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The energy dependence of the capture cross section and the temperature dependence of the capture
rate constants for inverse power attractive potentiéls- R™" is considered in the regime where

the quantum character of the relative motion of colliding partners is important. For practically
interesting cases=4 and n=6, a simple formula for the cross section is suggested which
interpolates between the classical and the quantum Bethe limits. We have shown that the classical
approximation for the capture cross section performs well far below the simple estimations of the
onset the quantum regime. This seemingly “classical” feature of the cross section and the rate
constant is due to the large quantum effects of the waves in transmission through and reflection
above the centrifugal potential barriers. Z03 American Institute of Physics.
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I. INTRODUCTION menta in the collision processHowever, if the ground state

The rate of many barrierless chemical reactions is govlS nondegenerate, there is only a single AC potentii)

erned by the rate of complex formatiéor capturg between ~ that depends on the center-of-mass distaRdeetween the
the partnergsee, e.g., Ref.)1While the full quantum treat- coIthrs; its .Iong—range part de‘Fermlnes the capture cross
ment of such events is the most general, some simplification3eCtion, provided that the potential well depth is noticeably
are possible under certain conditions. The most important ar@'ger than the collision energy. Under this condition, the
the fully classical treatment of the capture based on the clagtroblem simplifies to the quantum capture of structureless
sical (Cl) trajectory method, and adiabatic chani@iC) particles. The physical processes that fall into this category,
treatment The latter takes into account the quantum charac€-9., are the low-energy collisions of atomic ionsSrstate

ter of hindered rotational motion in the generally anisotropicwith dipole or quadrupole diatoms in the ground rotational
potential between the partners but assumes that this motion #ate, or the collisions of two dipole molecules, both in
adiabatic with respect to the relative motion which in turn isthe ground rotational state. As explained in Refs. 3, 4, and 6,
regarded as classical. One can apply the following generalfor the above three cases the long-range part of the AC
zations of the AC method that bring it closer to the full potentials behave as Ciea/R%, —C,_cq/R“, —Cwaa/R®,
quantum treatment: respectively, where the coefficien® .4, Cicq, Cwaq are

certain combinations of the parameters of the

(i) an incorporation of nonadiabatic transitions betweenl_an evint charae-dinole Langevincharge-quadrupole
AC states in the regions of narrow avoided crossings; 9 ge-cipole, 9 9¢-q pole,

(i) an account for the axial nonadiabaticitghN) from and van der Waaisdipole—dipole interactions. .
Coriolis coupling in the construction of ANAC poten- The problem of quantum capture was addressed in 1954

by Vogt and Wanniérfor potentials behaving as 1/R*. It

tials; . -
(i) a quantum treatment of the relative motion of the Was found that the quantum cross section under the condition
partners of very low velocityv —0 is just twice the classical Lange-

vin cross section. Later on, quantum effects in the capture
While the points(i) and (i) have been treated upon in Refs. were usually associated with the tunneling through the cen-
3 and 4, pointiii) has not been considered in full detail yet. trifugal barriers and the overbarrier reflecticsee, e.g., the
Normally, quantum effects in the relative motion of partnersreview by Clary and the references cited thergiithe im-
are important only at such low temperatures that the rat@ortance of quantum effects for the Langevin interaction was
constant is dominated by the contribution from the groundestimated for different tunneling models in Ref. 9 with the
rovibronic state of the partners only. Even then, the captureonclusion that “tunneling is unimportant unless the tem-
event is complicated by the recoupling of the angular mo{perature becomes extremely low, and that overbarrier reflec-
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tion exerts practically no effect on the capture rate.” One  V(R)=-C,/R". (1)
therefore is tempted to use a simplified description of quan- ) o .
tum effects in the capture by adopting the quantum expres- 1 n€ classical capture cross sectiofj is expressed via
sion for the cross section as a sum over the quantum numbefls€ capture impact parametey or the corresponding angu-
of orbital angular momenturfi and by using a step function & momenturri,=pb, (with p being the linear momentum
for the barrier transmission coefficients. Within this approachOf 'relatlve motionp= v with reduced masg and velocity
one finds that, for the Langevin interaction, the capture rat&/-

constant diverges at low temperatures agr1~*This con- oC'= mb2= L2/ p2. )
clusion contradicts the results obtained by Vogt and o

