
Since natural language contains many ambiguities, a 
theory of language comprehension cannot be complete 
without giving an account of ambiguity resolution. Here, 
we present a computational model that explains how one 
type of ambiguity, referential ambiguity, is resolved.

A statement is referentially ambiguous if it contains an 
anaphor (often a pronoun) that has more than one possible 
referent. Selecting a referent results in one of the possible 
interpretations, or readings, of the statement. For instance, 
in the short text Bob saw that Joe was running. He was 
in a hurry, the pronoun he is ambiguous: It can refer to 
either Bob or Joe. This means that the second sentence 
has two readings: Either Bob was in a hurry, or Joe was 
in a hurry.

Several sources of information can be used to disam-
biguate a referentially ambiguous sentence or clause. One 
such source of information is formed by the event(s) de-
scribed in the previous clause(s)—that is, the context the 
ambiguous clause appears in. Combined with the reader’s 
general knowledge, context information can cause one of 

the readings to be considered more sensible than any other. 
In the example above, the context statement Bob saw that 
Joe was running results in a preference for interpreting the 
second sentence as “Joe was in a hurry,” because being in 
a hurry is known to be a reason to be seen running, rather 
than a reason to see that someone else is running.

Other sources of information that can be used in disam-
biguation lead to an a priori (i.e., knowledge-independent) 
preference for one of the readings of the ambiguous state-
ment. We will refer to this a priori preference as bias. In 
the example above, the fact that Bob is mentioned first 
will make him more accessible than Joe in the reader’s 
mental representation of the discourse. This so-called 
first-mention effect (Gernsbacher & Hargreaves, 1988) 
results in an initial preference for choosing Bob as the 
referent of he. In other words, there is a bias for the 
context-inconsistent reading “Bob was in a hurry.” For 
the comprehension process to result in the alternative, 
context-consistent reading, this bias must be overcome by 
the application of world knowledge.
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An influential theory of discourse comprehension 
that also deals with referential expressions is Kamp and 
Reyle’s (1993) discourse representation theory. This for-
mal theory was extended by Gordon and Hendrick (1998) 
to incorporate the control of referent accessibility (i.e., 
bias) by structural factors. In their conception, referent ac-
cessibility drives the initial interpretation of the ambiguity 
before the plausibility of the ambiguity’s readings is taken 
into account to select a final interpretation. However, eval-
uating the plausibility of a reading requires knowledge of 
the world, which neither Gordon and Hendrick nor Kamp 
and Reyle incorporate in their theories.

One of the first computational theories of referential dis-
ambiguation that takes the application of world knowledge 
into account is the one by Hobbs (1979), which was devel-
oped further by Kehler (2002). According to these theories, 
disambiguation is a side effect of a general process of co-
herence establishment. In the example above, increasing 
the coherence between the two statements comes down to 
finding the causal relation between running and being in 
a hurry. When world knowledge about this relation is ap-
plied, the ambiguity is resolved. In line with Hobbs’s and 
Kehler’s theories, the computational model we present in 
this article assumes that knowledge-based disambiguation 
is the result of a more general process that increases coher-
ence. It simulates the cognitive processes involved in apply-
ing world knowledge to a referentially ambiguous clause 
and its context, thereby selecting the most likely reading of 
the ambiguity. In these simulations, the model allows for an 
account of how bias and context information interact.

In spite of the conceptual similarity between our model 
and those by Hobbs (1979) and Kehler (2002), there is an 
important difference: Hobbs’s and Kehler’s theories do not 
(nor do they claim to) include an inference mechanism that 
is analogous to a psychological process. Consequently, 
they do not lead to quantitative predictions of experimen-
tal data. The model we present here, on the other hand, 
does have an inference process that leads to predictions 
that are validated against empirical data, as well as novel 
predictions. The model predicts how context information 
and bias affect reading times and error rates and, thereby, 
gives an explanation of these data. Moreover, by having a 
parameter controlling depth of processing, the model ac-
counts for the effect of processing depth.

Several models of knowledge-based inference have also 
been applied to referential disambiguation, but they often 
have given only limited accounts of empirical data. For 
instance, The Story Gestalt model (St. John, 1992) and 
the related, but much more comprehensive, story compre-
hension model by Miikkulainen (1993) lack a notion of 
processing time and, consequently, cannot predict read-
ing times. In Kintsch’s (1988) construction-integration 
model, successful simulation requires world knowledge 
to be selected in advance for each text that is processed. 
As we have argued elsewhere (Frank, Koppen, Noordman, 
& Vonk, in press), such an approach makes it difficult to 
validate a model against empirical data. Moreover, none 
of these models incorporate depth of processing.

A number of more recent models of ambiguity reso-
lution make use of the metaphor of attractors in state 

space. In these models, the readings of an ambiguity are 
represented as attractors in a high-dimensional space, 
pulling toward them a vector representing the current 
interpretation of the ambiguity. The time needed for this 
dynamical process to stabilize is taken as a measure of 
reading time. For instance, in the word recognition model 
of Rodd, Gaskell, and Marslen-Wilson (2004), vectors in 
state space represent word meanings, making it a semantic 
space. Since each word sense corresponds to one semantic 
vector, an ambiguous word corresponds to multiple vec-
tors in semantic space. When such a word is processed, 
its initial vector representation is a mix of its semantic 
vectors, all of which serve as attractors toward which the 
initial vector “falls” until it coincides with a vector repre-
senting one of the word’s senses. The model by Kawamoto 
(1993) simulates lexical disambiguation as a similar dy-
namical process.

As for resolving syntactic ambiguities, McRae, Spivey- 
Knowlton, and Tanenhaus (1998) present a dynamical 
model but do not use the state space metaphor. In contrast, 
the visitation set gravitation (VSG) model (Tabor, Juliano, 
& Tanenhaus, 1997; Tabor & Tanenhaus, 1999) involves a 
state space in which (partial) sentence structures are rep-
resented. When the model processes a word that can be 
attached to the current structure in different ways (i.e., 
the sentence is structurally ambiguous at this point), the 
initial vector lies in between the attractors that correspond 
to the possible structures. It then falls toward one of these, 
resulting in a single interpretation.

Our model, too, views disambiguation as a selection 
process driven by attractors in some state space. In con-
trast to the spaces of the Rodd et al. (2004) and VSG 
models, the state space of our model does not hold any 
linguistic representations. Instead, vectors in this space 
represent situations in a simplified story world, making 
it a situation space. The situation vectors are taken from 
the distributed situation space (DSS) model of inferencing 
during story comprehension (Frank, Koppen, Noordman, 
& Vonk, 2003), summarized later in this article.

In the model, referential ambiguity is resolved by 
performing two subprocesses simultaneously. One is a 
knowledge- and context-independent attraction process, 
comparable to the disambiguation processes of the Rodd 
et al. (2004) and VSG models. The other is a knowledge-
based and context-dependent, coherence-increasing, gen-
eral inference process, implemented in the DSS model. 
Combining these two processes results in a unified model 
of inference and disambiguation, called DSS–AR (for am-
biguity resolution).

Before turning to the model’s description, the next sec-
tion will present empirical data against which the model 
will be validated. These data come from experiments on 
the resolution of ambiguous pronouns. In these experi-
ments, there are two possible referents for a pronoun, re-
sulting in two readings of the referential ambiguity. The 
intended reading can be determined using context infor-
mation and world knowledge, but bias may also affect 
which reading is selected. Many such experiments suit-
able for comparison with our model have been performed, 
making this a good testing ground for the model. Note, 
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however, that DSS–AR does not simulate the selection 
of a pronoun’s referent but gives an account of the selec-
tion among the ambiguity’s readings, because points in its 
state space represent story situations, rather than separate 
discourse entities.

Following the presentation of experimental data, two 
sections will describe the DSS model and its extension 
for disambiguation, respectively. Next, the setup of simu-
lations will be described, after which their outcomes will 
be compared with the experimental data and the model’s 
novel predictions will be presented. Finally, the Discussion 
section will give an interpretation of experimental find-
ings in terms of the model’s properties. Also, the model’s 
(novel) predictions will be discussed in relation to several 
unresolved issues in reading time data—in particular, the 
timing of the effect of implicit causality and the possibil-
ity of fast processing of “unresolvable” ambiguities.

Empirical Findings

The data discussed below fall into three categories. 
First, we will look into the time course of pronoun reso-
lution. Second, results regarding sentence reading times 
will be discussed. Third, we will discuss some findings 
concerned with errors in pronoun resolution.

