
An Analytical Solution for the SSFP Signal in MRI

Wolfgang Hänicke1* and Horst U. Vogel2

Among previous analyses of the steady-state free-precession
(SSFP) signal in rapid MRI, one treatment resulted in equations
that require the evaluation of infinite binomial series. Here, an
analytical solution is derived by a transformation into the power
series expansion of the derivative of the inverse sine function,
which is essentially a root. The treatment is extended to include
higher-order signals. The results demonstrate the identity of the
vastly different equations for the SSFP signals reported so far.
Applications consist of the derivation of closed expressions for
the signal in echo-shifted MRI and a corresponding analysis of
TrueFISP sequences. Magn Reson Med 49:771–775, 2003.
© 2003 Wiley-Liss, Inc.
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The steady-state free-precession (SSFP) signal (1) was
among the first NMR signals exploited for MRI in the form
of the sensitive point method (2). Current MRI sequences
based on the SSFP signal extract the free-induction decay
(FID) part immediately following the excitation pulse
(SSFP-FID), the echo part preceding the next excitation
pulse (SSFP-echo), specific higher-order contributions
from the signal, or use the coherent sum of all signals.

A comprehensive analysis of the SSFP signal under
steady-state conditions has been given for high-resolution
NMR spectroscopy (3). In the context of MRI, signal and
contrast were specified for pertinent SSFP sequences (4–
8). Although based on the integration of the same expres-
sion for the steady-state transverse magnetization immedi-
ately after an RF pulse (3,9,10), the use of different meth-
ods of calculation resulted in vastly different expressions,
the identity of which is not readily apparent. The results
from Gyngell (6) require the evaluation of infinite (though
converging) summations. Therefore, certain applications
using this approach for the analysis of pathologic contrast
in interventional MRI (11), signal strength in echo-shifted
sequences (12), and T2 imaging with low specific absorp-
tion rate at high fields (13), as well as the extension to
higher-order echoes (14), remain somewhat unsatisfactory.

Here, we solve these infinite sums and derive closed
expressions for the different components of the SSFP sig-
nal. It is shown that for basic SSFP signals, the theories
from Gyngell (6) and Zur et al. (7,8) lead to identical
results. Moreover, for higher-order SSFP signals the ex-

pressions derived from reference 6 in Refs. 14 and 15 are
identical to those given in Ref. 8. In addition, all expres-
sions can be reduced to those specified by Kaiser et al. (3).

The analytical solution for the signal of the echo-shifted
MRI sequence from (12) is presented, and, as another ex-
ample, the TrueFISP (FIESTA, balanced FFE) sequence is
analyzed using the developed framework.

THEORETICAL CONSIDERATIONS

In general, an SSFP signal is generated by a train of RF
pulses with 1) a constant flip angle � � 0°, �180° (or
integer multiples thereof), 2) a constant repetition time
TR � 0, and 3) a certain degree of phase coherence or
phase cycling. In the context of MRI, further requirements
on the spin dephasing state apply because of the use of
gradients. For a review, see e.g., Ref. 15.

Basic SSFP-Signals

Summarizing the results of the analysis from Gyngell (6),
the modulus of the steady-state signal amplitudes for the
SSFP-FID at the beginning of the repetition interval, i.e.,
immediately after the RF excitation pulse, and for the
SSFP-echo at the end of the repetition interval, i.e., imme-
diately before the next RF excitation pulse, under condi-
tions when higher-order signals can be neglected, are
given by:

S�SSFP-FID� � M0sin �
1 � E1

p
�u0 � E2 � u1� [1]

S�SSFP-echo� � M0sin �
1 � E1

p
�E2

2 � u0 � E2 � u1� [2]

with equilibrium magnetization M0, relaxation times T1

and T2, E1 � exp(�TR/T1), and E2 � exp(�TR/T2). The
terms u0 and u1 are given by:

u0 � 1 � �
m�1

	 �2m
m �� q

2p�
2m

[3]

u1 �
1
2 �

m�1

	 �2m
m �� q

2p�
2m�1

[4]

with:

p � 1 � E1cos � � E2
2�E1 � cos �� [5]

q � E2�1 � E1��1 � cos ��. [6]
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(k
n) are binomial coefficients. It has been stated that �p� � �q�

for T1 � T2 (6). More generally, and using only the SSFP
conditions from above, it can be shown that p � q � 0.

