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Low-temperature behavior of capture rate constants
for inverse power potentials
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The energy dependence of the capture cross section and the temperature dependence of the capture
rate constants for inverse power attractive potentialsV}2R2n is considered in the regime where
the quantum character of the relative motion of colliding partners is important. For practically
interesting casesn54 and n56, a simple formula for the cross section is suggested which
interpolates between the classical and the quantum Bethe limits. We have shown that the classical
approximation for the capture cross section performs well far below the simple estimations of the
onset the quantum regime. This seemingly ‘‘classical’’ feature of the cross section and the rate
constant is due to the large quantum effects of the waves in transmission through and reflection
above the centrifugal potential barriers. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1562159#
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I. INTRODUCTION

The rate of many barrierless chemical reactions is g
erned by the rate of complex formation~or capture! between
the partners~see, e.g., Ref. 1!. While the full quantum treat-
ment of such events is the most general, some simplificat
are possible under certain conditions. The most important
the fully classical treatment of the capture based on the c
sical ~Cl! trajectory method, and adiabatic channel~AC!
treatment.2 The latter takes into account the quantum char
ter of hindered rotational motion in the generally anisotro
potential between the partners but assumes that this moti
adiabatic with respect to the relative motion which in turn
regarded as classical. One can apply the following gene
zations of the AC method that bring it closer to the fu
quantum treatment:

~i! an incorporation of nonadiabatic transitions betwe
AC states in the regions of narrow avoided crossin

~ii ! an account for the axial nonadiabaticity~AN! from
Coriolis coupling in the construction of ANAC poten
tials;

~iii ! a quantum treatment of the relative motion of t
partners.

While the points~i! and~ii ! have been treated upon in Ref
3 and 4, point~iii ! has not been considered in full detail ye
Normally, quantum effects in the relative motion of partne
are important only at such low temperatures that the
constant is dominated by the contribution from the grou
rovibronic state of the partners only. Even then, the cap
event is complicated by the recoupling of the angular m
7310021-9606/2003/118(16)/7313/8/$20.00
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menta in the collision process.5 However, if the ground state
is nondegenerate, there is only a single AC potentialV(R)
that depends on the center-of-mass distanceR between the
colliders; its long-range part determines the capture cr
section, provided that the potential well depth is noticea
larger than the collision energy. Under this condition, t
problem simplifies to the quantum capture of structurel
particles. The physical processes that fall into this categ
e.g., are the low-energy collisions of atomic ions inS state
with dipole or quadrupole diatoms in the ground rotation
state, or the collisions of two dipole molecules, both
the ground rotational state. As explained in Refs. 3, 4, an
for the above three cases the long-range part of the
potentials behave as2CLcd /R4, 2CLcq /R4, 2CWdd/R6,
respectively, where the coefficientsCLcd , CLcq , CWdd are
certain combinations of the parameters of t
Langevin1charge-dipole, Langevin1charge-quadrupole
and van der Waals1dipole–dipole interactions.

The problem of quantum capture was addressed in 1
by Vogt and Wannier7 for potentials behaving as21/R4. It
was found that the quantum cross section under the cond
of very low velocityv→0 is just twice the classical Lange
vin cross section. Later on, quantum effects in the capt
were usually associated with the tunneling through the c
trifugal barriers and the overbarrier reflection~see, e.g., the
review by Clary8 and the references cited therein!. The im-
portance of quantum effects for the Langevin interaction w
estimated for different tunneling models in Ref. 9 with th
conclusion that ‘‘tunneling is unimportant unless the te
perature becomes extremely low, and that overbarrier refl
3 © 2003 American Institute of Physics
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tion exerts practically no effect on the capture rate.’’ O
therefore is tempted to use a simplified description of qu
tum effects in the capture by adopting the quantum exp
sion for the cross section as a sum over the quantum num
of orbital angular momentum, and by using a step functio
for the barrier transmission coefficients. Within this approa
one finds that, for the Langevin interaction, the capture r
constant diverges at low temperatures as 1/AT.9–13This con-
clusion contradicts the results obtained by Vogt a
Wannier.7 More importantly, it also contradicts the low
energy Bethe limit which predicts an inverse dependenc
the cross section on the collision velocity and therefor
limiting temperature-independent rate constant.14 One should
note that the inverse velocity law for inelastic~including
capture! s-wave collision processes follows from the gene
analytical properties and unitarity of the scattering matri15

irrespective of the form of an interaction~in our case the
capturing potential!. Recently16 an attempt was made to in
terpolate the energy dependence of the partial cross sec
between their exact threshold value~Bethe threshold behav
ior for s-wave scattering,14 the Wigner threshold behavior fo
higher angular momenta16! and an assumed high-energy d
pendence of these cross sections. However, one may o
to this kind of approach since the accurate threshold beha
of the partial cross section with given quantum number, is
buried ~except for ,50) under the heavy post-threshol
not-well-known weight of the preceding cross section w
the quantum number,21, see below.