The Time Course of Pronoun Resolution
Several studies have indicated that an ambiguous pro-

noun can already be (partially) instantiated before disam-
biguating context information is available. Arnold, Eisen-
band, Brown-Schmidt, and Trueswell (2000) had subjects 
listen to short texts that brought one of two entities into 
focus. At the same time, these subjects looked at a pic-
ture corresponding to the situation described in the text. 
Eyetracking revealed that the subjects looked at the fo-
cused entity at the moment the text contained an ambigu-
ous pronoun. It was not until somewhat later, when the 
pronoun could be disambiguated, that they looked at the 
pronoun’s intended referent. It was concluded that focus 
can drive the initial instantiation of a pronoun (i.e., focus 
leads to bias for one of the readings) and that the intended 
reading is selected when context information becomes 
available. The same conclusion was drawn by Gordon and 
Scearce (1995) and Vonk (1985) on the basis of reading 
time data.

Reading Times
One of the phenomena most studied in relation to pro-

noun resolution is implicit causality, which is the ability 
of some verbs to bias the interpretation of a following 
pronoun. After reading Bob lied to Joe because he . . . , 
for instance, the pronoun is commonly taken to refer to 
Bob, whereas reading Bob punished Joe because he . . . 
leads to the assumption that Joe is the pronoun’s referent 
(Caramazza, Grober, Garvey, & Yates, 1977; Garvey, Cara
mazza, & Yates, 1974). The verb to lie to is a so-called 
NP1-biasing verb (or NP1 verb for short), meaning that it 
biases toward the first noun phrase: The cause of lying is 
implicitly assigned to the liar and not to the person being 
lied to. The verb to punish, on the other hand, is an example 

of an NP2 verb because it biases toward the second noun 
phrase: The cause of punishing is assigned to the punished 
and not to the punisher.

Implicit causality affects reading times. Congruent sen-
tences are sentences in which the implicit cause agrees 
with context information, such as Bob lied to Joe because 
he could not tell the truth. These are generally read more 
quickly than incongruent sentences, such as Bob lied to 
Joe because he could not handle the truth (Garnham, 
Oakhill, & Cruttenden, 1992; Stewart, Pickering, & San-
ford, 2000; Vonk, 1985).

At what point in the sentence does implicit causality 
affect the comprehension process? According to the so-
called focusing account, implicit causality arises while the 
verb is read: An NP1 verb makes the subject more available 
to the reader, whereas an NP2 verb focuses attention on 
the object. Contrary to this, the integration account claims 
that implicit causality does not affect comprehension until 
later, after the explicit cause has been read, at the moment 
the two clauses of the sentence are integrated. There is dis-
agreement among researchers concerning which account 
is correct: McDonald and MacWhinney (1995) found sup-
port for a focusing effect of implicit causality, whereas 
Garnham, Traxler, Oakhill, and Gernsbacher (1996) con-
cluded that its effect takes place during integration. Long 
and De Ley (2000) claimed that it depends on reading 
skill: Skilled readers show an earlier effect of implicit cau-
sality than less skilled readers do.

The results of these three studies were based on probe 
recognition tasks, which Stewart et al. (2000) criticized 
for interfering with the normal comprehension process 
and for not being sensitive enough to the time course of 
processing. They argued for taking reading time measures 
instead and claimed that the two accounts make differ-
ent predictions about the effect of congruency on reading 
times. First, the focusing account is claimed to predict no 
congruency effect in sentences in which the ambiguous 
pronoun is replaced by the name of the intended referent, 
whereas the integration account would predict a congru-
ency effect regardless of whether the anaphor is an am-
biguous pronoun or a proper name. Stewart et al. based 
this claim on the finding that pronouns are more sensi-
tive to focus than are proper names (Garrod & Sanford, 
1994; Gordon, Grosz, & Gilliom, 1993). Second, only the 
integration account would predict a smaller congruency 
effect when readers engage in shallower processing, be-
cause processing depth affects integrative processes but 
not focusing.

Stewart et al. (2000) conducted three self-paced read-
ing experiments in which subjects read congruent and in-
congruent sentences containing an ambiguous pronoun 
and the same sentences with the pronoun replaced by the 
name of the intended antecedent, rendering the sentence 
unambiguous. It was found that there was a congruency 
effect in both conditions, without even an interaction be-
tween the congruency and the ambiguity variables. From 
this result, Stewart et al. concluded that the focusing ac-
count of implicit causality is incorrect.

They also investigated the effect of processing depth on 
the congruency effect by varying questions that the sub-
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jects had to answer. In the deep condition, these questions 
could be answered only if the ambiguity was resolved 
correctly. In the shallow condition, the ambiguity did not 
need to be resolved to answer the questions, supposedly 
resulting in shallower processing. It was found that the 
congruency effect was smaller in the shallow-processing 
condition than in the deep-processing condition. Again, it 
was concluded that the focusing account is incorrect.

Error Rates
Bias does not always agree with context information 

on the preferred reading of the ambiguity. For instance, 
in Bob lied to Joe because he could not handle the truth, 
bias favors the reading in which Bob cannot handle the 
truth, whereas context information favors the other. Either 
of these sources of information may gain the upper hand 
during disambiguation. When the context-inconsistent 
reading is selected, this is considered an error in pronoun 
resolution. Alternatively, it is possible that the pronoun is 
not instantiated at all, or only partially (Greene, McKoon, 
& Ratcliff, 1992; Oakhill, Garnham, & Vonk, 1989).

Leonard, Waters, and Caplan (1997a) showed that the 
amount of context information affects the chance of mak-
ing an error. They had subjects read sentences containing 
an ambiguous pronoun, as well as disambiguating context 
information. The amount of context was varied by some-
times adding another full sentence that strongly implied 
one of two readings of the ambiguity. The subjects had to 
decide as quickly as possible to whom the ambiguous pro-
noun referred. It was found that adding a context sentence 
resulted in fewer errors. Hirst and Brill (1980) found a 
similar effect of context informativeness on error rates.

Congruency between implicit causality and context in-
formation not only affects reading times, but also has an 
effect on error rates. Leonard et al. (1997a, 1997b) and 
Stewart et al. (2000) found that more errors in referential 
disambiguation are made when incongruent sentences are 
read than when congruent sentences are read. Leonard 
et al. (1997a) also found that this effect becomes weaker 
when extra context information is added.

The Distributed  
Situation Space Model

As was discussed in the introduction, Hobbs (1979) and 
Kehler (2002) have argued that the resolution of referen-
tial ambiguity is a side effect of a more general process 
of establishing coherence among discourse statements by 
applying world knowledge. The DSS model (Frank et al., 
2003) simulates exactly such a process of coherence es-
tablishment1 during story comprehension. It integrates a 
story’s statements with each other, bringing them more in 
line with knowledge about the world in which the story 
takes place. This integration process leads to increased 
coherence and to the inference of information not given in 
the original story statements. Note that when signaled by 
textual cues in the form of concessive connectives such as 
although or nevertheless, comprehending a story requires 
finding a contrast between the given story and world 
knowledge. The model does not handle such stories.

The DSS model provides a formal framework for rep-
resenting situations occurring in a story world and knowl-
edge about that world. This knowledge concerns the like-
lihood of situations and the likelihood of one situation 
being followed by another. By being trained on a series 
of examples of situations occurring in the story world, the 
model obtains such knowledge.

Central to the model is the notion of a high-dimensional 
situation space. As formalized below, any possible story 
situation corresponds to a vector in this space. When a 
story is processed, these so-called situation vectors enter 
the model one by one. This means that DSS processing 
is incremental at the clause level, but not at a finer reso-
lution (e.g., words or phrases). The integration of story 
statements comes down to finding a sequence of situation 
vectors that not only is consistent with the story-given se-
quence, but also is more likely according to knowledge 
about the story world. This process, which is modeled as 
the movement of vectors through situation space, leads to 
the encoding of additional information about the events 
taking place in the story—that is, to inferences.

At any time during the model’s process, a measure for 
the amount of inference can be obtained by computing 
from the situation vectors the probabilities (so-called 
belief values) of particular events occurring in the rep-
resented situations. The time needed for the integration 
process to stabilize is used as the model’s correlate of sen-
tence reading times. The criterion for stabilization is ma-
nipulated to simulate the effect of processing depth. The 
model accounts for empirical findings regarding amounts 
of inference, reading times, and the effect of processing 
depth (Frank et al., 2003).

In the following subsections, we will discuss the story 
world to which the DSS model is applied, provide a de-
tailed specification of the model itself, and explain how its 
outcome is interpreted. Its application to disambiguation 
will be discussed in the next section.