Wannier’ More importantly, it also contradicts the low- For the potential in Eq(l), one hassee, e.g., Ref. 18
energy Bethe limit which predicts an inverse dependence of unC,\ ¥/ n |V2-im

the cross section on the collision velocity and therefore a Ln(p)=p(—2) (m) .

limiting temperature-independent rate const4r®ne should P
note that the inverse velocity law for inelastimcluding  Besides the cross secti(mf', we introduce the energyer
capture s-wave collision processes follows from the generalmomentum) dependent capture rate coefficient
analytical properties and unitarity of the scattering matrix K B) = vl 4
irrespective of the form of an interactiofin our case the n (P)=Voy(p). @
capturing potential Recently® an attempt was made to in- From Egs.(2), (3), and(4) we obtain
terpolate the energy dependence of the partial cross sections 8C, |12

between their exact threshold val(ethe threshold behav- 77(_4> for n=4

()

ior for swave scattering? the Wigner threshold behavior for KS(p) = H ®)
higher angular moment3 and an assumed high-energy de- n (P Cqsp\ 1R

pendence of these cross sections. However, one may object 37 212 for n=6.

to this kind of approach since the accurate threshold behavior

of the partial cross section with given quantum numbés Ill. BETHE CAPTURE CROSS SECTIONS

buried (except for€=0) under the heavy post-threshold, A\Np RATE COEEFICIENTS

not-well-known weight of the preceding cross section with

the quantum numbef—1, see below. The general expression for the capture cross section in
With these remarks in mind, we reanalyze the problenthe case of spherically symmetric interaction is given by

by considering the simplest version of quantum capture col- o -

lisions, when all complications related to the axial and radial QL _ Q _m

nonadiabatic effects can be neglected, that is when the U”(k)_go oenk)= kzZo 26+ DPealk), ©

ground rovibronic state of the partners is nondegenerate anvgherek is the wave vector of relative motiok€ p/%) and

when possible contributions of excited rovibronic states can, (K) is the capture probability for the-partial wave cross
be disregarded. We consider quantum capture in the field of a“:" 0 P b y P

general central potentil(R)=— C, /R" with n=4 and 6. sectiono¢,,. The Bethe limit is recovered from E(5) when

: : . one retains only the contribution gfwave scattering, and
We derive a simple approximation for the low-temperature . ST
akes the scattering length approximation, iR, ,(K)|x_.o

capture rate constant which later on can be compared witH]4 "k (o being the imaginary part of the complex scat-
low-temperature treatments of cases where nonadiabatic etférir?n Ienar'EI) 15 V\EIJithin thi ginary p tion. Ea(6) | P ds t
fects are essential. g 'ength. s approximation, Eq(6) leads to

The plan of our presentation is the following: In Sec. Il . T 4o
we review the results for classical capture in the field of  TR(K)|o~0p" W= 1zPon(Kmo=—— (@
—1/R" potentials. In Sec. Ill we discuss the Bethe limit of
capture cross sections and rate constants for the same kind bfie conditionP,,(k)<1, under which Eq(7) is valid, is
potentials. In Sec. IV we present accurate numerical calculaene of the manifestations of the so-called suppression
tions for cross sections and energy-dependent rate coefffhenomena? Physically, it is due to the low transmission
cients. We suggest an analytical formula for the cross sec@f the impinging wave through a certain region of the poten-
tions which bridges the gap between the classical regime arféfl where it begins to drop. The most simple description of
the Bethe limit. Section V gives the results for temperaturethis transmission corresponds to the case when the motion
dependent rate constants. In Sec. VI our results are summHside the well away from the above region is quasiclassical.
rized and discussed. In the Appendix we also consider simpl&hen the transmission and the absorption can be treated in-
approximations to the capture rate coefficient which aredependently, and the capture probabiRy , can be identi-
based on analytical expressions for the barrier transmissiofied with the transmission probabiliff, ,. Under this con-