With the expansion of the binomial coefficients to real
numbers a:

�a
k� �

a�a � 1� . . . �a � k � 1�

k!
[7]

for integers k � 0 and (0
a) � 1 (e.g., see Ref. 16), it can be

shown that:

�1
2�

2m�2m
m � � ��1�m��

1
2

m
�. [8]

Thus, Eq. [3] becomes:

u0 � �
m�0

	

��1�m� �
1
2

m
��q

p�
2m

[9]

which is the power series expansion of the derivative of

the inverse sine function, (e.g., see Ref. 16),
d�arcsin q/p�

d�q/p�
� 1/��1 � q2/p2�. Accordingly, Eqs. [3] and [4] can be
written as:

u0 �
p

�p2 � q2 [10]

u1 �
p
q

�u0 � 1�. [11]

It can be shown that u0 � u1 � 0.

Higher-Order SSFP Signals

Considering higher-order SSFP signals, the infinite sum-
mations in Eqs. [3] and [4] have to be generalized as fol-
lows (14,15):

un � � �
m�0

	 �2m � n
m �� q

2p�
2m
n

for n � 0

�
m��n�

	 �2m � n
m �� q

2p�
2m
n

for n � 0.

[12]

For n � 0, Eqs. [3] and [12] are obviously equivalent. With
the addition theorem for the binomial coefficients and
their symmetry property, we obtain the identity 1

2
( m
2m) �

( m�1
2m�1) � ( m

2m�1) showing the equivalence of Eqs. [4] and
[12] for n � 1, and u1 � u�1. Thus, the solutions from
Eqs. [10] and [11] are valid for these cases. Moreover, with
( m�1
2m
n) � ( m

2m
n
1) � ( m
2m
n) we get the recursion:

un � �
2p
q

un�1 � un�2 for n � 2

2p
q

un
1 � un
2 for n � �2.
[13]

Complete induction yields un � u�n for all n. Using this
symmetry and solving the recursion for n � 2 (see Appen-
dix) reveals:

un � �p � �p2 � q2

q ��n�

� u0 [14]

� �u1

u0
��n�

� u0. [15]

RESULTS AND DISCUSSION

The consequences of the analytical solution for specific
MRI sequences will be discussed below. At this stage, the
effects of practical problems such as chemical shift differ-
ences, inhomogeneous slice profiles, spatial inhomogene-
ities, susceptibility differences, flow, motion, and diffu-
sion are neglected.

MRI Using Basic SSFP Signals

For the basic SSFP signals, we obtain the following expres-
sions after substituting Eqs. [10] and [11] into Eqs. [1] and
[2], and using tan(�/2) � sin �/(1 
 cos �):

S�SSFP-FID� � M0tan
�

2
�1 � �E1 � cos �� � r� [16]

S�SSFP-echo� � M0tan
�

2
�1 � �1 � E1cos �� � r� [17]

with:

r �
1 � E2

2

�p2 � q2 � � 1 � E2
2

�1 � E1cos ��2 � E2
2�E1 � cos ��2. [18]

Equations [16]–[18] complete Gyngell’s analysis (6) by
specifying closed expressions. Equation [16] is identical to
Eq. [13a] in Ref. 7 except for a factor describing the decay
of the FID, and to Eq. [14] in Ref. 8. The expression
�S(SSFP-echo)/E2 from Eq. [17] is identical to Eq. [13b]
given in Ref. 7 except for a factor describing the increase of
the echo, and to Eq. [15] given in Ref. 8. The sign is not
important for conventional magnitude images and the fac-
tor 1/E2 is due to the fact that the signal amplitude is
evaluated at the start of the repetition interval by Zur and
at its end by Gyngell. So far, the equivalence between the
two theories has only been observed in numerical compar-
isons (15). The present solution provides the missing an-
alytical link. Moreover, the specified equations are identi-
cal to d0 and d�1 in Eq. [A4] given by Kaiser et al. (3).
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MRI Using Higher-Order SSFP Signals