The Microworld
A major problem for models of discourse comprehen-

sion is the implementation of the large amount of world 
knowledge involved in the comprehension process. One 
solution is to preselect text-relevant knowledge on an ad 
hoc basis, meaning that different knowledge is imple-
mented for each text being processed. This makes it dif-
ficult to run the model on several texts and statistically as-
sess the relation between its results and experimental data. 
To make more thorough validation attainable, the DSS 
model makes use of a so-called microworld. This means 
that world knowledge is selected only once, prior to, and 
thus independently from, the texts that will be processed. 
Once all knowledge of the microworld is implemented, 
the DSS model can apply this general knowledge base on 
several texts, without requiring any text-specific knowl-
edge selection and implementation.

The microworld used in this article is identical to the 
one used by Frank et al. (2003). It consists of two char-
acters, named Bob and Joe,2 who can engage in several 
activities, such as playing soccer or a computer game, and 
can be in different states, such as tired, inside, or outside. 
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In total, their activities and states can be described using 
the 14 basic events shown in Table 1.

A story situation is a (full or partial) description of the 
events occurring at one moment in the story. The number 
of possible story situations is, of course, much larger than 
the number of basic events, since these events can be ne-
gated and combined using conjunction and disjunction. 
There are probabilistic constraints on co-occurrences of 
events. For instance, Bob and Joe can play soccer only 
when they are outside, and they are more likely to be at 
the same place than at different places.

The situations of a story are assumed to follow one an-
other in discrete story time steps, which are indexed by the 
variable t. Note that t is not a point in the text but a moment 
in time in the story. That is, the situation at time step t 2 1 
takes place before, and is a possible cause of, the situa-
tion at t. Likewise, the story situation at t 1 1 follows the 
situation at t and is possibly its consequence. Examples of 
probabilistic constraints on the co-occurrence of situations 
at adjacent time steps are that someone who is tired at time 
step t is less likely to win at t 1 1 and more likely to have 
been playing soccer than a computer game at t 2 1.

Specification of the Model
Situation space and microworld knowledge. 

Microworld situations are represented as vectors in situ-
ation space, the number of dimensions of which is fairly 
arbitrarily set to 150. For any basic event p from Table 1, 
a vector denoted m( p) 5 (m1( p), . . . , m150( p)) (with 0  
mi( p)  1) results from training a self-organizing map 
(SOM; Kohonen, 1995) on a large number of example 
situations occurring in the microworld. These examples, 
constructed by hand, effectuated co-occurrence constraints 
among events. As a result of SOM training, knowledge 
about these constraints is encoded in the vector represen-
tations (see Frank et al., 2003, for details).

Each of the values mi( p) indicates the extent to which 
event p is represented in the ith dimension of situation 
space. In the field of fuzzy logic, such values are known 
as membership values. Using common equations from 
fuzzy logic, the vector representation of any situation can 
be constructed from the vectors for basic events, using the 

Boolean operators of negation (¬p), conjunction ( p ∧ q), 
and disjunction ( p ∨ q):

	 mi(¬p) 5 1 2 mi( p),

	 mi( p ∧ q) 5 mi( p)mi(q),

and

	 mi( p ∨ q) 5 mi( p) 1 mi(q) 2 mi( p)mi(q),	 (1)

for i 5 1, . . . , 150. In this way, not only the basic events, 
but any microworld situation corresponds to a vector in 
situation space. For instance, the vector representing the 
situation described by Bob and Joe play hide-and-seek 
outside can be constructed by applying the conjunction 
rule of Equation 1 to the vectors m(B outside), m(J out-
side), and m(hide-and-seek).

From here on, we will use the symbol X to denote any 
situation space vector (x1, . . . , x150), which does not need 
to correspond exactly to a basic or complex event. As an 
abuse of notation, the same symbol will be used to refer 
to the situation represented by the vector X. If it is relevant 
that the situation takes place at time step t, the situation 
(vector) is denoted Xt. To indicate that the vector repre-
sents an original story statement—that is, before any in-
tegration has taken place—a superscripted 0 is added. For 
instance, the miniature story over three time steps, The sun 
shines. Bob and Joe play soccer. Joe wins. is represented 
by the three vectors X0

1 5 m(sun), X0
2 5 m(soccer), X0

3 5 
m(J wins).

Knowledge about temporal contingencies in the micro-
world is encoded in a 150 3 150-matrix W. The values 
in this matrix are computed by first constructing the se-
quence of situation vectors for the microworld example 
situations that were used as training input to the SOM. 
The value of element wij of W indicates the correlation be-
tween the values of vector dimensions i at time step t and j 
at t 1 1, over all t (see Frank et al., 2003, for details).

Integration and inference. As input, the DSS model 
takes a sequence of original situation vectors (X 0

1, X
0
2, . . .), 

one vector at a time. After a vector has entered the model, 
all the vectors in the model so far are adjusted to bring 
them into closer correspondence to the temporal world 
knowledge encoded in W, simulating a reader’s integra-
tion process. How exactly a sequence of vectors can be 
adjusted to increase its probability follows from the DSS 
model’s mathematical basis, Markov random field (MRF) 
theory.

Given the situations at story time steps t 2 1 and t 1 1, 
it is possible to compute a vector Et 5 (E1,t, . . . , E150,t)
that represents the expected situation at the intermediate 
time step t. From MRF theory, Frank et al. (2003) derived 
how Et can be expressed in terms of Xt61 and W.3 It also 
follows from MRF theory that the most likely value of 
each variable xi,t is either its minimum or its maximum 
value. All minima are 0, and each xi,t has a maximum value 
xi,t

max  1, which is needed to prevent the model from infer-
ring facts that are inconsistent with text-given statements. 
In the DSS model, each xi,t

max equals the initial value x0
i,t.4

The integration process drives each variable xi,t toward 
one of its two extremes, depending on the variable’s ex-

Table 1 
Fourteen Basic Microworld Events  

and Their Intended Meanings

No.  Name  Meaning

  1 Sun The sun shines.
  2 Rain It rains.
  3 B outside Bob is outside.
  4 J outside Joe is outside.
  5 Soccer Bob and Joe play soccer.
  6 Hide-and-seek Bob and Joe play hide-and-seek.
  7 B computer Bob plays a computer game.
  8 J computer Joe plays a computer game.
  9 B dog Bob plays with the dog.
10 J dog Joe plays with the dog.
11 B tired Bob is tired.
12 J tired Joe is tired.
13 B wins Bob wins.
14  J wins  Joe wins.
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pected value, Ei,t. The process is defined by a differential 
equation that states how each value xi,t changes over pro-
cessing time. This is the velocity of xi,t, denoted vi,t:

	 v
E x x E
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i t

i t i t i t i t

i t
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So, if the expected value of xi,t is more than .5, its value 
changes by an amount vi,t . 0, meaning that it moves to-
ward its maximum. Likewise, if the expected value of xi,t 
is less than .5, its value is moved toward 0. Equation 2 
makes sure the situation vectors adapt themselves to world 
knowledge while no value xi,t becomes negative or exceeds 
its maximum. Taken together, all values vi,t for a particular 
t form the velocity vector

	 Vwk,t 5 (v1,t, . . . , v150,t),	 (3)

which gives the change in vector Xt resulting from the 
application of world knowledge (as indicated by “wk”). 
As a result of changing each Xt in the direction of Vwk,t, 
the sequence of situations stays consistent with the orig-
inal sequence and becomes more likely to occur in the 
microworld.

Stopping criterion and processing depth. Equa-
tion 2 is evaluated, using the original situation vectors Xt

0 
as initial values, until the total change in vector values 
drops below a threshold value controlled by the depth-of-
processing parameter q:

	 vi t
i t

,
,

,∑ < 1
θ 	 (4)

where t ranges from 1 to the number of situations pro-
cessed so far. Parameter q indicates the extent to which the 
story’s situations will be integrated. The larger the q, the 
stricter the criterion for sufficient processing is, leading to 
stronger integration of story situations, which is assumed 
to correspond to deeper processing.

Interpreting the Model
Belief values. Although situation vectors are difficult 

to interpret by themselves, the meaning of any vector can 
be investigated by comparing it with specific vectors, 
such as those representing basic events. More precisely, 
the subjective probability that some p will occur in situa-
tion X can be computed from their vector representations. 
This probability is called the belief value of p in situation 
X because it indicates the extent to which a reader may 
believe that the event occurs in that situation. During the 
model’s integration process, an increase in belief value 
of p reflects that it is inferred to have taken place. Also, 
it is possible to compute the subjective probability that 
p occurs at time step t given the previous and following 
situations, Xt61. Frank et al. (2003) showed empirically 
that belief values, as defined below, indeed form good es-
timates of the actual probabilities in the microworld.