coefficient. dition, the transmission probability for the potential of the
form in Eq. (1) can be found analyticall$*
Il. CLASSICAL CAPTURE CROSS SECTIONS _
AND RATE COEFFICIENTS Pon(K)|k—0=CnRsnk, (8)
. . N where
We consider the capture of two particles moving in the
field of a central attractive potential of the form Rsn=(2uC,/h2)H0n=2)
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and d?y (p) K?
« eff
1 2/(n—2) A 2—d2_+v€ (P)‘W K(P) ¢€,K(p)l (12)
Cn= ( n— 2) 1 1\ ©) where
r|——=|rl1+—
2 \tth2 vf(p)=€(€+1)/2p2— 112p". (13)
For the case of interest,=4, ce=1.91. Instead of the cross section in E), we consider a scaled

The conditions of small transmission over the potentialrate coefficientyQ(«) which is proportional tovo$():
drop and of the quasiclassical character of motion inside the

well read 1
XRk)= Z Xn(0)= o }_} (20+1)Po(k).  (14)
kRsn<1 and Rgp/Rgn<1, (10) =0 s

whereRy , is the distance at which a long-range potential inThe classical counterpart of EQL4) is

Eq. (1) is noticeably modified by the short-range interaction. C'(K) XQ(K)| o 1=C2( )2k, (15)
Note that the first inequality in E¢10) may be more restric-

tive than the condition for the capture cross section to bgvhere€n(x) Lcn(P)/%. For two cases of interest, we have
dominated bys wave scattering. From Eq$7) and (8) we  €4(x) =2k and?g(«) = (3v3«%2)*. In order to illustrate
get the following expressions for the Bethe cross section anthe successive contribution of different partial waves into the

the corresponding rate coefficient: sum in Eq.(14), we use, instead of the wave vecter a
related quantityA ,(«). Functions\,=\,(«) are defined in
O_Eethe( k)= Zc R., and kEethe:T’_hCnRs . (11) such a way that every time, when the enexdy2 equals the

height of the centrifugal barrier for the effective potential in
Eqg. (13), A\, equalst. Namely, the relations between, and

By referring to Eq(9), we see thak5®"®=2k$' in agreement e

with the results from Ref. 7.

3v3 K2\ 23
) . (16)

)\4(1+)\4):2K, )\6(1“‘)\6):( 2
IV. BRIDGING BETWEEN THE BETHE LIMIT

AND CLASSICAL REGIME FOR n=4 AND 6 Clearly, for x> 1, hn(k) —€n(k).

The scaled rate coefficients in the classical regime and in

For an accurate interpolation between the Bethe anéhe Bethe limit read
classical limits, one has to calculate probabilitigs,(«) by 1, n=4
numerically integrating the appropriate Schroedinger equa- |
tion with an absorbing boundary condition at some small ~ Xn (k)= §(2K)1/3 n=6
value of R and relating the coefficients in the quasiclassical ’ ’
solutions for large and smaR (for large R the motion is _ B (17)

. . o o C4/2=2, n=4
quasiclassical because it is free, for snfalthe motion is xoethe= 17— 0.956. n—6
quasiclassical according to our basic assumption, see Sec. Cel2=0.996, N=0,
I1). The absorbing boundary condition inside the well elimi-respectively. Note that the numerical coefficient in front of
nates any resonance features in the scattering; this principaltfie sum in Eq.(14) is chosen from the condition thqtg'
distinguishes the capture event from any other event in=1.
which the reflected wave with a substantial amplitude exists  In what follows we present the results separately for the
inside the well(e.g., for the inelastic process of vibrational casesn=4 andn==6.
relaxation in atom—diatom collisiofs 2. We calculate cap-
ture probabilities numerically for differert within a range
of k which is wide enough to achieve the convergence of the  Numerical transmission probability?, ,(x) are pre-
guantum cross section to its classical limit. Beside givingsented in Fig. 1. The linear portions of the curves correspond
numerically accurate cross sections and cross sections for the the Wigner lawP, («) >« *1,*" the slopes of I, ,)
whole energy range, our objective was to see to what exterieing equal to 2+ 1. We also see that, with increasifigthe
one can extrapolate classical cross section to low energie®yigner behavior performs progressively better in the sense
what is the energy range for the validity of the Bethe ap-that it predicts the probabilities when they are not too low
proximation and the Wigner threshold law for the capture(the horizontal line in Fig. 1 corresponds ®,,=1/2).
probability, and to derive a simple analytical formula for the However, fors-wave scattering, the linear approximation for
capture cross section over a wide energy range. In the ApP, 4 is valid within a disappointingly small range af with
pendix we also discuss some analytical approximations tthe upper boundary being much lower than the contribution
the capture rate coefficients. of the p-wave scattering. It is thus clear that for the calcula-