With these remarks in mind, we reanalyze the probl
by considering the simplest version of quantum capture
lisions, when all complications related to the axial and rad
nonadiabatic effects can be neglected, that is when
ground rovibronic state of the partners is nondegenerate
when possible contributions of excited rovibronic states
be disregarded. We consider quantum capture in the field
general central potentialV(R)52Cn /Rn with n54 and 6.
We derive a simple approximation for the low-temperatu
capture rate constant which later on can be compared
low-temperature treatments of cases where nonadiabati
fects are essential.

The plan of our presentation is the following: In Sec.
we review the results for classical capture in the field
21/Rn potentials. In Sec. III we discuss the Bethe limit
capture cross sections and rate constants for the same ki
potentials. In Sec. IV we present accurate numerical calc
tions for cross sections and energy-dependent rate co
cients. We suggest an analytical formula for the cross s
tions which bridges the gap between the classical regime
the Bethe limit. Section V gives the results for temperatu
dependent rate constants. In Sec. VI our results are sum
rized and discussed. In the Appendix we also consider sim
approximations to the capture rate coefficient which
based on analytical expressions for the barrier transmis
coefficient.

II. CLASSICAL CAPTURE CROSS SECTIONS
AND RATE COEFFICIENTS

We consider the capture of two particles moving in t
field of a central attractive potential of the form
Downloaded 27 Jul 2010 to 134.76.223.56. Redistribution subject to AIP
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V~R!52Cn /Rn. ~1!

The classical capture cross sectionsn
Cl is expressed via

the capture impact parameterbn or the corresponding angu
lar momentumLn5pbn ~with p being the linear momentum
of relative motion,p5mv with reduced massm and velocity
v):

sn
Cl5pbn

25pLn
2/p2. ~2!

For the potential in Eq.~1!, one has~see, e.g., Ref. 18!

Ln~p!5pS mnCn

p2 D 1/nS n

n22D 1/221/n

. ~3!

Besides the cross sectionsn
Cl , we introduce the energy-~or

momentum-! dependent capture rate coefficient

kn
Cl~p!5vsn

Cl~p!. ~4!

From Eqs.~2!, ~3!, and~4! we obtain

kn
Cl~p!5H pS 8C4

m D 1/2

for n54

3pS C6p

2m2D 1/3

for n56.

~5!

III. BETHE CAPTURE CROSS SECTIONS
AND RATE COEFFICIENTS

The general expression for the capture cross sectio
the case of spherically symmetric interaction is given by

sn
Q~k!5 (

,50

`

s,,n
Q ~k!5

p

k2 (
,50

`

~2,11!P,,n~k!, ~6!

wherek is the wave vector of relative motion (k5p/\) and
P,,n(k) is the capture probability for the,-partial wave cross
sections,,n

Q . The Bethe limit is recovered from Eq.~6! when
one retains only the contribution ofs-wave scattering, and
makes the scattering length approximation, i.e.,P0,n(k)uk→0

54an9k (an9 being the imaginary part of the complex sca
tering length!.15 Within this approximation, Eq.~6! leads to

sn
Q~k!uk→0'sn

Bethe~k!5
p

k2 P0,n~k!uk→05
4pan9

k
. ~7!

The conditionP0,n(k)!1, under which Eq.~7! is valid, is
one of the manifestations of the so-called suppress
phenomena.19,20 Physically, it is due to the low transmissio
of the impinging wave through a certain region of the pote
tial where it begins to drop. The most simple description
this transmission corresponds to the case when the mo
inside the well away from the above region is quasiclassi
Then the transmission and the absorption can be treated
dependently, and the capture probabilityP,,n can be identi-
fied with the transmission probabilityT,,n . Under this con-
dition, the transmission probability for the potential of th
form in Eq. ~1! can be found analytically:21

P0,n~k!uk→05cnRs,nk, ~8!

where

Rs,n5~2mCn /\2!1/~n22!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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and

cn5S 1

n22D 2/~n22! 4p

GS 1

n22DGS 11
1

n22D . ~9!