The a priori belief value of a (basic or complex) event 
p can be computed from its vector representation, m( p). 
As a result of training the SOM, the a priori subjective 

probability that p occurs in the microworld, denoted t( p), 
equals the average value of its vector representation:

	 τ µ( ) ( ).p pi
i

= ∑1
150
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Likewise, the subjective probability that event p occurs 
in some situation X is the belief value t( p|X ). For exam-
ple, given the vectors m(B outside ∧ J outside) and m(sun), 
it is possible to compute t(sun|B outside ∧ J outside), in-
dicating how likely a reader may find it that the sun shines 
at the moment in the story about which the story text states 
that Bob and Joe are outside. From the conjunction rule of 
Equation 1, the definition of t( p) in Equation 5, and the 
definition of conditional probability, it follows that
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The subjective probability that event p occurs at time 
step t, given the previous and/or next situations, is denoted 
t( pt|Xt61). For instance t(J winst|hide-and-seekt21) is the 
amount of belief that the current story event includes Joe’s 
winning the game of hide-and-seek that was being played 
previously. Likewise, t(B dogt|B tiredt11) is the subjective 
probability that Bob plays with the dog, given that he is 
tired a moment later. Since vector Et represents the situa-
tion that can be expected from the situations at t 6 1, the 
belief value of pt given Xt61 is computed by substituting 
Et for the actual situation X in Equation 6:
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Coherence. Frank et al. (2003) defined a formal mea-
sure of story coherence by comparing a priori belief values 
(Equation 5) with a posteriori belief values (Equation 7). 
If the story situations at time steps t and t 6 1 are in line 
with the temporal world knowledge in W (i.e., they fol-
low expectations), the belief value of situation Xt in con-
text Xt61 will be larger than it is without context—that is, 
t(Xt|Xt61) . t(Xt)—leading to a positive contribution to 
the coherence of the story containing the situations. Like-
wise, if t(Xt|Xt61) , t(Xt), the situations contribute nega-
tively to the story’s coherence because they violate ex-
pectations. As a result of the model’s integration process, 
the coherence value of the story’s interpretation generally 
increases during processing (Frank et al., 2003).

Adding Disambiguation:  
The DSS–AR Model

The DSS model shows how world knowledge is used 
to increase coherence between story statements, lead-
ing to the inference of additional information about the 
story’s events. Since it simulates the cognitive process of 
coherence establishment, the model lends itself to being 
extended in order to form an implementation of Hobbs’s 
(1979) and Kehler’s (2002) proposal that establishing co-
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herence gives rise to resolving referential ambiguity. As 
it is, however, the model cannot simulate disambiguation 
because it lacks a process that (attempts to) select among 
the ambiguity’s readings. For instance, the statement he 
wins in a text about Bob and Joe is, for DSS, equivalent to 
the disjunction Bob wins or Joe wins, without a drive to 
infer one of the options. Ambiguity resolution, however, 
is the selection of one reading over the other(s), which can 
be thought of as a form of inference aimed at choosing 
from a small set of possibilities. In addition, bias often 
plays a role in ambiguity resolution. Therefore, DSS is 
turned into DSS–AR by adding formalizations of bias and 
of a disambiguation process.

Any biasing effect (e.g., the first-mention effect) is as-
sumed to have taken place before the model starts resolv-
ing the ambiguity: Bias affects only the ambiguity’s initial 
interpretation. When the vector representation of he wins 
in a text about Bob and Joe is constructed, bias for Bob 
wins is taken into account by letting that reading have a 
greater impact on the representation than does Joe wins.

As was mentioned above, the psychological process of 
disambiguation is modeled as a process of attraction in 
situation space. Each of the ambiguity’s readings intro-
duces into situation space a center of gravity, giving rise 
to an attractor region that drives the process of attraction. 
For example, the ambiguous statement he wins in a text 
about Bob and Joe results in two attractor regions, one 
being the “Bob wins” region, the other the “Joe wins” 
region. The “Bob wins” region consists of all the points 
in situation space that represent situations in which Bob 
wins, whereas the “Joe wins” region contains all situations 
in which Joe wins.

The process of attraction by the readings is now quite 
simple. It begins by taking the vector representing the 
ambiguous statement and modified by bias and lets each 
attractor region “pull” it into its direction, as will be ex-
plained in detail below. The influence an attractor region 
has on the vector increases as the vector gets closer to the 
region, making the vector “fall” toward one of the regions 
with increasing velocity and resulting in an increased be-
lief value for the corresponding situation. As soon as the 
vector arrives in one of the attractor regions, a reading is 
chosen, and the ambiguity is resolved. From then on, the 
attractor regions do not affect the vector any longer.

To make disambiguation sensitive to context and world 
knowledge, no additional process is needed. Instead, the 
DSS model’s integration process runs simultaneously with 
the disambiguation process. As a result, the ambiguity’s 
vector moves toward the most likely reading and will often 
end up there; that is, the correct reading is usually selected 
as a side effect of integration.

As an example, take the sentence Bob is tired and Joe 
is not, so he wins, which describes two situations. Assum-
ing that first mention makes Bob more accessible, result-
ing in bias for Bob to win, the second situation, in which 
someone wins, is initially represented by a vector closer 
to “Bob wins” than to “Joe wins” in situation space. As a 
consequence, it is forced more strongly toward the “Bob 
wins” region than toward the “Joe wins” region. However, 

the context statement Bob is tired and Joe is not, in com-
bination with knowledge about the relation between being 
tired and winning, makes the reading in which Joe wins 
more coherent. Therefore, the DSS model’s integration 
process moves the vector toward the “Joe wins” region. 
Which of the two readings is eventually selected depends 
on the context: If it lends enough support to the inference 
that Joe is the winner, bias may be overruled so that “Joe 
wins” is chosen as the reading of the second clause. It is 
also possible that the ambiguity is resolved only partially, 
meaning that the vector does not end up inside any at-
tractor region. This is especially likely when processing is 
shallow and the effects of bias and context are opposite.

Specification of the Model
Bias. Let p, q, r, . . . denote the situations to which an 

ambiguous statement could refer (i.e., these are its read-
ings). Most often, there will be only two: p and q. In the 
DSS model, the ambiguous statement would simply be 
represented by the vector m( p ∨ q ∨ r ∨ . . .)—that is, as 
the disjunction of the readings without bias for any read-
ing. In the DSS–AR model, on the other hand, bias affects 
the initial representation of the ambiguous statement.

To each reading p, q, . . . , a bias parameter fp, fq, . . . is 
associated. They are all nonnegative, and their sum cannot 
exceed 1. An ambiguous situation is represented by a vec-
tor that is like m( p ∨ q ∨ . . .) but moved slightly into the 
direction of each reading for which there is a bias—that is, 
whose bias parameter is larger than 0. Formally, the initial 
vector representation of an ambiguous statement with two 
readings p and q equals

	

X p q p p q

q p q
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As is shown in Figure 1, m( p) 2 m( p ∨ q) is a vector indi-
cating a shift from m( p ∨ q) to m( p). The size of this shift 
is controlled by bias parameter fp. Similarly, the term 
m(q) 2 m( p ∨ q) indicates a shift from m( p ∨ q) to m(q), 
the size of which is controlled by fq. The initial vector X0 
is constructed by adding the shifts toward m( p) and m(q) 
to the vector representing p ∨ q. Equation 8 can easily be 
generalized to cope with cases in which there are more 
than two readings.

Note that we do not attempt to explain how, when, or why 
bias arises. The extent to which certain interpretations are 
a priori preferred is simply taken as given and determines 
part of the model’s parameter setting. Another simplifying 
assumption is that different sources of bias can be treated 
equally by simply summing their individual bias parameters. 
If, for instance, there are two sources of bias for p, which 
individually would lead to bias parameters fp 5 .3 and 
fp 5 .2, the resulting bias parameter is fp 5 .3 1 .2 5 .5.

The model will also be used to compare the processing 
of ambiguous statements with that of unambiguous state-
ments. No adjustment to the model is needed to deal with 
unambiguous cases. If it is simply stated that p is the case 
(i.e., the statement is unambiguous), the initial situation 
vector X0 is, of course, not based on the disjunction p ∨ q, 
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but on p. This means that in Equation 8, p ∨ q is replaced 
by p, so Equation 8 reduces to

X0 5 m( p) 1 fq[m(q) 2 m( p)].

This shows that, if p is stated, bias for q even has an 
effect without any ambiguity. If there is no bias for q, 
fq 5 0, so X0 5 m( p), as in the DSS model.

