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A principal component analysis has been applied on equilibrium simu-
lations of a b-heptapeptide that shows reversible folding in a methanol
solution. The analysis shows that the con®gurational space contains only
three dense sub-states. These states of relatively low free energy corre-
spond to the ``native'' left-handed helix, a partly helical intermediate, and
a hairpin-like structure. The collection of unfolded conformations form a
relatively diffuse cloud with little substructure. Internal hydrogen-bond-
ing energies were found to correlate well with the degree of folding. The
native helical structure folds from the N terminus; the transition from the
major folding intermediate to the native helical structure involves the for-
mation of the two most C-terminal backbone hydrogen bonds. A four-
state Markov model was found to describe transition frequencies between
the conformational states within error limits, indicating that memory-
effects are negligible beyond the nanosecond time-scale. The dominant
native state ¯uctuations were found to be very similar to unfolding
motions, suggesting that unfolding pathways can be inferred from ¯uctu-
ations in the native state. The low-dimensional essential subspace,
describing 69 % of the collective atomic ¯uctuations, was found to con-
verge at time-scales of the order of one nanosecond at all temperatures
investigated, whereas folding/unfolding takes place at signi®cantly
longer time-scales, even above the melting temperature.
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Introduction

Recent computational studies have shown that
the problem of peptide (and protein) folding is
slowly becoming tractable by atomic-level molecu-
lar dynamics (MD) simulations using physically
realistic models of these (bio)molecules in explicit
solvent (Daggett, 2000; Nardiu et al., 2000; Bonvin
& van Gunsteren, 2000; Chipot et al., 1999; Pande
& Rokhsar, 1999; Daura et al., 1998; Duan &
Kollman, 1998). In the case of some small oligopep-
tides the simulation times are long enough for
reversible folding to be observed and, thus, for a
ing author:

lar dynamics; PCA,
, hydrogen bond
tion.
thermodynamic equilibrium between the folded
and unfolded states to be established. One of the
most extensively studied cases so far has been the
reversible folding of a non-natural seven residue
b-peptide (composed of b-amino acid residues)
which folds into a left-handed 31 helix in methanol
(Daura et al., 1998). MD simulations have been per-
formed at four different temperatures ranging from
298-360 K, and the resulting trajectories, spanning
up to 200 ns, correspond well with the available
experimental NMR and circular dichroism data
(Daura et al., 1997, 1999a,b; Seebach et al., 2000).

These simulations thus provide a unique oppor-
tunity to study peptide folding at the atomic level,
and can be considered a model system for the
study of the folding of larger polypeptides. The
folding/unfolding simulations have been charac-
terized in detail from a structural perspective. In
particular, the folding pathways of this b-peptide
# 2001 Academic Press



300 Essential Dynamics of Reversible Peptide Folding
have been analyzed, the relative free energies of
different conformational sub-states have been esti-
mated, and the correlation of several geometrical
properties to the degree of folding of the peptide
has been investigated. One of the surprising results
was that the unfolded state as well as the folding
process involve a relatively small number of con-
formational states (Daura et al., 1998, 1999b).

Extending this analysis, we have investigated in
detail the structural and the dynamic properties of
the transitions between the different folding (sub)-
states. For this purpose, a principal component
analysis (PCA) was performed, which yields the
main collective ¯uctuations observed in a cluster of
structures. Applied to the peptide folding simu-
lations, it shows how many collective degrees of
freedom are necessary to adequately approximate
the folding dynamics, depending on the complex-
ity and diversity of the folding transitions.

For a coarse-grained description of the peptide
dynamics to be successful, a small subset of rel-
evant collective degrees of freedom must exist that
allow a suf®ciently accurate description of the fold-
ing motions. In addition, the remaining (and neg-
lected) degrees of freedom must be negligible in
terms of both structure and dynamics. In particu-
lar, their in¯uence on the essential degrees of free-
dom, possibly showing up as memory effects,
should be small. With the relatively long simu-
lations available, these two main prerequisites for
the application of such dimension-reduced models
for the description of long-time dynamics of
macromolecules can now be tested.