For the case of interest,c454, c651.91.
The conditions of small transmission over the poten

drop and of the quasiclassical character of motion inside
well read

kRs,n!1 and R0,n /Rs,n!1, ~10!

whereR0,n is the distance at which a long-range potential
Eq. ~1! is noticeably modified by the short-range interactio
Note that the first inequality in Eq.~10! may be more restric-
tive than the condition for the capture cross section to
dominated bys wave scattering. From Eqs.~7! and ~8! we
get the following expressions for the Bethe cross section
the corresponding rate coefficient:

sn
Bethe~k!5

p

k
cnRs,n and kn

Bethe5
p\

m
cnRs,n . ~11!

By referring to Eq.~9!, we see thatk4
Bethe52k4

Cl in agreement
with the results from Ref. 7.

IV. BRIDGING BETWEEN THE BETHE LIMIT
AND CLASSICAL REGIME FOR nÄ4 AND 6

For an accurate interpolation between the Bethe
classical limits, one has to calculate probabilitiesP,,n(k) by
numerically integrating the appropriate Schroedinger eq
tion with an absorbing boundary condition at some sm
value ofR and relating the coefficients in the quasiclassi
solutions for large and smallR ~for large R the motion is
quasiclassical because it is free, for smallR the motion is
quasiclassical according to our basic assumption, see
II !. The absorbing boundary condition inside the well elim
nates any resonance features in the scattering; this princip
distinguishes the capture event from any other event
which the reflected wave with a substantial amplitude ex
inside the well~e.g., for the inelastic process of vibration
relaxation in atom–diatom collisions22–24!. We calculate cap-
ture probabilities numerically for different, within a range
of k which is wide enough to achieve the convergence of
quantum cross section to its classical limit. Beside giv
numerically accurate cross sections and cross sections fo
whole energy range, our objective was to see to what ex
one can extrapolate classical cross section to low energ
what is the energy range for the validity of the Bethe a
proximation and the Wigner threshold law for the captu
probability, and to derive a simple analytical formula for t
capture cross section over a wide energy range. In the
pendix we also discuss some analytical approximations
the capture rate coefficients.

In solving the problem of the barrier transmission, w
will use dimensionless distancesr5R/Rs,n and dimension-
less vectorsk5kRs,n . In these variables the Schroeding
equation reads
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2
d2c,,k~r!

2dr2 1y,
eff~r!c,,k~r!5

k2

2
c,,k~r!, ~12!

where

y,
eff~r!5,~,11!/2r221/2rn. ~13!

Instead of the cross section in Eq.~6!, we consider a scaled
rate coefficientxn

Q(k) which is proportional tonsn
Q(k):

xn
Q~k!5 (

,50

`

x,,n
Q ~k!5

1

2k (
,50

`

~2,11!P,,n~k!. ~14!

The classical counterpart of Eq.~14! is

xn
Cl~k!5xn

Q~k!uk@15 ,̃n
2~k!/2k, ~15!

where,̃n(k)5Lc,n(p)/\. For two cases of interest, we hav
,̃4(k)5A2k and ,̃6(k)5(3)k2/2)1/3. In order to illustrate
the successive contribution of different partial waves into
sum in Eq.~14!, we use, instead of the wave vectork, a
related quantityln(k). Functionsln5ln(k) are defined in
such a way that every time, when the energyk2/2 equals the
height of the centrifugal barrier for the effective potential
Eq. ~13!, ln equals,. Namely, the relations betweenln and
k are

l4~11l4!52k, l6~11l6!5S 3)k2

2 D 2/3

. ~16!

Clearly, fork@1, ln(k)→ ,̃n(k).
The scaled rate coefficients in the classical regime an

the Bethe limit read

xn
Cl~k!5H 1, n54

3

4
~2k!1/3, n56,

~17!

xn
Bethe5 H c4/252, n54

c6/250.956, n56,

respectively. Note that the numerical coefficient in front
the sum in Eq.~14! is chosen from the condition thatx4

Cl

51.
In what follows we present the results separately for

casesn54 andn56.