The attraction process. It follows from the conjunc-
tion rule of Equation 1 that any situation in which event 
p occurs must correspond to a situation space point X 5 
(x1, . . . , x150), with xi  mi( p) for all i. The set of all such 
points forms the region of situation space representing all 
possible situations in which p is the case. Therefore, this 
is how the attractor region for p is defined.

The attraction process is implemented as follows. Let, 
for each attractor region p, Dp 5 (dp,1, . . . , dp,150) be the 
vector pointing from a given point X to the nearest point 
in the p region. This means that dp,i 5 min{0, mi( p) 2 xi}. 
The distance from X to the p region equals the Euclidean 
length ||Dp|| of this vector. The point X lies within the p 
region [i.e., xi  mi( p)for all i] if and only if this distance 
equals 0. If this is the case for any attractor region, the 
ambiguity is resolved, and no region affects X. Otherwise, 
the region’s gravitational force gives X a velocity, denoted 
Vp, in the direction of the p region. As the distance to the p 
region decreases, this velocity increases until it reaches an 
arbitrary maximum of 1 when X is infinitesimally close to 
the p region. The simplest expression for Vp that has such 
properties is

V
D

D D
p

p

p p

=
+( )1

.

That is, vector Dp is divided by its own length to result 
in the unit vector pointing from X toward the p region. 
Next, it is divided by 1 1 ||Dp|| to make velocity depend on 
distance, with a maximum of 1. The velocity of X caused 

by all attractor regions together is simply the sum of the 
velocities caused by the individual regions; that is,

	 Vap 5 Vp 1 Vq 1 Vr 1 . . .	 (9)

is the total velocity resulting from the attraction process 
(as indicated by “ap”).

The DSS–AR model. The attraction process described 
above does not involve context information and world 
knowledge. It is affected only by the attractor regions cor-
responding to the readings and by the initial representation 
of the ambiguity, X0, which depends only on initial prefer-
ences for each of the ambiguity’s readings (i.e., on biases). 
To generally select the correct reading, however, context 
information and world knowledge need to be used.

The DSS model applies world knowledge to a series of 
story statements, resulting in a story interpretation that is 
more coherent than the original story. By adding the DSS 
model to the gravitational attraction process described 
above, sensible disambiguation becomes a side effect of 
the build-up of coherence. This addition is possible be-
cause both the application of world knowledge and the at-
traction process are expressed as the movement of vectors 
through situation space. By adding the velocities from the 
two sources, disambiguation comes to depend on context 
and world knowledge and often results in the most coher-
ent reading. The change in Xt caused by the combination 
of the DSS model and the attraction process is defined by 
the differential equation

	 Vt 5 Vwk,t 1 bVap,t ;	 (10)

that is, the change in vector Xt over processing time equals 
its velocity according to DSS (Vwk,t from Equations 3 and 2) 
plus b times its velocity according to DSS–AR’s attraction 
process (Vap from Equation 9). Parameter b controls the 
strength of the influence of the ambiguity. The process 
halts when, according to Equation 4, the criterion for suf-
ficient processing is reached.

Note that as soon as one of the attractor regions is 
reached, Vap,t 5 0 but Xt will nevertheless continue to be 
updated as long as Vwk,t is large enough. Also, when there 
is no ambiguity, there is no need to choose a reading, so 
there are no attractor regions. This means that Vap,t 5 0 
and Vt 5 Vwk,t, making the DSS–AR model’s dynamics the 
same as those of DSS. Also, be reminded that in absence 
of ambiguity and bias, X0 is the same as in the DSS model. 
That is, if there is neither ambiguity nor bias, the DSS–AR 
model reduces to DSS, showing that the DSS–AR model 
is a true extension of the DSS model and that the results 
of DSS remain valid for DSS–AR.

Interpreting the Model
Relation to experimental data. To determine the ex-

tent to which one of the readings p, q, . . . is chosen over 
the others, belief values t( p|Xt), t(q|Xt), . . . , as defined 
in Equation 6, can be computed at any moment during 
processing. The model’s interpretation of the ambiguity 
is the reading with the largest belief value at the moment 
processing halts. If a context-inconsistent reading ends up 
with the largest belief value, this is regarded as an error in 

µ(q)

X 0

µ(p)

φ
q
[ µ(q) � µ(p v q)]

φ
q
[ µ(p) � µ(p v q)]

µ(p v q)

Figure 1. Construction of the initial vector representation X0 of 
an ambiguous statement with readings p and q. Bias parameters 
are set to fp 5 .2 and fq 5 .3. The three points m( p), m(q), and 
m( p ∨ q) define a plane in situation space. Generally, the origin of 
situation space does not lie in this plane, so neither the origin nor 
the axes are shown here. 
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disambiguation. Error rates according to the model will be 
compared with those from experiments. A more important 
measure for model validation is the time that was needed 
for the process to stabilize. As in the DSS model, process-
ing times serve as the model’s correlate of experimentally 
obtained reading times.

Degree of resolution. To investigate under which con-
ditions ambiguities remain (largely) unresolved, we define 
a measure indicating the extent to which the ambiguity 
was resolved. This degree of resolution is the absolute dif-
ference between the final belief values of the readings:5

	 degree of resolution 5 |t( p|Xt) 2 t(q|Xt)|.	 (11)

Context strength. For interpreting the model’s out-
come, it will be useful to have a measure of the helpfulness 
of context information for resolving the ambiguity. The in-
fluence that context is expected to have on disambiguation 
can be expressed in terms of belief values. Without any con-
text, the belief value of p is the a priori value t( p). Assum-
ing that t is the story time step of the ambiguous statement, 
the influence of the previous or following context situation, 
Xt61, changes the belief value by an amount t( pt|Xt61) 2 
t( p). Of course, the same is true for the belief value of q, 
another reading of the ambiguity. The context’s preference 
for p over q equals the difference between the two context 
influences: [t( pt|Xt61) 2 t( p)] 2 [t(qt|Xt61) 2 t(q)].

If this value is positive, context prefers reading p. If it is 
negative, the context points toward q. The context strength 
is simply the absolute value of the context’s preference. A 
context strength of 0 means the context does not help at all 
to decide on the intended reading of the ambiguity. If, on 
the other hand, context strength is large, information from 
the context makes one of the readings much more likely 
than the other(s).6

Setup of simulations

Model Input
The DSS–AR model, being applied to the microworld 

described earlier in this article, processed items cor-
responding to the ambiguous statement he wins at time 
step t in varying contexts. One example of a context is 
the story situation “B tired ∧¬(J tired)” at t 2 1, which 
results in an item corresponding to the sentence Bob is 
tired and Joe is not, so he wins. Only one situation was 
used as context, so all items consisted of two situations, 
one being the ambiguity and the other its context. Since at 
least two situations are required for the integration process 
to start, the simulations presented here did not involve any 
incremental processing even though the DSS model can 
process incrementally at the level of clauses.

As contexts, all situations were used that satisfied the 
following three constraints: (1) The situation takes place 
at time step t 2 1 or t 1 1; that is, it occurs directly be-
fore or directly after the “winning” event; (2) the resulting 
context strength is at least .02; (3) the situation is either a 
(negation of a) basic event or a conjunction of (negation 
of) two basic events.7

This made a total of 368 different contexts. The average 
context strength was .041, with a maximum of .088. Each 

processed item consisted of the context situation and the 
situation corresponding to the ambiguous statement he 
wins. Since all items were assumed to be embedded in a 
text about Bob and Joe, the readings of the ambiguity are 
Bob wins and Joe wins. Unambiguous items were con-
structed from the ambiguous ones by replacing the ambi-
guity by the context-consistent reading.

Parameter Setting
There are four adjustable parameters in the model: 

depth-of-processing q (of Equation 4), the strength of the 
ambiguity’s influence b (Equation 10), and the biases fp 
and fq (Equation 8) for the two readings p and q of the 
ambiguity. No sophisticated search through parameter 
space was applied to find a suitable parameter setting.

The default value of q was set to .3, which is also its de-
fault in the DSS model. Preliminary simulations revealed 
that varying the level of b between .1 and .9 had no impor-
tant effect on model outcomes, so it was fixed at b 5 .5. 
No attempt was made to improve the fit between model 
outcomes and empirical data by adjusting b.

To find a proper value for the bias parameters, differ-
ent levels for the total amount of bias f 5 fp 1 fq were 
applied first. These levels of f 5 .2, .3, .4, .5, .6, and .8 
did not result in qualitative differences in model process-
ing times. After visually comparing the resulting model 
processing times to reaction time data from Stewart et al. 
(2000, Experiment 1, Table 1, NP1 verb type condition), a 
value of f 5 .5 was selected. Next, total bias was divided 
into the two biases fp and fq, as explained below.