Sampling must be dominated by a small
number of collective modes

If indeed the majority of the collective ¯uctu-
ations is found to take place along a small number
of collective degrees of freedom, the simulations of
the folding/unfolding equilibrium of this peptide
with a length of 200 ns allow an investigation of
the speed of convergence of these coordinates. The
question of whether a principal component anal-
ysis is suitable to investigate protein dynamics
from simulations in the time-scale of hundreds of
picoseconds to nanoseconds has been under debate
for some time. Some authors have argued that the
low-dimensional ``essential'' subspace in which the
majority of the collective ¯uctuations are often
found to take place would not be converged at
such short time-scales (Balsera et al., 1996; Clarage
et al., 1995), whereas others found that a useful
approximation of the essential subspace can
usually be obtained after relatively short simu-
lation times (De Groot et al., 1996b; Amadei et al.,
1999a). Moreover, applications to native-state
dynamics of proteins have shown that dimension-
reduced models derived from PCA can be useful
in the interpretation of simulated protein dynamics
(GarcõÂa, 1992; Amadei et al., 1993; van Aalten et al.,
1995a,b; Hayward et al., 1995) and of dynamical
properties derived from clusters of experimental
structures (de Groot et al., 1998; van Aalten et al.,
1997; Abseher et al., 1998). A PCA of simulations of
the unfolding of a b-hairpin has provided an initial
indication that dimension-reduced models are also
useful in the description of the (un)folding
dynamics of peptides (Roccatano et al., 1999). If the
full dynamics of a system can be approximated
successfully by relatively few global degrees of
freedom, this can be exploited in techniques that
stimulate enhanced sampling of these coordinates
(Amadei et al., 1996; de Groot et al., 1996a;
GrubmuÈ ller, 1995; Abseher & Nilges, 2000). The
long simulations available for this peptide provide
a good opportunity to study the convergence and
stability of this subspace, and its dependence on
the starting conformation in short pieces of trajec-
tory that suffer from incomplete sampling.

Memory effects must be small on the time-
scale of the dynamical process of interest

If long-time memory effects play a major role in
large-scale conformational transitions, then short-
time simulations will not provide insight into long-
time behavior of the same system. If, however,
such memory effects are small, then coarse-grained
descriptions of the folding dynamics derived from
short simulations may be valid. To decide if this is
the case for the peptide at hand, two independent
tests for memory effects in conformational tran-
sitions are presented. The ®rst involves a compari-
son with a model that assumes a Markov process
for transitions between stable structures based on a
clustering in the con®gurational space, the second
is more general, in that it is independent of any
particular choice of clustering.

If the above two conditions are ful®lled for the
simulations of the b-peptide, then the distribution
of conformations in the essential subspace should
structurally and dynamically re¯ect and character-
ise concepts like folding intermediates and folding
pathways. Moreover, given an acceptable level of
convergence, the free-energy landscape can be
mapped directly onto the principal coordinates, as
the relative con®gurational free energies are related
directly to the density of states in this subspace.
Such an analysis would then indicate confor-
mational sub-states along the ``natural'' folding
coordinates, with barriers of varying height in
between. Furthermore, the entropic contribution
could be estimated from the difference in behavior
of the simulated system at different temperatures.

Geometrical properties that correlate with the
degree of folding

An interesting aspect of folding in general, and
for native structure prediction in particular, is the
search for geometrical properties that correlate
with the degree of folding. Daura et al. (1998) have
shown that all of the geometric or energetic
properties investigated correlate poorly with the
root-mean-square deviation (RMSD) from the
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experimental structure of the b-peptide. Among
the properties investigated, the number of 31 back-
bone hydrogen bonds was found to be most infor-
mative, in the sense that structures with ®ve such
hydrogen bonds all had a native conformation.
However, structures were found with zero or only
one such hydrogen bond that structurally resemble
the native conformation. Therefore, the number of
native backbone hydrogen bonds alone was not
diagnostic of the folded state. Here, we investigate
if a knowledge-based hydrogen bond network
potential improves the accuracy of identifying the
Figure 1. Projections of the 340 K
simulation onto two planes
spanned by a linear combination of
the three eigenvectors with largest
eigenvalues of an all-atom PCA,
coloured according to the radius of
gyration of the peptide (blue for
small gyration radius, red for
large). Despite the clear correlation
between the projection onto these
coordinates and the radius of gyra-
tion, there are many, structurally
diverse, conformations with rela-
tively small gyration radii.
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native conformation among a cluster of folded,
partially folded and unfolded conformations.

Results

Structures

Figure 1 shows two different projections of the
simulation at 340 K onto two suitably chosen
planes de®ned by linear combinations of the three
eigenvectors with largest eigenvalues from an all-
atom PCA. Thus, each ``ball'' in the picture rep-
resents one snapshot from the simulation. The col-
our denotes the radius of gyration of each
snapshot. The extreme values of the gyration
radius are found near the borders of the space
spanned by these degrees of freedom. On one side
are the completely stretched conformations (in
red), sampling a relatively small fraction of con-
®guration space, whereas on the other side there
are many structurally diverse conformations with
similar, low gyration radii (in blue). Overall, the
sampled subspace in these degrees of freedom
resembles a half-sphere, with the top correspond-
ing to the most stretched conformations, and the
¯at bottom corresponding to all compact confor-
mations, of which the native left-handed helix
forms a small, dense fraction.