A. Potential with nÄ4

Numerical transmission probabilityP,,4(k) are pre-
sented in Fig. 1. The linear portions of the curves corresp
to the Wigner lawP,,n(k)}k2,11,17 the slopes of ln(P,,n)
being equal to 2,11. We also see that, with increasing,, the
Wigner behavior performs progressively better in the se
that it predicts the probabilities when they are not too lo
~the horizontal line in Fig. 1 corresponds toP,,451/2).
However, fors-wave scattering, the linear approximation f
P0,4 is valid within a disappointingly small range ofk, with
the upper boundary being much lower than the contribut
of the p-wave scattering. It is thus clear that for the calcu
tion of the s-wave cross section one has to go beyond
scattering length approximation already for quite low en
gies. For approximate description of the transmission pr
ability across the drop of the attractive potential, we can
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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an analytical expression valid for an attractive exponen
potential~see, e.g., Ref. 15!. In doing so we will adjust the
range of the exponential attraction in such a way as to en
the correct Bethe limit. In this way we get

P0,4~k!'Papp~k,c4!512exp~2c4k!. ~18!

In Fig. 2, we present a plot ofx4
Q(k) versusl4(k). We see

that x4
Q(k) quite quickly reaches its classical limit~horizon-

tal dashed line! oscillating about it with progressively de
creasing amplitude. The quite small amplitude of oscillat
is due to the compensation of the substantial tunneling
overbarrier reflection. However, at energies where the m
contribution comes from thes-wave scattering~below the
classical threshold for thep-wave scattering!, the quantum
rate coefficient significantly deviates from its classical cou
terpart. We can try to describe this deviation by combin
the classical rate coefficient with the approximates-wave
rate coefficient by the following formula:

x4
app~k!5max$x0.4

Q,app~k!,x4
Cl~k!%, ~19!

wherex0,4
Q,app(k) is calculated with help of Eq.~18!:

x0,4
Q ~k!'x0,4

Q,app~k!5
1

2k
$12exp~2c4k!%. ~20!

Figure 2 also shows the functionsx4
app(k), and

x4
MQCl(k); the latter is calculated according to Eq.~14! with

FIG. 1. Numerically determined probabilitiesP,,4(k) vs k. The linear parts
of the plots correspond to the Wigner threshold law. The horizontal th
line corresponds to a probability of one-half, see text.

FIG. 2. Reduced rate coefficientsx4
Q(k), x4

app(k), x4
MQCl(k) vs l4(k), see

text.
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step functionsP,,4(k)5h@k2,(,11)/2#. We see that a
reasonable approximation tox4

Q(k) is given byx4
app(k) from

Eq. ~19! over the full range ofk. We expect that the rela
tively small discrepancy between the exact and approxim
treatments will be even smaller after averaging the ener
dependent rate coefficient to produce the temperat
dependent rate constants. The modified quasiclass
~MQCl! approximation performs poorly, since it accoun
neither for tunneling and overbarrier reflection for,.0 @this
is the cause of the sawtooth structure in thex4

MQCl(k) for
k.1], nor for the suppression for,50 @this is the cause of
the divergence ofx4

MQCl(k)}1/k for k,1]. Finally, we note
that the passage from the reduced rate coefficient to the
coefficient in conventional units reads

kc
Q~p!5K4* 3x4

Q~p/p4* ! ~21!

with K4* 5p(8C4 /m)1/2, p4* 5\/Rs,45(\4/2mC4)1/2, and
Rs,4 from Eq. ~9!.

B. Potential with nÄ6

For the casen56, the results are qualitatively similar t
those forn54, except for the fact that the asymptotic limit o
thex6

Q(k), i.e.,x6
Cl(k), now depends onk, see Eq.~17!. The

plots of the three rate coefficientsx6
Q(k), x6

app(k),
x6

MQCl(k), are shown in Fig. 3. We see again that the a
proximation of Eq.~19! reproduces accurate results becau
of the very strong tunneling and overbarrier reflection. W
also note that, different from the casen54, the rate coeffi-
cients forn56 pass through a shallow minimum before t
p-wave capture channel becomes classically open.

The rate coefficients in conventional units read

k6
Q~p!5K6* 3x6

Q~p/p6* ! ~22!

with K6* 5(p/4)(C6\2/8m3)1/4, p6* 5\/Rs,65(\6/2mC6)1/4,
andRs,6 from Eq. ~9!.