Simulated Conditions
As was mentioned in the description of the DSS–AR 

model, the bias parameters can be composed of contribu-
tions from several sources of bias. Here, two such sources 
are considered: the first-mention effect and implicit cau-
sality. These two sources can bias either toward the same 
reading or toward different readings. In the first case, im-
plicit causality biases toward the reading that has the first-
mentioned entity as the anaphor’s referent, so the processed 
item can be viewed as containing an NP1 verb. If, on the 
other hand, implicit causality biases toward the reading 
that has the second-mentioned entity as the referent, the 
item can be interpreted as containing an NP2 verb.

Since there exist verbs that result in an NP2 bias, the 
effect of first mention must be somewhat weaker than 
implicit causality. In the model’s simulations, the first-
mention effect contributes a lesser amount to the bias pa-
rameter than does implicit causality: Without any fitting 
to experimental data, these amounts were chosen to be .2 
and .3, respectively. If choosing the first-mentioned en-
tity as referent would result in reading p, this means that 
fp 5 .2 1 .3 5 .5 and fq 5 0 in the case of an NP1 verb, 
whereas an NP2 verb results in fp 5 .2 and fq 5 .3.

For obtaining model predictions of reading times and 
error rates, each of the 368 items was processed four 
times: There was either an NP1 verb or an NP2 verb, and 
context information was either congruent or incongru-
ent with implicit causality. These different conditions are 
simulated by varying bias. Let p denote the correct (i.e., 
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context-consistent) reading in the current item and q be 
the other, incorrect reading. As was mentioned above, an 
NP1 verb leads to bias for one reading only. In case of a 
congruency, therefore, only the correct reading p is bi-
ased, so fp 5 .5 and fq 5 0. In case of incongruency, 
fp 5 0 and fq 5 .5. To simulate the occurrence of an NP2 
verb, bias is split between the readings; that is, fp 5 .3 and 
fq 5 .2 in congruent cases, whereas fp 5 .2 and fq 5 .3 
in incongruent cases.

Results

Time Course of Ambiguity Resolution
The left panel of Figure 2 shows how the belief values 

of “B wins” and of “J wins” develop over processing time, 
expressed in arbitrary units, as the item corresponding to 
the sentence Bob is tired and Joe is not, so he wins is dis-
ambiguated, with only “B wins” receiving bias, reflecting 
that Bob is mentioned first. Note that time index 0 corre-
sponds to the moment that integration of the two clauses 
begins, so model processing time is not the full time over 
which the sentence is read. Clearly, the biased reading is 
preferred initially, but the application of context informa-
tion eventually results in the most coherent reading. As 
the belief value of “Joe wins” increases, the belief value 
of “Bob wins” decreases with the same amount, because 
the two events exclude each other: Any evidence for Joe’s 
winning must also be evidence against Bob’s winning.

The right panel of Figure 2 shows the development of 
belief values when the context is “J tired ∧¬(B tired)” at 
t 2 1 (Joe is tired and Bob is not) with only “J wins” 
receiving bias.8 Again, the biased reading is preferred at 
first, but this is overruled by the context’s preferring the 
other reading.

These results are in line with the experimental findings 
of Arnold et al. (2000), Gordon and Scearce (1995), and 
Vonk (1985) discussed in the section on empirical find-
ings. They are not surprising, however, since bias affects 
the initial vector representation of the statement and con-
text begins to have an effect when this vector is adjusted 

by information present in the other statement. It is, how-
ever, important to show that the parameter setting allows 
for a noticeable effect of bias, and that the effect of context 
is large enough to overcome this bias. Note that this same 
parameter setting was used in all other simulations as well, 
unless the effect of varying parameter values was the issue 
under investigation.

Reading Times
We will first show how congruency and ambiguity af-

fect model processing times. Next, it will be shown how 
the size of the congruency effect depends on processing 
depth and verb type. Finally, we will present the model’s 
predictions regarding the effect of context strength on pro-
cessing time for ambiguous items, with and without bias.

The effects of congruency and ambiguity. As was 
discussed in the section on empirical findings, congruent 
sentences are read more quickly than incongruent ones. 
Stewart et al. (2000, Experiments 1, 2, and 3) found that 
this congruency effect on reading times occurred not only 
in referentially ambiguous, pronoun-containing sentences, 
but also in sentences that were unambiguous because the 
pronoun was replaced by the name of the intended ref-
erent. There was no significant interaction between the 
congruency and ambiguity variables (i.e., whether or not 
the sentence contained a pronoun).

In two of these experiments, sentence stimuli were pre-
sented in two fragments, the first containing the words up 
to and including the anaphor, and the second containing the 
rest of the sentence. Integration of the two clauses could 
not begin until at least the verb of the second clause was 
read. Therefore, the time needed for integration (includ-
ing disambiguation) can show up in the second-fragment 
reading times only. Since the model simulates the disam-
biguation process and not the word-by-word reading pro-
cess, model processing times should be compared with 
these second-fragment reading times.9

As Figure 3 shows, the model predicts processing 
times structurally similar to the reading times found by 
Stewart et al. (2000). Incongruent items were processed 
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Figure 2. Belief values of Bob wins and of Joe wins during processing of items corresponding to Bob is 
tired and Joe is not, so he wins (left) and Joe is tired and Bob is not, so he wins (right), with bias pointing 
toward the reading in which the entity stated first in the sentence is the one that wins.
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more slowly than congruent ones [F(1,2940) 5 20.1, p , 
1025], and ambiguous items were processed more slowly 
than corresponding unambiguous items [F(1,2940) 5 
31.1, p , 1027]. Also, there was no significant interac-
tion between the congruency and ambiguity variables 
[F(1,2940) 5 1.1, p . .29].

The effect of processing depth. Another finding by 
Stewart et al. (2000) was that changing the subjects’ read-
ing task to one that did not require deep processing re-
sulted in a smaller congruency effect. The model shows 
the same result (Figure 4). The congruency effect (defined 
as processing times on incongruent items minus process-
ing times on congruent items) is smaller for values of the 
depth-of-processing parameter lower than q 5 .3, which 
was used in the previous simulations. This is true for both 
the ambiguous condition [t(2942) 5 9.27, p , 10218] and 
the unambiguous condition [t(2942) 5 14.9, p , 10247]. 

The model predicts an interaction between processing 
depth and anaphor type: The effect of q is larger in the 
unambiguous condition than in the ambiguous condition 
[t(5884) 5 5.93, p , 1028]. Stewart et al. did not report 
whether the same interaction was significant in their data. 
In the Discussion section, we will present an explanation 
for this interaction, accounting for both the experimental 
and the simulation data.

The effect of verb type. All the results for the fig-
ures above were averaged over the two implicit causal-
ity conditions (NP1 verbs and NP2 verbs). However, in 
all four of their experiments, Stewart et al. (2000) found 
that the congruency effect in the ambiguous condition 
depended strongly on verb type: The effect was much 
smaller (sometimes even absent) for NP2 verbs, although 
not always significantly so. For instance, in their third ex-
periment, the congruency effect was 556 msec in the NP1 
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verb condition but only 11 msec in the NP2 verb condition 
(Table 4, Fragment 2 reading times in the “deep question 
type” condition). The same effect was found by Garnham 
et al. (1992, Experiments 4 and 5).10 The model predicts 
such a differential effect: The predicted congruency effect 
on processing times was .398 for NP1 verbs (i.e., the two 
sources of bias agree) and only .098 for NP2 verbs (i.e., 
the two sources of bias disagree). The difference is statisti-
cally significant [t(734) 5 9.22, p , 10218].

The effect of context strength. As for the effect of 
context strength on processing times, the model makes an 
interesting prediction. As might be expected, processing is 
faster when the context is strongly informative than when it 
is moderately informative (Figure 5, left panel). However, 
the absence of context information results in very fast pro-
cessing.11 Interestingly, Figure 5 also shows that removing 
the bias preference by setting both bias parameters to .25 
does not affect processing times. This suggests that fast 
processing of items with very low context strengths can 
also result from not choosing a reading at all.

The right panel of Figure 5 shows the degree of am-
biguity resolution (Equation 11) as a function of context 
strength, both with and without bias. In general, stronger 
contexts lead to higher degrees of resolution. The presence 
of bias does not affect the degree of resolution with high 
or intermediate levels of context strength. When context 
strength is very low, however, disambiguation takes place 
only if one of the entities receives more bias than the other. 
Otherwise, no reading is selected. However, as can be seen 
from the leftmost points of the left-panel graph in Figure 5, 
the model takes as little time deciding that trying to resolve 
the ambiguity is futile because there is no bias as it takes 
selecting a reading on the basis of bias only. An explana-
tion for this will be presented in the Discussion section.