In solving the problem of the barrier transmission, wetion of the swave cross section one has to go beyond the
will use dimensionless distances=R/R;, and dimension- scattering length approximation already for quite low ener-
less vectorsk=kR;,. In these variables the Schroedinger gies. For approximate description of the transmission prob-
equation reads ability across the drop of the attractive potential, we can use

A. Potential with n=4
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FIG. 1. Numerically determined probabiliti€ 4(«) vs . The linear parts  F|G, 3. Reduced rate coefficient§(«), xR x), x¥(«) vs Ag(x), see
of the plots correspond to the Wigner threshold law. The horizontal thickiext.

line corresponds to a probability of one-half, see text.

step functionsP, 4(k)=h[xk—€(€+1)/2]. We see that a
an analytical expression valid for an attractive exponentiateasonable approximation §d( ) is given byy 3™ ) from
potential(see, e.g., Ref. 35In doing so we will adjust the Eq. (19) over the full range ofx. We expect that the rela-
range of the exponential attraction in such a way as to ensutévely small discrepancy between the exact and approximate
the correct Bethe limit. In this way we get treatments will be even smaller after averaging the energy-
_pa 1 _ dependent rate coefficient to produce the temperature-
Pod)~P™Hx,Cq) =1~ exp(—Cyr). (18 dependent rate constants. The modified quasiclassical
In Fig. 2, we present a plot of(«) versush 4(«). We see (MQCI) approximation performs poorly, since it accounts
that x9(«) quite quickly reaches its classical linttorizon-  neither for tunneling and overbarrier reflection for 0 [this
tal dashed ling oscillating about it with progressively de- is the cause of the sawtooth structure in #E°C!(x) for
creasing amplitude. The quite small amplitude of oscillationx>1], nor for the suppression fdr=0 [this is the cause of
is due to the compensation of the substantial tunneling anthe divergence of}'?“!(«) o1/ for k<1]. Finally, we note
overbarrier reflection. However, at energies where the maithat the passage from the reduced rate coefficient to the rate
contribution comes from the-wave scatteringbelow the coefficient in conventional units reads
classical threshold for thp-wave scattering the quantum N
rate coefficient significantly deviates from its classical coun- kg c(P) =Kz Xx3 (p/p4) (2D)
terpart. We can try to describe this deviation by combiningwith K} =7(8C,/u)Y? p} =#/Rss=(h*21C,)*?% and
the classical rate coefficient with the approximatevave R, from Eqg.(9).
rate coefficient by the following formula:

X3P k) = max x 2 k), x$'(k)}, (199  B. Potential with n=6
where)(Q 2PR k) is calculated with help of Eq18): For the case=6, the results are qualitatively similar to
1 those fom=4, except for the fact that the asymptotic limit of
Q i Cl
QaPR )= — {1 —exn —c ‘ 20 the xg(«), i.e., xg (), now depends or, see Eq(17). The
X0 ~x53 ZK{ A= Car)} 20 plots of the three rate coefficientgd(x), x2H(x),

x¥RC (), are shown in Fig. 3. We see again that the ap-
proximation of Eq.(19) reproduces accurate results because
of the very strong tunneling and overbarrier reflection. We
also note that, different from the care=4, the rate coeffi-
cients forn=6 pass through a shallow minimum before the
p-wave capture channel becomes classically open.

The rate coefficients in conventional units read

kQ(p)=K& X x§(p/p§) (22

with K& = (/4)(Ceh?/8u®) Y, p =hIRge=(15/21Cg) Y4,
andRg ¢ from Eq. (9).