Figure 2 shows the projection of the 340 K simu-
lation onto the plane de®ned by the two principal
eigenvectors of the covariance matrix constructed
from the central backbone coordinates. Here, the
projections are coloured according to the con®g-
urational density, calculated from nearest-neighbor
distances as described in Materials and Methods.
The largest, most densely populated sub-cluster (I)
corresponds to the native left-handed helix
(Figure 3,I), with all helical backbone hydrogen
bonds intact between residues i and i � 2. The clo-
sely connected, but distinct dense sub-cluster (II)
corresponds to a conformation similar to the native
structure, but lacking the two C-terminal backbone
hydrogen bonds (Figure 3,II). The third-most dense
sub-cluster (III) corresponds to a hairpin-like struc-
ture (Figure 3,III) in which the C terminus folds
back onto itself, forming hydrogen bonds between
the backbone of residues 2 and 6 as well as
between 3 and 6. The N terminus in this structure
is folded back onto the turn, and the terminal
amino group forms hydrogen bonds with residues
2, 4 and 5. The remaining, relatively diffuse, cloud
of structures consists of unfolded and partially
folded conformations. The three dense clusters are
also identi®ed by k-medoid clustering applied to
the 60 coordinates of the central backbone (blue,
cyan, yellow, respectively, in Figure 4(a); the
remaining conformations are depicted in red). An
almost identical de®nition of the clusters is
obtained when the clustering is limited to the
three-dimensional subspace spanned by the three
Figure 2. Projection of the 340 K
simulation onto the plane spanned
by the two principal eigenvectors
of a PCA performed over the cen-
tral backbone coordinates, coloured
to con®gurational density. Indi-
cated are the three regions of high-
est density. The central structures
of each of these three densest clus-
ters (indicated by yellow circles)
are depicted in Figure 3. Apart
from these three dense sub-clusters,
the cloud of (unfolded) confor-
mations is relatively unstructured.



Figure 3. Structures of central cluster members of the
three densest clusters (see Figure 2). The structures are
coloured blue to red from the N to the C terminus. Indi-
cated by broken bars are internal hydrogen bonds. This
Figure was made with Bobscript (Esnouf, 1997; Kraulis,
1991) and Raster3D (Merritt & Bacon, 1997).
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eigenvectors of the covariance matrix with the
largest eigenvalues, which account for 69 % of
the total ¯uctuation in the simulation (Figure 4(b)).

Dynamics

Transitions between the four clusters as
observed in the 340 K simulation were monitored
and a corresponding transition frequency matrix
was constructed. From the transition frequencies,
the optimal Markov rates were calculated as
described in Materials and Methods. The Markov
model obtained is depicted in Figure 5. The ratios
between the transition probabilities correlate well
with the corresponding occupancies of the
involved states. Only for the I! III transition the
transition probability might be underestimated,
since no transition of that kind has been observed,
although a value of 0.1 would be expected from
the III! I transition frequency and the occupancy
difference of both states. Several ``simulations'' of
the true Markov process based on these parameters
were compared to the MD simulation. In order to
validate whether the folding/unfolding transitions
in the MD trajctories can be described by the
(memory-free) Markov model, conditional tran-
sition probabilities were monitored as a function of
time both for the MD simulation and for the simu-
lated Markov trajectories. Except for the III! III
transition probability (the probability to be in state
III at time t and at time t � �t), all the 16 ®rst-
order conditional transition probabilities are,
within statistical error, identical for the MD simu-
lation and the simulated Markov processes
(Figure 6). This implies that, overall, the folding
transitions between the major folding states can be
described successfully by a Markov process. Mem-
ory effects appear to play only a minor role during
the folding of this peptide.

An analysis of the transition frequencies between
the clusters shows that 95 % of the transitions
towards cluster I, the native left-handed helix, orig-
inate from cluster II. Together with the structural
similarity of the two states, this suggests that clus-
ter II can be described as a folding intermediate.
Just over 3.5 % of the transitions towards cluster I
originate from cluster IV, the collection of unfolded
conformations and approximately 1.5 % from the
hairpin-like structure of cluster III.