Higher-order SSFP signals have been isolated using a
stopped-pulse experiment in high-resolution spectroscopy
(3) and using gradients and/or phase cycling (8,14) in MRI.
In Refs. 14 and 15, the signal amplitude was specified:

Sn � M0sin �
1 � E1

p
�un � E2 � un
1� [19]

using the notation from Eq. [12]. Substituting the solution
from Eq. [15] yields:

Sn

� � M0sin �
1 � E1

p �1 � E2 � �u1

u0
�� � �u1

u0
�n

� u0 for n � 0

M0sin �
1 � E1

p ��u1

u0
� � E2� � �u1

u0
��n��1

� u0 for n � 0

[20]

or

Sn � � �u1

u0
�n

� S0 for n � 0

�u1

u0
��n��1

� S�1 for n � 0.
[21]

S(SSFP-FID) from Eq. [16] is identical to S0, and �S(SSFP-
echo)/E2 from Eq. [17] is identical to S�1. For all negative
n, Sn � 0. Equation [21] is identical to Eqs. [16] and [16�]
in Ref. 8, proving the equivalence of the theories for higher-
order signals. Moreover, all expressions are identical to dp

and d�p�1 in Eq. [A4] in Ref. 3.
The optional use of the different formulations for the

SSFP signal amplitudes defined either by Eq. [19] using
the infinite series from Eq. [12] or by the analytical solu-
tion from Eq. [21], which is identical to that in Refs. 3 and
8, provides a mechanism to switch between the different
theories.

Echo-Shifted MRI Sequences

Echo-shifted (ES) MRI sequences (17) with an echo time
TE � TR are used for functional MRI and for MR thermom-
etry. According to (12), first-order SSFP signals are ex-
ploited in a certain class of ES-MRI sequences (“TR-peri-
odic GRE”) and the signal S(ES) can be written:

S�ES� � M0sin �
1 � E1

p
E2�TE��u1 � E2 � u2� [22]

using the notation from Eq. [12], and E2(TE) � exp(�TE/
T2). Substituting un from Eq. [15] and using r from Eq. [18]
results in:

S�ES� � M0sin �
E2�TE�

q
�1 � E1cos � � �1 � 2E2

2�

� �E1 � cos �� � r � ��1 � E1cos ��2 � 2E2
2�E1 � cos ��2

� �1 � E1cos �� � �E1 � cos ����. [23]

Figure 1 shows the signal for different T1/T2 ratios and
corresponding values from phantom experiments mea-
sured in Ref. 12. Small variations between the values com-
puted from Eqs. [22] and [23] for flip angles � � 5° are
explained by the slow convergence of the sum from Eq.
[12] under these conditions and numerical problems in
computing the binomial coefficients for corresponding
high values of m. The remaining difference between the
theoretical and measured values is explicable by the influ-
ence of slice profile deformations. Finally, it should be
noted that for the Ernst angle condition, i.e., E1 � cos �,
the signal becomes:

S�ES� � M0�1 � E1

1 � E1

E2�TE�

E2
�1 � �1 � E2

2�. [24]

TrueFISP MRI Sequences

TrueFISP MRI sequences (18) with extremely short repe-
tition times find increasing applications in cardiovascular
MRI (19,20). According to Ref. 15 and using Sn from Eq.
[19], the signal can be expressed by:

S�TF� � �
n��	

	

Sn � Fn. [25]

Fn represents the phase directly after the RF pulse. The use
of Eq. [21] results in:

S�TF� � S0 � �
n�0

	 �u1

u0
�n

� Fn � S�1 � �
n�0

	 �u1

u0
�n

� F�n�1. [26]

FIG. 1. Echo-shifted MRI signal as a function of flip angle � for
TR/TE � 20 ms/10 ms and T1/T2 � 840 ms/400 ms (below) and
1200 ms/960 ms (above). Solid lines represent the analytical solu-
tion given in Eq. [23], diamonds (below) and triangles (above) are
calculated values using the infinite sums from Eq. [22]; asterisks
(interpolated by the chain-dashed line) and crosses (interpolated by
the dashed line) are corresponding measured values taken from (12)
and normalized for the chosen conditions.
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For the 180° phase alternation scheme for RF excitation
commonly used for TrueFISP, Fn � (�1)n applies and the
use of Eqs. [10], [11], and [16]–[19] yields:

S�TFalt� �
u0

u0 � u1
� �S0 � S�1� � M0tan

�

2
�1 � E2�q
E2�p � q�

[27]

� M0sin �
1 � E1

1 � �E1 � E2�cos � � E1E2
. [28]

Equation [28] is identical to Eq. [15a] in Ref. 7. For the case
of RF excitation without phase cycling, i.e., Fn 
 1, we
obtain:

S�TFno alt� �
u0

u0 � u1
� �S0 � S�1� � M0tan

�

2
�1 � E2�q
E2�p � q�

[29]

� M0sin �
1 � E1

1 � �E1 � E2�cos � � E1E2
. [30]

Equation [30] is identical to Eq. [14a] in Ref. 7.
For the purpose of cardiovascular MRI, the TrueFISP

sequence variant with RF phase alternation was used with
TR � 3 ms and � � 60° (20). Assuming a T1 of 1 s (at 1.5 T)
and a T2 of 60 ms for heart muscle (e.g., see Ref. 21), the
difference between the theoretical TrueFISP signal from
Eq. [28] and the coherent sum of the SSFP-FID and SSFP-
echo, i.e., S0 � S�1 from Eq. [19], is less than 5%. Under
these conditions higher-order signals can be neglected.

CONCLUSION

In conclusion, analytical solutions are given for the infi-
nite series in Eqs. [3], [4], and [12] allowing the solution of
pertinent equations that use these series for the character-
ization of the different components of the SSFP signal. The
resulting expressions demonstrate the identity of the dif-
ferent equations for SSFP signals in MRI obtained by Gyn-
gell (6) and Zur et al. (8) and provide a mechanism to
switch between their theories. Moreover, the equations
from both analyses are equivalent to those obtained for
high-resolution spectroscopy by Kaiser et al. (3). Closed
expressions are specified for the previously published sig-
nal (12) of MRI sequences exploiting first-order SSFP sig-
nals presently used for functional MRI or MR thermome-
try. The signal in TrueFISP sequences as derived in closed
form from the infinite series approach is shown to be
identical to that obtained by Zur et al. (7).

APPENDIX

For solving the homogeneous linear recursion from Eq.
[13] we consider its characteristic (or auxiliary) equation
P( x) (e.g., see Refs. 22 and 23):

P�x� � xn �
2
s

xn�1 � xn�2 [A1]

� xn�2�x2 �
2
s

x � 1� [A2]

with s � q/p. The roots of this polynomial are given by
r1/ 2 � (1/s)(1 � �1 � s2) with multiplicity 1 and r3 � 0
with multiplicity n � 2. Therefore, the general solution for
un is specified by (e.g., see Refs. 22 and 23):

un � A �
1
sn �1 � �1 � s2�n � B �

1
sn �1 � �1 � s2�n. [A3]

The constants A and B are determined by utilizing the
starting conditions from Eqs. [10] and [11] for n � 0 and
n � 1, resulting in the system of linear equations:

u0 � A � B [A4]

u1 �
1
s

�u0 � 1�

� A �
1
s

�1 � �1 � s2� � B �
1
s

�1 � �1 � s2� [A5]

which is solved by A � u0 and B � 0.

