nonlinearity of our problem has an enhancing effect

also with respect to our main finding that lipid demixing

considerably increases the region in parameter space

FIGURE 6 Same as in Fig. 3, but now the zero-pressure state lines are

calculated within the nonlinear Poisson-Boltzmann theory. For comparison,

the state line depicted in Fig. 3 is given as a thin solid line. The other curves

(from top to bottom) correspond to values of q2F
‘
2 ¼ 0.2, 0.4, 0.5, 1.0, and

2.0. Pairs of membranes with state points lying to the right of the curves will

repel each other at contact. The dashed line is the function �1/h2 which the

zero-pressure lines approach in the limit q2F
‘
2 ! ‘.

FIGURE 5 Regions of attraction and repulsion between

oppositely-charged lipid membranes, for various combi-

nations of h2 and q2F
‘
2 . Plots are similar to Fig. 2, but now

with the zero-pressure line determined from the nonlinear

Poisson-Boltzmann equation. The order of the values of the

varied quantity corresponds to the order of the curves from

top to bottom. The thin solid line is the function �eklmin ;

giving the zero-pressure state line for h2 ¼ 1.0 in linear

theory (see Eq. 18).
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where contact between unequally-charged membranes is

possible.

8. Of the two interacting membranes, only one membrane

shows a major rearrangement of lipids while the other

remains in exactly the same state it would have in

isolation. It is the membrane with the lower surface

density of charged lipids which charges up and which

thus adapts to the presence of the other membrane. Lipid

mobility is therefore completely irrelevant for the mem-

brane with the higher surface density of charged lipids;

it suffices to model this membrane just by a planar sur-

face with a homogeneous surface charge density,

identical to that which the membrane has if it is well-

separated from any other charged object.

9. At zero disjoining pressure, i.e., if the two membranes

are at a distance where the net force is zero, the poten-

tial between the membranes follows a Gouy-Chapman

potential from the more strongly charged membrane up

to the point of the other, more weakly charged mem-

brane (characterized by h2 ¼ 1, q2, F
‘
2 ) as if only the

more strongly charged membrane in isolation were

present.

10. In cases where demixing cannot occur (h2 ¼ 1), linear

theory predicts a zero-pressure line in thes1/s2 – kl plane
that is independent of F‘

2 , whereas nonlinear theory

shows a rather strong dependence on this quantity.

The results shown here add to the understanding of

adhesion phenomena between charged membranes. Many

important interactions are at least partially mediated by the

electrostatics of layered systems. As described in the Intro-

duction, this includes the fusion of positively-charged lipo-

somes with cell membranes in nonviral gene delivery

systems (Felgner et al., 1987; Li and Huang, 2000; Wetzer

et al., 2001; Safinya, 2001). The concepts outline here may

also be applicable to multilayered DNA-cationic lipid

systems (Rädler et al., 1997; Koltover et al., 1999), which

serve as model systems for problems related to gene

delivery.

It has been pointed out by several authors that re-

organization of charged compounds in (bio)membranes can

occur close to electrodes (Gingell and Fornes, 1976) and

atomic force microscopy (AFM) tips. Actually, this experi-

mental problem is very similar to that described in Fig. 1 In

this context it is interesting to note that it has been observed

that electrostatic forces on AFM tips are strongly dependent

on the ionic strength of the aqueous buffer (Müller et al.,

1999), which has been attributed to osmotic forces (Xu et al.,

1997). A very similar effect occurs when a polarized

electrode approaches a biological surface.

In the present article, several simplifications were made.

Membranes are considered to be planar and the charged

components of membranes are allowed to diffuse freely. This

neglects the possibility of domain formation, of specific

molecular interactions via stickers and repellers, and of

membrane undulations. Domain formation due to complex

mixing properties of multicomponent systems leads to

complications when describing the local arrangement of

charged molecules. It has been found in both artificial and

biological membrane systems that domains may form on

nanoscopic to microscopic length scales (Korlach et al.,

1999; Rietveld and Simons, 1998; Simons and Ikonen,

1997). Unfavorable lipid mixing properties will affect the

segregation of charged lipids and proteins.

Furthermore, in many studies it is pointed out that

adhesion may be partially controlled by specific molecular

interactions, which is in contrast to the nonspecific elec-

trostatic interactions described in this article. Membranes

may be crosslinked by macromolecules like integrin

(stickers; see Guttenberg et al., 2001; Lipowski, 1996b) or

be repelled by lipids with polymeric headgroups (repellers;
see Weikl and Lipowski, 2001; Weikl et al., 2002; Bruinsma

et al., 2000; Guttenberg et al., 2001). A further important

repulsive feature of opposing membranes are the undulation

forces, which are a consequence of surface bending fluc-

tuations (Helfrich, 1978; Honger et al., 1994). The interplay

of attractive and repulsive molecular interactions with sur-

face undulations and local electrostatic interactions has been

reviewed by Sackmann and Bruinsma (2002).

To combine electrostatics with specific molecular inter-

actions, undulations, and domain formations remains a goal

for future studies.
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