As described in Materials and Methods, memory
effects were also investigated independently of any
particular clustering. Figure 7 shows the distri-
bution of times for transitions that return to a state
that had been sampled immediately before (21,722
transitions), compared to the distribution of all
conformational transitions (without the require-
ment of returning to a previously sampled con-
®guration, 1,169,873 transitions). For comparison,
both distributions were normalised to 1. The lar-
gest difference is observed for transitions taking
place at time-scales of less than 1 ns, indicating a
memory effect that causes the peptide to return to
conformations that have been sampled shortly
before. The apparent differences observed at time-
scales from 4-8 ns are believed to be caused by the
dominance of the short-time memory effect in the
normalization procedure.



Figure 4. Results of a k-medoid
clustering (a) in the full 60-dimen-
sional coordinate space spanned by
the the central backbone residues
and (b) in the subspace spanned by
the three principal eigenvectors
calculated for these residues.
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Figure 5. The four-state Markov model that best
describes the transitions between the core parts of the
four clusters derived from the 340 K simulation. The
numbers along the arrows denote transition probabilities
(�104) between the clusters in time-steps of 0.5 ps, the
numbers inside the circles denote the occupancy of each
cluster.
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Free energies

Relative con®gurational free energies were calcu-
lated as the logarithm of the con®gurational den-
sity in the 60-dimensional space spanned by the
central part of the backbone residues (see also
Materials and Methods). Figure 8 shows the distri-
bution of the calculated free energies from the
340 K simulation along the collective backbone
¯uctuation with the largest amplitude (eigenvector
of the covariance matrix with the largest eigen-
value). Therefore, the three high-density clusters
that had been identi®ed by the clustering pro-
cedure are recognizable as the lowest free-energy
conformations. Clusters I (the native left-handed
helix conformation) and II (the main folding inter-
mediate) are related structurally and have similar
free energies, with only a relatively small barrier
between the two states. There are no low free-
energy pathways connecting cluster III to clusters I
and II, as deduced from the transition rates
between these clusters. For successful folding to
take place from cluster III, the structure will ®rst
have to undergo a conformational change towards
a less structured state of higher free energy, before
it can re-fold towards the native structure.

Figure 9 shows a comparison of the relative
sampled con®gurational free energies for the simu-
lations at 298 and 340 K. The simulation at 298 K
samples clusters I and II more frequently than the
simulation at 340 K, leaving the unfolded state
poorly sampled; cluster III is not visited at all. In
the simulation at 298 K, the difference between
clusters I and II is more pronounced than at 340 K,
with the barrier between the two clusters being
clearly visible. This suggests an entropic contri-
bution to the free-energy difference between the
two most densely sampled clusters.
Figure 6. Conditional transition
probabilities between clusters in
the 340 K MD simulation (continu-
ous, bold line) and in simulated
Markov processes (broken lines) as
a function of time. The simulated
Markov processes were based on
the transition matrix depicted in
Figure 5 and differ from each other
in the applied random-number
seed. From the scatter of the three
Markov probabilities, the statistical
error can be estimated.



Figure 7. The distribution of transition times for con-
formational transitions in which the system returns to a
state that had been sampled immediately before (®lled
bars), compared to the distribution of transition times of
similar conformational changes, but now without the
condition to a previously visited state (open bars). The
error bars correspond to the statistical standard devi-
ation estimated from the observed transition frequen-
cies.
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Folding determinants

The observation that the major conformations
involved in the folding of this peptide have mark-
edly different hydrogen-bonding patterns led us to
investigate the internal hydrogen bond network
(HBN) energies in detail. Figure 10 shows plots of
the HBN energies of conformations extracted from
the simulation at 340 K against the RMSD from the
experimental structure and against the relative con-
®gurational free energies. In line with the results
from a previous analysis, which compared the
number of native backbone hydrogen bonds to the
RMSD from the ``native'' structure (Daura et al.,
1998) rather than energies, both graphs show a
clear correlation between the HBN energies and
the distance from the native structure (with corre-
lation coef®cients of 0.72 and 0.76, respectively).

For any geometrical or energetical property to be
useful as a predictive measure for the degree of
folding of any peptide or protein, the correlation
between the calculated property and the degree of
folding should be high, and the number of outliers
(false positives and false negatives) should be
small. To investigate how reliably the HBN ener-
gies can identify the native conformation in the
ensemble of structures simulated at 340 K, the
number of native and non-native conformations
with HBN energies above and below a certain
energy threshold were counted for different
threshold values. As can be seen in Figure 11, for
values of the HBN energy of around 3.0, the prob-
ability of correctly identifying the native state
based on HBN energies is about 85 %, since the
probability that conformations with an HBN
energy higher than 3.0 are native (or positive pre-
dictive value) and the probability that confor-
mations with an HBN energy smaller than 3.0 are
non-native (negative predictive value) are both
approximately 86 %. For higher values of the HBN
energy threshold, the probability of correctly iden-
tifying the native state is even higher, but now
only for conformations with an HBN energy larger
than the threshold.