Error Rates
Error rate data were obtained from the same simula-

tions as those that produced the processing time data pre-
sented above. Below, we will show how predicted error 

percentages depend on congruency and context strength 
and how verb type affects both error rates and the size of 
the congruency effect on error rates.

The effects of congruency and context strength. 
As was discussed in the section on empirical findings, 
Leonard et al. (1997a) found that the percentage of disam-
biguation errors depends on congruency and context in-
formativeness and that those two factors interact. Figure 6 
shows that although the model’s error rate is too large when 
context is weak, it does predict these three effects. First, 
incongruent items result in more errors than do congru-
ent ones [c2(1) 5 100.5, p , 10216; n 5 1,472]. Second, 
after dividing the contexts into a weak and a strong class 
along the median of context strength (.0378), weak con-
texts result in more errors than do strong contexts. This is 
the case for both congruent [c2(1) 5 5.05, p , .025; n 5 
736] and incongruent [c2(1) 5 30.8, p , 1027; n 5 736] 
items. Third, the effect of congruency is larger in weak 
contexts than in strong contexts [c2(1) 5 19.5, p , .0001; 
n 5 736].

The effect of verb type. Unlike Leonard et al. (1997a), 
Stewart et al. (2000) presented data for NP1 verbs and 
NP2 verbs separately. In their ambiguous condition, they 
found a main effect of verb type on error rates. In general, 
more errors were made in the NP1-verb condition than 
in the NP2-verb condition. Averaged over the results for 
Experiments 1, 2, and 4,12 NP1 verbs resulted in an error 
rate of 23.2%, whereas NP2 verbs resulted in 11.4% er-
rors. The model makes fewer errors but predicts the same 
effect of verb bias: 15.3% errors in the NP1 verb condi-
tion and 3.1% errors in the NP2 verb condition [c2(1) 5 
64.9, p , 10215; n 5 1,472]. In the model, this effect is 
not present with congruent items [c2(1) 5 .33, p . .5; 
n 5 736]. Likewise, the Stewart et al. data show a smaller 
effect of verb type in the congruent condition than in the 
incongruent condition.

Stewart et al. (2000) also found that the congruency 
effect on error rates was larger for NP1 verbs than for 
NP2 verbs, as it was for reading times. Averaged over the 
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results for Experiments 1, 2, and 4, the congruency effect 
was 13.1% in the NP1 verb condition but only 3.9% in 
the NP2 verb condition. The model predicts the same ef-
fect: The congruency effect on error rates is 27.9% in the 
NP1 verb condition and 2.5% in the NP2 verb condition 
[c2(1) 5 92.1, p , 10216; n 5 736].

Discussion

The DSS–AR model successfully simulates the influ-
ence of context information and bias on the resolution 
of referential ambiguity. In accordance with the assump-
tion that the resolution of referential ambiguities results 
from a general, coherence-increasing, knowledge-based 
inference process, the model provides a unified account 
of inference and disambiguation by making two simple 
additions to the DSS model of knowledge-based infer-
ence. First, bias was assumed to have an effect only on the 
initial representation of a referentially ambiguous state-
ment. Second, the selection of a reading of the ambiguity 
was driven by attractor regions resulting from introducing 
centers of gravity into situation space.

Explanations of Empirical Data
Reading times. The model accounts for a large amount 

of reading time data. In line with Stewart et al.’s (2000) 
experimental findings, referentially ambiguous sentences 
are processed more slowly than the corresponding unam-
biguous sentences, and both these processing times are 
affected by congruency between bias and context. It is 
clear why there should be a congruency effect in both the 
unambiguous and the ambiguous conditions. Whether an 
unambiguous name or an ambiguous pronoun is used, bias 
leads to an expectation that takes some time to neutralize 
when it turns out to be inconsistent with new information. 
In Stewart et al.’s experiments, items containing an am-
biguous pronoun were turned into unambiguous items by 
replacing the pronoun with the name that resulted in the 
most coherent sentence. This means that any bias for the 

other entity (i.e., any incongruency) decreased coherence. 
Similarly, in the model’s input, ambiguous items are turned 
into unambiguous items by stating that either “Bob wins” 
or “Joe wins,” whatever is consistent with the context. Any 
bias for the alternative reading decreases coherence. Since 
the DSS model is slower to process less coherent items 
(Frank et al., 2003), DSS–AR shows a congruency effect 
on unambiguous items.

It is less obvious why shallower processing decreases 
the congruency effect in the model. Considering that the 
depth-of-processing parameter q affects only the point at 
which the integration process halts and that this process is 
not informed about congruency, q might not be expected 
to affect the size of the congruency effect. Part of the ef-
fect of q is caused by a general decrease in processing 
time for shallower processing, but especially in the un-
ambiguous condition, this is not enough to explain all of 
the effect. 

When processing is shallow, an item is easily consid-
ered sufficiently processed. In other words, there is not 
much of a need to strongly integrate the two clauses of 
the sentence, making context information less relevant. 
Since congruency concerns the relation between bias and 
context information, this means that congruency itself is 
less relevant when processing is shallow than when it is 
deep. In terms of the model’s dynamics, incongruency 
usually leads to slow processing because of the initial bias 
that needs to be overcome. If q is small enough, however, 
the process can halt before it has stabilized, leaving bias 
untouched and doing away with much of the effect of 
congruency. A similar explanation may account for the 
experimental findings.

Stewart et al.’s (2000) data also seemed to show a three-
way interaction among the ambiguity, congruency, and pro-
cessing depth factors (no test of this effect was reported). 
As can be seen from Figure 4, the congruency effect is more 
sensitive to processing depth in the unambiguous condition 
than in the ambiguous condition. This interaction was also 
visible in the processing times predicted by the model.
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How to account for this effect? Presumably, reading an 
ambiguous pronoun triggers an attempt to apply context in-
formation to resolve the pronoun, regardless of processing 
depth. This means that the extent to which an ambiguous 
clause and its context become integrated will not depend 
strongly on processing depth. Integration of two unam-
biguous clauses, on the other hand, may occur only when 
processing is sufficiently deep, because there is nothing to 
resolve. When processing is shallow, unambiguous state-
ments are simply taken for granted. Only when process-
ing is deep does the reader integrate the clauses to check 
whether the statement is consistent with context. Since 
integration of the clauses is required for a congruency ef-
fect to occur, the congruency effect is more sensitive to 
processing depth in the unambiguous condition than in the 
ambiguous condition. The same holds in the model: Given 
an ambiguity, the attractor regions will immediately affect 
the vector representing the ambiguity, keeping its velocity 
above the threshold 1/q even if this threshold is high (i.e., 
processing is shallow). Without an ambiguity, there are no 
attractor regions, and only the DSS model’s integration 
process takes place. As 1/q is increased, there will be more 
contexts in which this process lacks the impact to keep the 
vector’s velocity above the threshold.

The DSS–AR model also explains the interaction be-
tween congruency and verb type found by Stewart et al. 
(2000) and Garnham et al. (1992). Stewart and Gosselin 
(2000) suggested that this interaction may be caused by 
the first-mention effect. An NP1 verb biases toward the 
subject, which is already biased because it is mentioned 
first. This makes the preference for the subject even stron-
ger and results in a larger effect of congruency. An NP2 
verb, on the other hand, biases toward the object, counter-
acting the first-mention effect. As a result, it does not mat-
ter much whether or not context information and implicit 
cause are congruent. Indeed, the model does assume that 
both first-mention and implicit causality affect bias and, 
thereby, explains why the congruency effect is larger for 
NP1 verbs than for NP2 verbs.

Error rates. The model predicted an effect of con-
gruency on the percentage of errors in disambiguation, 
as well as a decrease in error rates as context strength 
increases (see Figure 6). Both these effects are in agree-
ment with the data in Leonard et al. (1997a). When bias 
points toward the reading that is incorrect according to 
context information, there will be more cases in which this 
incorrect reading is chosen than when bias and context 
are congruent. However, strong contexts can overrule an 
incongruent bias more often than weaker contexts can, 
resulting in fewer errors.

Also, implementing both first-mention and implicit 
causality as a form of bias accounts for the main effect 
of verb type on error rates. Stewart et al. (2000) found 
that more errors are made when sentences with an NP1 
verb are read than when sentences with an NP2 verb are 
read. In the model, the difference between the readings’ 
bias parameters is much larger in the NP1 verb con-
dition (|fp 2 fq| 5 .5) than in the NP2 verb condition 
(|fp 2 fq| 5 .1).This means that there will be more items 
in which context is too weak to overcome an incongruent, 

bias-based interpretation in the NP1 verb condition than 
in the NP2 verb condition, resulting in the difference in 
error rates. This explanation is supported by the finding 
that the model’s verb type effect is restricted to the incon-
gruent items.