V. TEMPERATURE-DEPENDENT RATE CONSTANTS
FOR nÄ4 AND nÄ6

Temperature-dependent capture rate constantsx̄n
Q are ob-

tained from xn
Q by averaging the latter over a Maxwel

Boltzmann velocity distribution. The distribution functionF,
written in terms of the variablek, reads

k
FIG. 3. Reduced rate coefficientsx6

Q(k), x6
app(k), x6

MQCl(k) vs l6(k), see
text.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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F~k;un!dk5
2un

23/2

A2p
k2 expS 2

k2

2un
Ddk, ~23!

where the reduced temperatureun is given by

un5kBT
mRs,n

2

\2 . ~24!

For n54 andn56, Eq. ~24! corresponds to

u45~2C4m2/\4!kBT ~25!

and

u65~2C6m3/\6!1/2kBT.

Temperature-dependent reduced rate constantsx̄n
Q(un) are

defined, in a standard way, by

x̄n
Q~un!5E

0

`

xn
Q~k!F~k,un!dk. ~26!

The passage to conventional units is obtained through

k̄4
Q~T!5K4* 3x̄4

Q~T/T4* ! with T4* 5\4/2m2C4kB

and ~27!

k̄4
Q~T!5K6* 3x̄4

Q~T/T6* ! with

T6* 5\3/kB~2C6m3!1/2,

whereK4* andK6* are given by Eqs.~21! and ~22!, respec-
tively. In order to see the significance of quantum correctio
in the thermal rate constants, we also calculatex̄n

app(un),
x̄n

MQCl(un), and x̄n
Cl(un). These functions are presented

Fig. 4 forn54 and in Fig. 5 forn56. We see that the simpl
analytical approximation of Eq.~19! very well predicts the
accurate rate constant, whilex̄n

MQCl(un) diverges as 1/Au,
and noticeably deviates fromx̄n

Q(un) and x̄n
app(un) even at

u5uMQCl;10. This value ofuMQCl nicely agrees with an
intuitive criterion for the onset of quantum effects, e.g.,
n54, uMQCl510 corresponds tokMQCl

2 520, which in turn
corresponds to,MQCl5(4kMQCl

2 )1/4'3; this means that a
uMQCl'10, about three partial waves contribute to the cr
section, and 3 can be considered as already a ‘‘large n

FIG. 4. Reduced rate constantsx̄4
Q(u4), x̄4

app(u4), x̄4
MQCl(u4), x̄4

Cl(u4) vs
u4 , see text.
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ber.’’ On the other hand, the deviations ofx̄4
Q(u) andx̄4

app(u)

from the classical rate constantx̄4
Cl51 become noticeable a

much lower temperatures, below, say,uQ'0.1. With C4'1
atomic units,m515 atomic mass units'33104 atomic
units, and the rough conversion factor 331026 between
Kelvin and atomic units, this value ofuQ would correspond
to TQ'1025 K for n54 and TQ'1023 K for n56. This
difference inTQ for different n is explained by the fact tha
the potential with highern is steeper and therefore the effe
of quantum reflection from the potential drop is seen
higherT. For the same reason,TQ decreases with increasin
interaction constant: the higher the interaction strength,
longer is the interfragment distance where the partners
attraction, the more gradual is the potential drop, and
lower is the suppression.

A relevant example to this situation follows from th
ion–dipole molecule interaction discussed by Troe.6 The an-
isotropic interaction in this case becomes, in the AC desc
tion, a set of isotropic AC potentials with the interactio
parameters determined by the Langevin~charge-induced di-
pole! parameters and second-order contributions from the
tational polarization~charge-permanent molecular dipole!.
For the ground rotational state of the molecule, there exis
single AC potential which has the form of Eq.~1! with n
54. The limiting classical low-temperature capture rate co
stant (T→0) for this case reads

k52pAaq2/mA11mD
2 /3aB, ~28!

whereq is the charge of the ion,a is the polarizability of the
linear molecule,mD is its permanent dipole moment, andB is
its rotational constant. For a small value of the rotation
constant, the coefficientC4 @in Eq. ~1!# in this case may
strongly exceed the Langevin coefficientq2a/2. In other
words, in this caseC4 may be noticeably higher than 1 a.
such thatTQ will be even lower than the above estimate
1025 K. The suggestion by Clary8 that, for extremely low
temperatures, the expression for the capture rate consta
the form of Eq.~28! should be multiplied by 2 is technically
correct but therefore applies to extremely low temperatu
only.