Figure 2 also shows the functiong3”{«), and
X% (x); the latter is calculated according to HG4) with

Xi ()

051 d £ (K)
X4 () 4 V. TEMPERATURE-DEPENDENT RATE CONSTANTS

FOR n=4 AND n=6

0 i > 3 r
Ay (%)

Temperature-dependent capture rate consﬁﬁme ob-
tained from X? by averaging the latter over a Maxwell-
FIG. 2. Reduced rate coefficient§(x), x2™(x), x!(x) vs A4(x), see  Boltzmann velocity distribution. The distribution functié
text. written in terms of the variablg, reads
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FIG. 4. Reduced rate constani§(6,), xaP04), XY (64), X5'(64) Vs
6,, see text.

100

—3/2 K2
F(k;6 dx= —— k2 ex ——)dK, 23
( ﬂ) r_27T 20n ( )
where the reduced temperatuigis given by
R2
0n=KgT Mﬁj“ (24)
Forn=4 andn=6, Eq.(24) corresponds to
04: (2C4/.L2/ﬁ4)kBT (25)

and

0= (2CeuI%8)Y2KgT.
Temperature-dependent reduced rate constgR(s),) are
defined, in a standard way, by

X6, = f:xs(mm,an)dx. (26)

The passage to conventional units is obtained through
KUT)=KExx(TITE)  with  T%=#%2u?Ckg
and (27)
KY(T)=KEXXQ(TITE)  with
T¢ =45%/kg(2Ceu®) 2,
whereKj} andK§ are given by Eqgs(21) and(22), respec-

tively. In order to see the significance of quantum corrections

in the thermal rate constants, we also calculgf6,),
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FIG. 5. Reduced rate constangg(fds), xe™ 0s), Xv2%(6s), XS'(66) Vs
6, see text.

ber.” On the other hand, the deviations)gf(6) andx5° 6)

from the classical rate constagf'=1 become noticeable at
much lower temperatures, below, s#@y~0.1. WithC,~1
atomic units, =15 atomic mass units=3x10* atomic
units, and the rough conversion factoix30 ® between
Kelvin and atomic units, this value @fy would correspond

to To~10"° K for n=4 andTo~10 K for n=6. This
difference inTq, for differentn is explained by the fact that
the potential with highen is steeper and therefore the effect
of quantum reflection from the potential drop is seen at
higherT. For the same reasoiii; decreases with increasing
interaction constant: the higher the interaction strength, the
longer is the interfragment distance where the partners feel
attraction, the more gradual is the potential drop, and the
lower is the suppression.

A relevant example to this situation follows from the
ion—dipole molecule interaction discussed by T¢dehe an-
isotropic interaction in this case becomes, in the AC descrip-
tion, a set of isotropic AC potentials with the interaction
parameters determined by the Langetharge-induced di-
pole) parameters and second-order contributions from the ro-
tational polarization(charge-permanent molecular dipple
For the ground rotational state of the molecule, there exists a
single AC potential which has the form of E¢L) with n
=4. The limiting classical low-temperature capture rate con-
stant (T—0) for this case reads

k=2m\aq? u\1+ u3/3aB, (28)

whereq is the charge of the iory is the polarizability of the

XMQCl(g.), and x§'(6,). These functions are presented in linear moleculeup is its permanent dipole moment, aBds

Fig. 4 forn=4 and in Fig. 5 fon= 6. We see that the simple

analytical approximation of Eq.19) very well predicts the
accurate rate constant, whijg"°“(¢,) diverges as /6,

and noticeably deviates from<(6,) and x2"{(,) even at
0= Opoci~10. This value offyqc nicely agrees with an

its rotational constant. For a small value of the rotational
constant, the coefficien€, [in Eg. (1)] in this case may
strongly exceed the Langevin coefficieqta/2. In other
words, in this cas€, may be noticeably higher than 1 a.u.
such thafTo will be even lower than the above estimate of

intuitive criterion for the onset of quantum effects, e.g., for10 > K. The suggestion by Clafythat, for extremely low

n=4, Oygci=10 corresponds to(zMQC,=20, which in turn

temperatures, the expression for the capture rate constant in

corresponds to€MQC,:(4Kf,,QC|)1’4~3; this means that at the form of Eq.(28) should be multiplied by 2 is technically
Omoci~ 10, about three partial waves contribute to the crosorrect but therefore applies to extremely low temperatures
section, and 3 can be considered as already a “large nunenly.
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10 ' ' 7 ' lost and the classicdlntegra) expression for the cross sec-
I tion provides a very good approximation to the quantum
08 F - cross section for collision energies even lower than the clas-
sical p-wave threshold. The use of a quantum summation