The DSS–AR model correctly predicts the interaction 
between congruency and verb type. Since the first-mention 
bias is combined with an NP1 verb bias but canceled out 
by an NP2 verb bias, the congruency effect on error rates 
is larger for NP1 verbs than for NP2 verbs, as was the case 
for processing times.

Timing of the Implicit Causality Effect
The model’s reading time predictions are of special 

importance because of the ongoing debate about the tim-
ing of implicit causality. Be reminded from the section on 
empirical findings that Stewart et al. (2000) claimed that 
the integration account of implicit causality, unlike the 
focusing account, predicts that the congruency effect will 
occur with unambiguous name anaphors and will decrease 
with shallower processing. Indeed, they did find exactly 
these two effects, so they concluded that the focusing ac-
count is incorrect.

In the model, implicit causality is incorporated by mak-
ing one of the readings of the ambiguity more preferred 
before any integration of clauses takes place. During the 
model’s process, however, bias does not play a role any 
longer: The model is sensitive to biases only through their 
effect on the initial interpretation of the ambiguity. That 
is, the model implements the focusing account of implicit 
causality. Nevertheless, it predicts a congruency effect in 
the unambiguous condition and a smaller effect as depth-
of-processing parameter q is decreased. This clearly shows 
that Stewart et al.’s (2000) conclusion was not warranted. 
Of course, the model does not claim that implicit causal-
ity must have an immediate effect. It shows only that such 
an account is consistent with empirical findings (see also 
Koornneef & Van Berkum, 2006).

Novel Predictions: Leaving Ambiguity 
Unresolved

The DSS–AR model makes an interesting and experi-
mentally testable prediction regarding the effect of con-
text strength on processing times: Reading times will be 
longer for intermediate levels of context informativeness 
and shorter for both strongly informative contexts and un-
informative contexts, whether biasing information is avail-
able or not. If there is bias, intermediate context strengths 
cause interference between bias and context information 
for incongruent items, resulting in slow processing. When 
context is either very strong or nearly absent, on the other 
hand, the ambiguity can be resolved quickly because either 
context or bias dominates the process. If there is neither 
bias nor context information, the situation vector represent-
ing the ambiguous statement does not move toward either 
of the attractor regions. The vector’s rate of change will 
therefore fall below the threshold of 1/q quickly, resulting 
in short processing times but unresolved ambiguities.

We are not aware of any experimental findings regard-
ing the effect of context informativeness on reading times 
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for referentially ambiguous sentences, but Kahn and 
Till (1991, Table 3, “young adult” condition) do report 
some data that seem to confirm the model’s predictions. 
They had subjects read short texts in which an ambigu-
ous pronoun appeared. Context informativeness was not 
manipulated directly, but their three context expectedness 
conditions can be interpreted as varying in informative-
ness as well. By varying the sentences preceding the am-
biguous sentence, the context either strongly implied (ex-
pected context), weakly implied (neutral context), or did 
not imply (unexpected context) one of the readings of the 
ambiguity. It was found that reading times for the ambigu-
ous sentence were longer in the neutral context condition 
(4.81 sec) than in the expected context and unexpected 
context conditions (4.03 and 4.48 sec, respectively). How-
ever, it was not stated whether the difference between the 
neutral and the unexpected conditions was significant.

In a study on syntactic ambiguity, van Gompel, Picker-
ing, and Traxler (2001) found short reading times for sen-
tences that could not be disambiguated on the basis of bias 
or world knowledge. They claimed that, in these cases, a 
reading is quickly selected at random and explicitly rejected 
the hypothesis that such ambiguities remain unresolved, 
because such a model “would also need a mechanism that 
determines when a sentence is sufficiently ambiguous that 
processing be suspended” (p. 251). The DSS–AR model 
shows that, at least for referential ambiguity, such an ad-
ditional mechanism is not required at all. Instead, the abil-
ity to leave “unresolvable” ambiguities unresolved is an 
emergent property of the disambiguation process.

Limitations and Challenges
In spite of these successes, the model also suffers from 

some limitations that should not be overlooked. Its focus 
on world knowledge and on nonlinguistic representations 
entails two main drawbacks. First, a model dealing with 
world knowledge is necessarily constricted to a micro-
world if it is to avoid including knowledge subjectively 
and only on an ad hoc basis. The problem with any micro-
world is, of course, its small size. It is still an open ques-
tion to what extent the model can be scaled up to handle 
more realistic amounts of knowledge. Since world knowl-
edge is immediately available to the model in the form of 
the situations’ vector representations, it does not need to 
search through a knowledge base. Therefore, there seems 
to be no a priori reason to expect the model to break down 
when much more knowledge is included. However, imple-
menting this knowledge in the vector representations may 
raise problems because of technical limitations. If training 
very large SOMs turns out to be infeasible, some other 
implementation scheme may be used. For instance, a so-
called competitive network is easier to train than a SOM 
and yields vectors whose relevant properties are similar 
(Frank, 2006).

The model’s second limitation is its lack of linguistic 
input. The “sentences” it processes are represented as 
events in the microworld, while the text from which an 
event originates is ignored. As a result, it was necessary to 
implement all sources of bias in a common way—namely, 
as a bias parameter f. In spite of this simplification, how-

ever, a large amount of data was accounted for. This ge-
neric scheme makes it easy to include sources of bias in 
addition to the first-mention and implicit causality effects, 
possibly resulting in further predictions of experimental 
data. For instance, Järvikivi, van Gompel, Hyönä, and 
Bertram (2005) found that for the resolution of ambigu-
ous pronouns in Finnish, there exists a biasing effect of 
grammatical role, in addition to (and not interacting with) 
the first-mention effect.13 Grammatical role could directly 
be incorporated as another source of bias in the DSS–AR 
model.

Although the model’s nonlinguistic input suffices for 
the phenomena it attempts to explain, the ability to process 
actual texts would greatly improve its explanatory value. 
For instance, such a model might be able to simulate how 
textual factors lead to bias. Recent results by Frank and 
Haselager (2006) show that recurrent neural networks can 
transform sentences describing microworld situations into 
the vector representations of these situations. Although 
these networks do not deal with additional information in 
the form of linguistic cues, they form a first step toward 
real text input for the DSS and DSS–AR models.
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Notes

1. According to Kehler (2002), there are three types of coherence 
relations: causal, contiguity, and resemblance relations. Only the first 
two involve world knowledge, whereas resemblance requires linguistic 
knowledge. Therefore, only causal and contiguity relations are handled 
by the DSS model.

2. The only difference from the original microworld is that the second 
character used to be called Jilly.

3. To be exact, Ei,t 5 s(Xt21W·i 1 Wi· X ′t11), where W·i is the ith col-
umn of W, Wi· is its ith row, the column vector X ′t11 is the transpose of 
the row vector Xt11, and s(x) 5 (1 2 e2x)21 2 1/x is a sigmoidal func-
tion [with s(0) 5 ½].

4. In DSS–AR, x0
i,t can be different from xi,t

max.
5. A similar measure can be defined for ambiguities with more than 

two readings—for instance, by considering only the two readings with 
the largest belief values.

6. If there are more than two readings, only the difference between the 
two readings for which context influence is largest could be considered.

7. Conjunctions of a basic event and its negation were excluded. Con-
junctions that violate microworld constraints [e.g., soccer ∧¬(B outside)] 
were not excluded in advance, but almost all of them resulted in context 
strengths below .02, excluding them in practice.

8. As compared with the left panel, the right panel shows a larger ef-
fect of bias and a smaller effect of context, resulting in partial ambiguity 
resolution. This is partly caused by an asymmetry in microworld knowl-
edge: A priori, Joe is considered slightly more likely to win than Bob.

9. For the data shown here, total sentence reading times were not qual-
itatively different from second-fragment reading times.

10. In their first experiment, Garnham et al. (1992) found an unex-
plained larger congruency effect for NP2 verbs than for NP1 verbs.

11. Note that these simulations, unlike the others, include contexts 
resulting in context strengths lower than .02.

12. Stewart et al. (2000) did not present error rates for Experiment 3. 
Also, tests of the statistical significance of verb type effects were not 
reported.

13. Confounding between subject and first-mentioned entity makes it 
difficult to perform such an experiment in English.

(Manuscript received March 30, 2006; 
revision accepted for publication September 18, 2006.)
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