Convergence of essential subspaces

Figure 12(a) shows that for the 340 K simulation,
the three-dimensional essential subspace has
reached an almost complete convergence after 200
ns. The overlap between the essential subspaces
extracted from the ®rst and last 90 ns with the full
200 ns trajectory is 98.6 % and 98.3 %, respectively.
The overlap between the ®rst and last 90 ns is
94.3 %. Moreover, the subspace converges rela-
tively fast: already within 100 ps, an overlap with
the converged set of eigenvectors of 58 % is
reached on average, and within 10 ns an overlap of
80 % is accomplished. In terms of atomic displace-
ments, the three-dimensional essential subspace
extracted from the central backbone con®gurations
of the 340 K trajectory accounts for 69 % of
the total (internal) mean-square ¯uctuation.
Figure 12(b) shows that essential subspaces
extracted from 100 ps trajectories, on average,
account for 63 % of these collective ¯uctuations,
making up 43 % of the total mean-square ¯uctu-
ation. For trajectory pieces of 10 ns, these numbers
are 88 % and 61 %, respectively.

To investigate how similar the unfolding
motions are to the native state ¯uctuations, a PCA
was performed over all structures of cluster I (see
Figure 4) and subspace overlap values were calcu-
lated with respect to the converged set of eigenvec-
tors extracted from the 200 ns simulation. The
essential subspaces show an overlap of 52 %
(Figure 13) and the subspace spanned by the ®rst
six eigenvectors of the native state cluster repro-
duce the essential subspace of the complete trajec-
tory for 82 %. From the sixth eigenvector on, the
convergence to 1 occurs at a similar rate as is
observed for 1-ns fragments of the full trajectory.
This indicates that unfolding directions are highly
similar to native state ¯uctuations. The largest con-
tribution to the three main unfolding directions
comes from the native state essential subspace. The
next three degrees of freedom in terms of the
amount of ¯uctuations in the native state form the
second largest contribution to the overlap with the
principal unfolding directions. This indicates that
unfolding takes place mainly along degrees of free-
dom that already exhibit an appreciable amount of
¯uctuation within the native state cluster, and
hardly involves directions that are not accessible in
the native state.



Figure 8. Relative con®gurational
free energy distribution of confor-
mations extracted from the 340 K
simulation along the principal coor-
dinate derived from the central
backbone atoms. Relative free ener-
gies were calculated from the
phase-space densities, derived from
averaged nearest-neighbor dis-
tances (RMSDs calculated over the
central backbone atoms). The verti-
cal coordinate as well as the colour
indicate the free-energy value (with
the lowest free-energy values blue).
The three dense sub-clusters are
indicated in yellow. The x-axis is a
linear combination of the two prin-
cipal eigenvectors that span the
plane shown in Figure 2, and was
chosen to optimally show the
difference between the clusters.
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Discussion

The PCA results of the equilibrium folding
dynamics of a b-peptide presented here provides a
perspective of the conformational dynamics that
highlights different aspects from that of the RMSD-
based analysis (Daura et al., 1998, 1999b). The bor-
ders of the essential subspace correlate well with
extrema in the gyration radius of the peptide (cf.
Figure 1), indicating that global boundaries as
de®ned by the MD force-®eld correlate with the
degree of compactness of the peptide. On one side,
the most stretched conformations are found, indi-
cating that a physical border of the force-®eld con-
nected to the stretching of covalent bond lengths
and angles is approached. On the other, ¯at side of
the half-sphere, the most compact structures are
sampled, of which also the native state cluster is
part. The relatively sharp border of the essential
subspace on this side corresponds to sharp repul-
sive Lennard-Jones energy terms that prevent sub-
stantial non-bonded atomic overlap beyond the
van der Waals radii.

Apart from the three dense sub-clusters
(Figures 2 and 4), and in contrast to the larger
number of clusters obtained by Daura et al.
(1999b), the essential subspace appears to be
sampled relatively homogeneously, which raises
the question of whether a further subdivision in
new clusters is meaningful. Moreover, the compari-
son of the clustering carried out in the space
spanned by the three principal eigenvectors and in
the full con®gurational space shows that virtually
all features are captured already in this low-dimen-
sional essential subspace. Therefore, structural
differences in the orthogonal subspace play only a
minor role and, for most purposes, a projection
onto only the ®rst principal modes yields a satis-
factory approximation of the dynamics in the full
con®gurational space.