REFERENCES

1. Carr HY. Steady-state free precession in nuclear magnetic resonance.
Phys Rev 1958;112:1693–1701.

2. Hinshaw WS. Image formation by magnetic resonance: the sensitive-
point method. J Appl Phys 1976;47:3709–3721.

3. Kaiser R, Bartholdi E, Ernst RR. Diffusion and field-gradient effects in
NMR Fourier spectroscopy. J Chem Phys 1974;60:2966–2979.

4. van der Meulen P, Groen JP, Tinus AMC, Bruntink G. Fast field echo
imaging: an overview and contrast calculations. Magn Reson Imag
1988;6:355–368.

5. Buxton RB, Fisel CR, Chien D, Brady TJ. Signal intensity in fast NMR
imaging with short repetition times. J Magn Reson 1989;83:576–585.

6. Gyngell ML. The steady-state signals in short-repetition-time se-
quences. J Magn Reson 1989;81:474–483.

7. Zur Y, Stokar S, Bendel P. An analysis of fast imaging sequences with
steady-state transverse magnetization refocusing. Magn Reson Med
1988;6:175–193.

8. Zur Y, Wood ML, Neuringer LJ. Motion-insensitive, steady-state free
precession imaging. Magn Reson Med 1990;16:444–459.

9. Ernst RR, Anderson WA. Application of Fourier transform spectros-
copy to magnetic resonance. Rev Sci Instrum 1966;37:93–102.

10. Freeman R, Hill HDW. Phase and intensity anomalies in Fourier trans-
form NMR. J Magn Reson 1971;4:366–383.

11. Chung YC, Merkle EM, Lewin JS, Shonk JR, Duerk JL. Fast T2-weighted
imaging by PSIF at 0.2 T for interventional MRI. Magn Reson Med
1999;42:335–344.

12. Chung YC, Duerk JL. Signal formation in echo-shifted sequences. Magn
Reson Med 1999;42:864–875.

13. Auerbach EJ, Heberlein K, Hu X. High-resolution, low-SAR T2 imaging
at high magnetic fields. In: Proc 10th Annual Meeting ISMRM, Hono-
lulu, 2002. p 2345.

14. Mizumoto CT, Yoshitome E. Multiple echo SSFP sequences. Magn
Reson Med 1991;18:244–250.

15. Scheffler K. A pictorial description of steady-states in rapid magnetic
resonance imaging. Concepts Magn Reson 1999;11:291–304.

16. Bronstein IN, Semendjajew KA. Taschenbuch der Mathematik.
20. Auflage. Thun: Verlag Harri Deutsch; 1983. [English translation
available as: Handbook of mathematics, 3rd ed. New York: Springer;
1997.]

17. Moonen CT, Liu G, van Gelderen P, Sobering G. A fast gradient-recalled
MRI technique with increased sensitivity to dynamic susceptibility
effects. Magn Reson Med 1992;26:184–189.

774 Hänicke and Vogel



18. Oppelt A, Graumann R, Barfuß H, Fischer H, Hartl W, Schajor W. FISP:
a new fast MRI sequence. Electromedica 1986;54:15–18.

19. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR
evaluation of ventricular function: true fast imaging with steady-state
precession versus fast low-angle shot cine MR imaging: feasibility
study. Radiology 2001;219:264–269.

20. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR
angiography of the heart with segmented true fast imaging with steady-
state precession. Radiology 2001;219:828–834.

21. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of
normal tissue hydrogen NMR relaxation times and relaxation mech-
anisms from 1–100 MHz: dependence on tissue type, NMR fre-
quency, temperature, species, excision, and age. Med Phys 1984;11:
425– 448.

22. Biggs NL. Discrete mathematics, rev. ed. Oxford: Clarendon Press;
1989.

23. Eriksson K. A summary of recursion solving techniques. http://www.
math.kth.se/�bek/diskret/linrek.pdf

Solution for the SSFP Signal in MRI 775