06 F A A i over partial waves with neglect of tunneling and reflection,

which is an often used procedure, definitely is inadequate
and makes a false claim for a partial account of quantum
effects. Theswave scattering should be treated separately
with proper account for the suppression effect; in turn, the
0.2 T suppression probability can be approximately recovered
from the capture scattering length. The cross sections for
classical capture angd-wave capture taken together allow
one to construct a simple approximation to the quantum cap-
P ture cross section over the whole energy or temperature
range. Finally, we note that the Bethe limit of the rate con-
stants is expected to be reached only at extremely low tem-
peratures, below the 18-K range. This corresponds to a
conclusion which also has been reached for the vibrational
According to our derivation, in general the valuesTgf ~ relaxation of molecule®~2*The present results correspond
should be much lower than often assumed. For instance, @ reactions on uncoupled one-dimensional adiabatic channel
“quantum threshold temperature” for the system €R,  Ppotential curves for isotropic interaction. However, they ap-
was estimated a§o~7 K in Ref. 16. In this estimation, an Ply equally well to such curves for anisotropic potentials.
interaction of the type of Eq(l) was assumed witm=4  They provide a justification for the use of the semiclassical
(dipole-quadrupole interactipnand C,=8.6x10"% Jnf  treatment in the statistical adiabatic channel model down to
~0.26 a.u. In order to understand the origin of this largevery low temperature€. They are also of importance for
estimate ofT, we reexamine the criterion for the onset of future calculations of low-temperature rate constants for de-
quantum regime adopted in Ref. 16. The “quantum thresho|@enerate rovibronic states of colliders, since they permit us
energy” Eq or the “quantum threshold temperaturd”, 0 skip the Calculation_ of tun_neling probabilities fo.r the-
=Eqg/kg in Ref. 16 followed from a criterion coupled channel potentials which, for degenerate rovibronic
maxdA(Eq,R/dR=1/2, instead of for the “standard” States, may have a quite complicated form.
criterion® maxdA(Eq ,R/dR}~1/2, whereA(E,R) is the
local de Broglie wavelength andl=A/27 (for the detailed ACKNOWLEDGMENTS

discus_sion of the appli_cation of the latter criterionRo" _ Financial support of this work by the Deutsche Fors-

potential see Ref. 21Figure 6 shows the relevant plots in chungsgemeinschafiSFB 357 “Molekulare Mechanismen

our  dimensionless  variables, namelyA'(xq,p)  unimolekularer Prozessg’by the EU(TMR “Astrophysical

=dA(kq,p)/dp and A’ (kq,p)=dA(%q,p)/dp vs p with  Chemistry”), and by the KAMEO, Israel, program are grate-

A=2m/Jk?+1lp? under the condition that the maximal fully acknowledged.

values of these functions is about 1/2. For the criterion used

in Ref. 16, we obtairnkg~ 150 while the standard criterion APPENDIX: ANALYTICAL APPROXIMATIONS

yields ko~4. The latter value roughly corresponds dg FOR THE CAPTURE RATE COEFFICIENT

%NZ ~ i ~ 04 h
Kkol2~8, while the former corresponds #,~10". This For illustrativ ; in this Aopendix simpl

difference by three orders of magnitudes in the estimates of ~or njustrative purposes, S Appe simple ap-

the “quantum threshold energy” can therefore be attributed?roximations to the capture rate coefficient are also derived

to the difference by the factor2in the two different quasi- which are based on analytical _expres;ions for the ‘barrier

classical criteria. An additional two orders of magnitude intransmlssmn coefficient. We again con§|de_r the (r&-s@ﬂ.__ .