One feature of the ensemble revealed in the PCA
results is an intermediate state (state II in Figures 2



Figure 9. Relative con®gurational
free energies (vertical axis) at differ-
ent temperatures along the princi-
pal coordinate of the 340 K
simulation (horizontal axis). The
simulation at 298 K is depicted in
blue, the 340 K simulation is
depicted in red. The 298 K simu-
lation clearly shows the free-energy
barrier between clusters I and II,
whereas the 340 K simulation
shows that there is no low free-
energy pathway connecting cluster
III to the native state (see also
Figure 8).
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and 4) close to the native state. Because of the
remarkably small RMSD between states I and II of
only 0.8 AÊ this intermediate was not seen in the
1 AÊ RMSD clustering described before (Daura et al.,
1999b). Nevertheless, the barrier between the two
states is clearly visible in Figure 9 and indicates
that indeed there are two structurally related but
distinct conformational states.

Both the k-medoid clustering presented here as
well as the RMSD clustering suffer from a general
problem of clustering algorithms: eventually all
data points will be clustered, even if the inherent
structure of the distribution may not justify it. In
some cases, this can cause an overestimation of the
amount of substructure in a dataset that is hard to
recognise. The k-medoid clustering as presented
here also suffers from this drawback, and the sig-
ni®cance of the clusters can be estimated only from
the dependence of the cluster de®nition on the
chosen parameters, most notably the number of
clusters to be de®ned. More sophisticated cluster-
ing algorithms like fuzzy clustering may overcome
this problem partially, but we feel that an optimal
clustering for datasets of a dynamical origin should
take into account the static distribution of data
points, and at the same time optimize residence
times and transition frequencies between clusters.

The only signi®cant deviation in the simulation
of 340 K from a Markov process shows up in the
conditional probability to ®nd the system in state
III (Figure 6). For the ®rst 2 ns, the probability to
remain in (or return to) cluster III is higher than
expected from the corresponding Markov process.
A possible explanation for this effect is that clusters
III and IV are relatively close to each other, and the
barrier between them is small. Therefore, the sys-
tem can easily cross the border from III to IV and
return without having been unfolded completely,
and thus without actually having reached cluster
IV. In the simulated Markov processes, all tran-
sitions are sharp and complete. Hence, with the
same transition probabilities, the chance to return
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Figure 10. HBN energies calculated from snapshots from the simulation at 340 K compared to the backbone RMSD
from the experimental structure (upper panel) and to the con®gurational free energy (lower panel). Indicated are the
correlation coef®cients between the two datasets.
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to cluster III is smaller in the simulated Markov
processes than in the MD simulation.
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Figure 11. Positive and negative predictive values
(probabilities of correctly identifying native and non-
native structures, respectively) based on HBN energies
at different energy threshold values. The curve with the
®lled squares depicts the native-state fraction of all con-
formations with a HBN energy above the threshold. The
curve with the open triangles depicts the non-native
fraction of all conformations with a HBN energy below
the threshold. For HBN energies of around 3.0, the
probability of successfully identifying the native as well
as the non-native state is about 85 %.
The PCA results have provided an intuitive
basis for the presentation of calculated confor-
mational free energies (Figures 2 and 9), clearly
showing the relative weights of each cluster and
the barrier heights between the clusters. The kin-
etics, deduced from the Markov process based on
the transition rates between the clusters, agree per-
fectly with the picture obtained from the PCA.

Although some outliers are found when the
HBN energies are plotted against the confor-
mational free energies or against the RMSD from
the experimental structure (Figure 10), the HBN
energies are a more sensitive and unbiased
measure of the folding state of this peptide than
the number of native backbone hydrogen bonds.
Moreover, the obvious correlation between the
HBN energy and the con®gurational free energy
suggests that internal hydrogen bonding plays an
important, and possibly dominant, role in stabiliz-
ing speci®c conformations and guiding the folding
of this peptide.

We have found the essential subspace to con-
verge fast, as can be seen from the average sub-
space overlap of 0.58 from fragments of only
100 ps with the full 200 ns trajectory at 340 K. Of
the mean square ¯uctuation that takes place in the
essential subspace extracted from the 200 ns simu-
lation, 63 % can be described by essential subspaces
from trajectory fragments of 100 ps, on average.
Such fast convergence may not be transferable
directly to the dynamics of more complex proteins,



Figure 13. Comparison of native state ¯uctuations to
unfolding motions. The bold, continuous line depicts the
subspace overlap between eigenvectors extracted from
the native state cluster to the overall 200 ns simulation
at 340 K. For comparison, the same type of graph is
shown for fragments of varying length from the full tra-
jectory.