FIG. 5. Reduced rate constantsx̄6
Q(u6), x̄6

app(u6), x̄6
MQCl(u6), x̄6

Cl(u6) vs
u6 , see text.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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According to our derivation, in general the values ofTQ

should be much lower than often assumed. For instanc
‘‘quantum threshold temperature’’ for the system CN1O2

was estimated asTQ'7 K in Ref. 16. In this estimation, an
interaction of the type of Eq.~1! was assumed withn54
~dipole-quadrupole interaction! and C458.6310260 J m4

'0.26 a.u. In order to understand the origin of this lar
estimate ofTQ , we reexamine the criterion for the onset
quantum regime adopted in Ref. 16. The ‘‘quantum thresh
energy’’ EQ or the ‘‘quantum threshold temperature’’TQ

5EQ /kB in Ref. 16 followed from a criterion
max$dL(EQ ,R)/dR%51/2, instead of for the ‘‘standard’
criterion15 max$dL̃(EQ ,R)/dR)%'1/2, whereL(E,R) is the
local de Broglie wavelength andL̃5L/2p ~for the detailed
discussion of the application of the latter criterion toR2n

potential see Ref. 21!. Figure 6 shows the relevant plots
our dimensionless variables, namely L8(kQ ,r)
5dL(kQ ,r)/dr and L̃8(kQ ,r)5dL̃(k̃Q ,r)/dr vs r with
L52p/Ak211/r4, under the condition that the maxima
values of these functions is about 1/2. For the criterion u
in Ref. 16, we obtainkQ'150 while the standard criterio
yields k̃Q'4. The latter value roughly corresponds touQ

'k̃Q
2 /2'8, while the former corresponds touQ'104. This

difference by three orders of magnitudes in the estimate
the ‘‘quantum threshold energy’’ can therefore be attribu
to the difference by the factor 2p in the two different quasi-
classical criteria. An additional two orders of magnitude
uQ comes from the unexpectedly good performance of
classical approximation in the quantum regime. This expla
the total difference of five orders of magnitude inTQ be-
tween the present results and those suggested in Ref. 1

VI. CONCLUSION

We have investigated the energy and the tempera
ranges where capture cross sections and capture rate
stants for inverse power potentials fall into the intermedi
regime between the classical and the quantum Bethe lim
We have shown that tunneling and overbarrier reflect
broaden the partial capture probabilities to such an ex
that discrete structures of the cross sections are effecti

FIG. 6. Test for quasiclassical criteria. Curve 1 corresponds toL8(kQ ,r)

for kQ5150, and curve 2 toL̃8(k̃Q ,r) for k̃Q54, see text for more details
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lost and the classical~integral! expression for the cross sec
tion provides a very good approximation to the quantu
cross section for collision energies even lower than the c
sical p-wave threshold. The use of a quantum summat
over partial waves with neglect of tunneling and reflectio
which is an often used procedure, definitely is inadequ
and makes a false claim for a partial account of quant
effects. Thes-wave scattering should be treated separat
with proper account for the suppression effect; in turn,
suppression probability can be approximately recove
from the capture scattering length. The cross sections
classical capture ands-wave capture taken together allo
one to construct a simple approximation to the quantum c
ture cross section over the whole energy or tempera
range. Finally, we note that the Bethe limit of the rate co
stants is expected to be reached only at extremely low t
peratures, below the 1023-K range. This corresponds to
conclusion which also has been reached for the vibratio
relaxation of molecules.22–24 The present results correspon
to reactions on uncoupled one-dimensional adiabatic cha
potential curves for isotropic interaction. However, they a
ply equally well to such curves for anisotropic potentia
They provide a justification for the use of the semiclassi
treatment in the statistical adiabatic channel model down
very low temperatures.25 They are also of importance fo
future calculations of low-temperature rate constants for
generate rovibronic states of colliders, since they permit
to skip the calculation of tunneling probabilities for th
coupled channel potentials which, for degenerate rovibro
states, may have a quite complicated form.
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APPENDIX: ANALYTICAL APPROXIMATIONS
FOR THE CAPTURE RATE COEFFICIENT

For illustrative purposes, in this Appendix simple a
proximations to the capture rate coefficient are also deri
which are based on analytical expressions for the bar
transmission coefficient. We again consider the casen54.