6, comes from the unexpectedly good performance of the . First we assume that the transmission probability is

classical approximation in the quantum regime. This explainsg'ven by the Eexpression .approprlate for a parueglar case of
the total difference of five orders of magnitude T, be- the Eckart potential, the inverted Moré1) potential. The

tween the present results and those suggested in Ref. 16 inverted Morse potential qualitatively resembles the centrifu-
" 77" gal barrier and contains essentially two parameters, the

height of the barriet) , and the characteristic length of the

potentiala. The transmission probability for the IM potential
We have investigated the energy and the temperatur[ééc’sld§5

ranges where capture cross sections and capture rate con- 2 sini{ak)

stants for inverse power potentials fall into the intermediate  P™(k)= , (A1)

regime between the classical and the quantum Bethe limits. expak)+expaki)

We have shown that tunneling and overbarrier reflectiorwhereky, is the wave vector that correspondsUg,. Pass-

broaden the partial capture probabilities to such an exterihg to the reduced wave vectar and identifying «;, with

that discrete structures of the cross sections are effectivelg(€ +1)/2, we rewrite Eq(Al) as

A’(KQ ’p) ) K’(KQ 9p)

0.0 L L 1
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Test for quasiclassical criteria. Curve 1 corresponds (<q,p)
for kq=150, and curve 2 t&’(T(Q ,p) for k=4, see text for more details.

VI. CONCLUSION
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2.0 oat " e We see that the total width\ of the sigmoid-shaped func-
2 (K) tion Py 4(N4) is about 2/¢rv2). It does not depend ofiand
represents a noticeable fraction of the spacing between

neighboring¢ which is unity. Of course, EqA6) cannot be

L5 - o
- used for €=0, and the transmission probability for the
x s-wave capture should be defined independently. We take it

from Eqg. (18) such that the expression for the scaled rate
L0 coefficient in the parabolic approximation becomes
Voo M
05 - ! ¥ I — Par ( ) 1
0 1 2 3 4 P )= = +—E (2¢+1)PF(x) (A7)
Ay (%)

FIG. 7. Comparison of inverted MorgiV ) and paraboli¢Pa) approxima-

tions (dashed curvéswith accurate quantuniQ) result (full curve) and with Po, A x) given by Eq.(18). The plot of y,

modified quasiclassicalMQCI) approximation(dotted curve for the re- F|g 7.

duced rate coefficient, . We see that both the IM and parabolic approximations

noticeably reduce the oscillatory behavior of the MQCI rate

coefficient; they capture the essential features of the mutual

2 sinl{ ak) c_ompensatio_n of tunneling and overbarr_ier reﬂection_for par-
. (A2) tial waves with€>1. The IM approximation underestimates

explak)+exd al (€+1)/2] guantum effects of tunneling and overbarrier reflection, and

In this equation, the scaling coefficieatcan be found from shows significantly higher oscillatory behavior compared to

vanous conditions. For instance, one may require thathe accurate dependence. The parabolic approximation ac-
M(x) coincide withPZP] ) from Eq.(18). This will yield counts for the quantum effects near to the barrier maxima in

a= c4 4. However, if th|s value ok is adopted, the capture & better way; therefore the cancellation of the two effects,
rate coefficient reflection and transmission, is more substantial, and the os-
cillation amplitude is still smaller. However, the parabolic
M approximation suffers from a noticeable erroneous tunneling
Xa (K)=5— 2 (2€+1)P (k) (A3) contribution at the foot of the barrier of the last classically
closed channel. This explains the upward shift of #&"
at zero energy will be slightly higher than 2 because of thecurve with respect to the3 curve. At very low energies, this
erroneous COﬂtfibUtiOﬂS of partial waves with-0 [note that  shift leads to the ¥ divergence that comes mainly from the
for small « all P}"(«) are proportional tac while the correct incorrectp-wave tunneling capturgnote that Eq(A7) cor-
transmission probabllltles are proportional#é’ *1]. Alter- rectly describes the-wave capturg Still, this divergence is
natively one can choose the value aef such that weaker than the k/divergence of the incorrestwave cap-
I|mX (x)=2. This will make « lower than 4, namelyr  ture within the MQCI treatment.

k—0
=3.3. The plot ofX with the latter value ofx is shown in
Fig. 7 together withyQ and x Y9 versusx,
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