Figure 12. Convergence of the essential subspace of
the 340 K simulation. (a) Essential subspace overlap
values (see Materials and Methods for a de®nition)
between fragments of varying length with the con-
verged set extracted from the 200 ns simulation (con-
tinuous, bold line) and between pairs of fragments
mutually (broken line). (b) Fraction of the mean-square
¯uctuation (MSF) of the 200 ns trajectory at 340 K that
can be described by a three-dimensional essential sub-
space extracted from trajectory fragments of different
length. Both the overall fraction is shown (right-hand
side) and the fraction of the ¯uctuation described by the
three-dimensional essential subspace extracted from the
200 ns trajectory (which describes 69 % of the total
MSF).
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either in their native state or during folding. How-
ever, the facts that the essential subspace converges
signi®cantly faster than the typical folding time,
and that the essential subspace of one sub-state
yields a reasonable approximation of the overall
subspace, indicate that dimension-reduced models
will prove valuable in the study of (folding)
dynamics of macromolecules.

Two similar models have been proposed to
describe conformational transitions in proteins at
different time-scales. In both, the short-time beha-
vior is described by motion within a harmonic
well. In the ®rst, the long-time behavior is
described by a hopping among the harmonic mini-
ma (Kitao et al., 1998), whereas in the second the
transitions between the minima are of a diffusive
nature (Amadei et al., 1999b). Central in both
models is the similarity between principal direc-
tions within one minimum to conformational tran-
sitions between minima. The fact that the essential
subspace derived from the native sub-state shows
a signi®cant overlap (82 %) with the overall fold-
ing/unfolding essential subspace suggests that the
concepts used in both models apply also to folding
transitions between conformational states that are
themselves collections of local minima.

Conclusions

The results presented here show that dimension-
reduced models can be used to describe many
aspects of conformational transitions involved in
peptide folding. It has been demonstrated that the
two main prerequisites for such an approximation,
a fast convergence of the essential subspace and
negligible memory effects at large time-scales, are
ful®lled. For the b-peptide investigated, the set of
unfolded conformations comprises a relatively dif-
fuse cluster of structures in con®gurational space
¯anked by three more dense clusters identi®ed
as the native fold, the main on-pathway folding
intermediate and a non-productive off-pathway
conformation. Therefore, the number of sampled
conformations during folding is much smaller than
could be expected (Daura et al., 1998), and native-
state dynamics as well as folding dynamics
involves primarily only a few of the many appar-
ently available collective degrees of freedom. This
should simplify the search for the lowest free
energy state considerably. In addition, the ®nding
that internal HBN energies correlate signi®cantly
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with the degree of folding opens new possibilities
for the design of simpli®ed interaction potentials
targeted towards peptide or protein folding.

Materials and Methods

Molecular dynamics simulations of a b-heptapeptide
in solution at different temperatures were analyzed.
Details of the simulations have been described (Daura
et al., 1998). In total, four simulations were analyzed: at
298 and 340 K of 200 ns each, and at 350 and 360 K, of
50 ns each.

Principal component analysis was carried out by diag-
onalizing the positional covariance matrices constructed
from the trajectories after a least-squares ®t to a reference
structure. A PCA was performed on all atoms of the
peptide and on the central backbone (residues 2-6) using
the WHAT IF (Vriend, 1990) and Gromacs{ software
packages.

A k-medoid clustering (Kaufman & Rousseeuw, 1990)
was performed over all structures in the 340 K trajectory
projected on the three-dimensional space spanned by the
three eigenvectors of the covariance matrix with the lar-
gest eigenvalues. For comparison, the same procedure
was repeated in the full 60-dimensional space spanned
by the 20 backbone atoms in residues 2 to 6. In a
k-medoid or k-means clustering, an iterative search is
performed for the cluster centers that have a minimal
sum of distances to their cluster members. The distri-
bution of transition times between the obtained clusters
was compared to a Markov process, which, by de®-
nition, is memory-free. Accordingly, deviations between
the simulations and the Markov process will point to
memory effects. To avoid bias introduced by the unphy-
sically sharp cluster boundaries, the boundary regions
were excluded from the analysis and only the ``core''
parts of each cluster were considered to calculate tran-
sition rates. The core of a cluster was de®ned as that part
of each cluster that had a Euclidian distance to the clus-
ter center smaller than the average distance for all cluster
members to the cluster center. In addition, to remove
short-time oscillations, transitions were taken into
account only if the new state was populated for at least
2.5 ps.