First we assume that the transmission probability
given by the expression appropriate for a particular case
the Eckart potential, the inverted Morse~IM ! potential. The
inverted Morse potential qualitatively resembles the centr
gal barrier and contains essentially two parameters,
height of the barrierUm and the characteristic length of th
potentiala. The transmission probability for the IM potentia
reads15

PIM~k!5
2 sinh~ak!

exp~ak!1exp~akth!
, ~A1!

wherekth is the wave vector that corresponds toUm . Pass-
ing to the reduced wave vectork and identifyingk th with
,(,11)/2, we rewrite Eq.~A1! as
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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P,,4
IM ~k!5

2 sinh~ak!

exp~ak!1exp@a,~,11!/2#
. ~A2!

In this equation, the scaling coefficienta can be found from
various conditions. For instance, one may require t
P0,4

IM(k) coincide withP0,4
app(k) from Eq.~18!. This will yield

a5c454. However, if this value ofa is adopted, the captur
rate coefficient

x4
IM~k!5

1

2k (
,50

`

~2,11!P,,4
IM ~k! ~A3!

at zero energy will be slightly higher than 2 because of
erroneous contributions of partial waves with,.0 @note that
for smallk all P,,4

IM (k) are proportional tok while the correct
transmission probabilities are proportional tok2,11]. Alter-
natively, one can choose the value ofa such that
lim
k→0

x4
IM(k)52. This will makea lower than 4, namelya

53.3. The plot ofx4
IM with the latter value ofa is shown in

Fig. 7 together withx4
Q andx4

MQCl versusl4 .
Another simple treatment can be based on the parab

approximation to the effective potentialy,
eff(r) near its maxi-

mum atr5rm asy,
eff(r)'y,

par(r):

y,
eff~r!'y,

par~r!5k,,4
2 /22~v,

2/2!~r2rm!2, ~A4!

where k,,4 is determined from Eq.~16! with l4(k,,4)5,.
Since the approximationy,

eff(r)'y,
par(r) applies in the quasi-

classical limit,v, is calculated by using the Langer corre
tion to the centrifugal potential:v,5(,11/2)3/&. For the
potential in Eq.~A4!, a standard expression forP,,4

par reads15

P,,4
Par~k!5

1

11exp@~p/v,!~k,,4
2 2k2!#

. ~A5!

Making the linear expansion in the exponent ink2k,,4 and
changing the variablek into l4 we get

P,,4
par~k!5

1

11exp@&p~,2l4~k!!#
. ~A6!

FIG. 7. Comparison of inverted Morse~IM ! and parabolic~Par! approxima-
tions ~dashed curves! with accurate quantum~Q! result ~full curve! and
modified quasiclassical~MQCl! approximation~dotted curve! for the re-
duced rate coefficientx4 .
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We see that the total widthDl of the sigmoid-shaped func
tion P,,4(l4) is about 2/(p&). It does not depend on, and
represents a noticeable fraction of the spacing betw
neighboring, which is unity. Of course, Eq.~A6! cannot be
used for ,50, and the transmission probability for th
s-wave capture should be defined independently. We tak
from Eq. ~18! such that the expression for the scaled r
coefficient in the parabolic approximation becomes

x4
Par~k!5

P0,4~k!

2k
1

1

2k (
,51

`

~2,11!P,,4
par~k! ~A7!

with P0,4(k) given by Eq.~18!. The plot ofx4
Par is shown in

Fig. 7.
We see that both the IM and parabolic approximatio

noticeably reduce the oscillatory behavior of the MQCl ra
coefficient; they capture the essential features of the mu
compensation of tunneling and overbarrier reflection for p
tial waves with,.1. The IM approximation underestimate
quantum effects of tunneling and overbarrier reflection, a
shows significantly higher oscillatory behavior compared
the accurate dependence. The parabolic approximation
counts for the quantum effects near to the barrier maxima
a better way; therefore the cancellation of the two effec
reflection and transmission, is more substantial, and the
cillation amplitude is still smaller. However, the parabo
approximation suffers from a noticeable erroneous tunne
contribution at the foot of the barrier of the last classica
closed channel. This explains the upward shift of thex4

Par

curve with respect to thex4
Q curve. At very low energies, this

shift leads to the 1/k divergence that comes mainly from th
incorrectp-wave tunneling capture@note that Eq.~A7! cor-
rectly describes thes-wave capture#. Still, this divergence is
weaker than the 1/k divergence of the incorrects-wave cap-
ture within the MQCl treatment.
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