To compute the Markov transition rates that best
match the transition time distribution obtained from
the simulation, a maximum-likelihood approach was
employed. Accordingly, the (conditional) probability that
the observed frequencies npq for transitions of state p to q
(or that the system remains in or returns to state p if p
equals q) are the result of a Markov process with tran-
sition rates rpq were estimated from the (conditional)
probability to obtain the observed frequencies npq given
the Markov rates rpq, and subsequently maximised. Here
we have neglected the in¯uence of the (unknown) a
priori distribution of Markov processes.

The maximum likelihood is obtained for Markov rates
rpq that satisfy:
{ D. Van der Spoel; H. J. C. Berendsen, A. R. van
Buuren, E. Apol, P. J. Meulenhoff, A. L. T. M. Sijbers
and R. Van Drunen (1995). Gromacs User Manual,
available online at http://md.chem.rug.nl/�gmx

{ Since this effective dimensionality cannot be
determined easily, obtained free energies are known
only up to a constant factor and thus no units can be
given.
rpq � npq=
XN

j�1

njj

1ÿ
XN

i�1;i 6�j

rij

�1�

and, therefore, can be computed through iteration. Here
N represents the total number of states. Initially, the rij

values were estimated from the distibution of transition
frequencies npq, and subsequently, equation (1) was iter-
ated. The values for rpq were found to converge within a
few steps.

Transition frequencies at different time-scales were
calculated from the MD trajectory at 340 K and com-
pared to those obtained from a number of simulated true
Markov processes constructed from the calculated tran-
sition rates.

Memory effects were investigated by monitoring con-
formational transitions without prior classi®cation of all
conformations to clusters. This method has the advan-
tage that it is model-free, in the sense that it is indepen-
dent of the applied clustering algorithm. The idea is to
investigate the path-dependency of conformational tran-
sitions. For this purpose, the MD trajectories were
scanned for conformational transitions in which the sys-
tem returns to a conformational state that had been vis-
ited immediately before. Those history-biased transition
times were compared to unbiased average transition
times of the same conformational change, i.e. to those
determined without the condition of the system return-
ing to the same state. In accordance to previous studies
of the same system (Daura et al., 1999b), a conformation-
al state was de®ned as all conformations within 1 AÊ

RMSD calculated over the central part of the backbone
of the peptide. Conformational transitions were counted
if the backbone RMSD between two structures exceeded
2 AÊ .

Approximate relative con®gurational Gibbs free ener-
gies Gi of phase space regions in the direct vicinity of
conformation i were calculated from local phase space
densities ri. These densities were estimated from
averaged nearest-neighbor phase space distances hdii:

Gi � ÿkT ln ri; with ri /
1

hdimi
with the exponent m being the effective dimensionality
of the (sub)space in which the densities were deter-
mined{.

Nearest-neighbor phase space distances were deter-
mined for all sampled con®gurations i for each simu-
lation from the average of the distances dij to the 100
nearest neighbors j (calculated as RMSD values for the
20 backbone atoms in residues 2 to 6 after a least-squares
®t). A weighting scheme was applied using a Gaussian
function with width di50 chosen as the distance to the
50th nearest neighbor:

hdii �

X100

j�1

dije
ÿ1

2

dij
di50

� �2

X100

j�1

e
ÿ1

2

dij
di50

� �2

As a measure for the subspace overlap ONM between
N eigenvectors mmi from one set and M vectors nnj from
another (where the eigenvector sets can have been
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obtained from different simulations, or from different
simulation fragments, or from selected snapshots or
phase space regions) the summed squared inner pro-
ducts (De Groot et al., 1996b) were calculated:

ONM �
XN

i�1

XM
j�1

�mmi � nnj�2

yielding zero for two orthogonal spaces and one (for
M 5 N) for identical sets of vectors. Since two sets of
eigenvectors obtained from the same molecular system
span the same space, this measure of the overlap always
approaches 1 when M approaches the number of degrees
of freedom in the system. N is a small number indicating
the dimensionality of the subspace that accounts for the
majority of all atomic ¯uctuations, also referred to as the
essential subspace (Amadei et al., 1993). A value of 3 was
chosen for N for the analysis presented here, since more
than 69 % of the backbone positional ¯uctuations are
described by the three principal eigenvectors.

HBN energies were evaluated using the hb2net mod-
ule (Hooft et al., 1996) of the WHAT IF software package
(Vriend, 1990). Output ``energies'' of this knowledge-
based method are in units of ideal hydrogen bonds, as
derived empirically from a small-molecule structure
database.
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