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Abstract

Expression of cytoplasmic intermediate ®lament (IF) proteins starts in the gastrula with three keratins (k1, Y1, D1) and protein X1. The

number of IF proteins expressed increases at the neurula and early larval stages to seven and 11, respectively, and reaches 13 in the adult.

Using antibodies speci®c for a single IF protein the expression patterns of nine of the 13 IF proteins were analyzed at different developmental

stages. Keratin k1 of the larval epidermis is replaced in the juvenile by keratin E1. Protein C1 of the larval epidermis persists only weakly and

only in the most ventral part of the adult. While down-regulated in the adult epidermis k1 and C1 are major proteins in the atrial epithelium

which forms in the later larva. B1 is currently the only IF protein expressed in mesodermally derived tissues such as the muscle tails and some

coelomic epithelia. Two-dimensional gels con®rm that keratins are the major IF proteins in the nerve cord. Immunogold electronmicroscopy

shows that proteins X1 and C2 are present in epidermis and nerve cord in keratin IF. q 2001 Elsevier Science Ireland Ltd. All rights reserved.
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1. Results

Developmental expression of the different IF transcripts

was assessed by cDNA hybridization followed by sequence

analysis (Table 1).

From the heterogeneous population of free-swimming

and feeding Branchiostoma lanceolatum in the plankton,

specimens of 3±6 mm length were selected. Immuno¯uor-

escence on longitudinal frozen sections identi®ed at least

two groups. Fig. 1A and Table 2 summarize the results on

the ®rst group. Both epidermis and nerve cord stained

strongly for C2, D1, E2 and X1. Additional strong staining

for k1 was observed in the epidermis while E1 was weakly

expressed. Y1 staining occurred exclusively in the nerve

cord. No epithelial structures or immunoreactivity were

observed in the position that subsequently yields the atrial

epithelium. This stage of development most likely corre-

sponds to the pre-metamorphic larva which still lacks the

atrium (Ruppert, 1997; Stokes and Holland, 1995).

Fig. 1B gives the results on the second group of speci-

mens. The presence of the atrium (see below) and the visible

preoral cirri (toluidine blue stain) classi®es these specimens

either as the late metamorphic larva or the early juvenile

(Stokes and Holland, 1995; Ruppert, 1997). Immunostain-

ing results of this developmental stage differ from those

observed in the pre-metamorphic larva. Now strong expres-

sion of keratin E1 is present both in the epidermis and the

nerve cord while epidermal keratin k1 expression is weak.

Furthermore, keratins k1 (type I) and D1 (type II) are

present in the atrial epithelium surrounding the gill slits

and the intestine (right panel in Fig. 1B).

Expression of B1 was examined on longitudinal sections

of late larva and the juvenile (Fig. 2). The B1-speci®c anti-

body strongly decorated the muscle tail bundles, which make

ventrolateral contacts with the nerve cord (Ruppert, 1997),

and weakly the coelomic epithelia surrounding the body

musculature. This staining pattern was also present in adults

(Fig. 2F,H). In the adult lancelet B1 was found in some

mesodermally derived coelomic epithelia and weakly in

the centre of the nerve cord (Fig. 2F,H; Riemer et al., 1998).

In adults C1 seemed exclusively expressed in the atrial

epithelia (Karabinos et al., 2000). Interestingly, in the early
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Fig. 1. Tissue-speci®c expression of IF proteins in pre-metamorphic larvae (A) and the early juvenile (B). Frozen longitudinal sections were stained with

toluidine blue or with Hoechst 33258 (DNA staining) to facilitate the identi®cation of cells and tissues. Immuno¯uorescence microscopy of parallel sections

labelled with anti-C2, -D1, -E2, -E1, -k1, -Y1 and -X1 antibodies as indicated. (A) The epidermis and the nerve cord are strongly stained with antibodies against

C2, D1, E2 and X1 proteins. The epidermis shows weak expression of k1 and strong expression of E1. The Y1 keratin is detected exclusively in the nerve cord.

(B) The immunostaining differs from that in panel A in strong expression of E1 in the epidermis and nerve cord tissue as well as in the weak epidermal

expression of keratin k1. ep, epidermis; ept, epithelium; gs, gill slit; i, intestine; m, body musculature; nc, neural cord; not, notochord; pc, preoral cirri. Note the

weak spotty staining of C2 and E1 antibodies in the intestinal cells (right panel of B). Scale bars: 300 mm.



(1±2 day) larva, which still lacks the atrium (see above), the

entire epidermis expresses C1 (Fig. 3). In the adult, weak C1

expression is restricted to the most ventral side of the

epidermis (Fig. 3). Thus C1 expression is down-regulated

in the adult epidermis and up-regulated in the epithelia of

the newly formed atrium (Table 2).

Fig. 4A shows the purity of dissected nerve cords by

microscopical criteria. Nerve cords were extracted with

Triton X-100 and the insoluble residue was subjected to

gel electrophoresis (Fig. 4B). IF protein X1 and the four

keratins D1, E1, E2 and Y1, identi®ed by immunoblotting,

were recognized as major IF proteins. The lack of a C2

signal is most likely due to proteolysis during the long

preparation and extraction.

The electronmicrograph of the epidermal section (Fig.

5A) shows the lack of membranes due to the Triton extrac-

tion. The double decoration for keratins E1 (large gold) and

D1 (small gold) along the IF is somewhat dif®cult to see at

the magni®cation used for this overview. Double Immuno-

gold labelling showed that the minor IF proteins C2 and X1

are present in ®lament bundles consisting of bona ®de kera-

tins labelled by keratin D1 antibodies (Fig. 5B) and keratin

E2 antibodies (Fig. 5C). Similar results were obtained on

sections of extracted nerve cord (Fig. 5D,E). In the nerve

cord keratin Y1 is also present along the IF (data not

shown).

A. Karabinos et al. / Mechanisms of Development 101 (2001) 283±288 285

Table 1

Expression of keratin type I and II and other IF proteins in Branchiostoma

developmenta

Stage Gastrula

(5±6 h)

Neurula

(26 h)

Early larva

(2±4 days)

Adult

Type I E1 2 2 (1)c 1 c

k1f 1 e 1 1 d 1

Y1 1 e 1 1 1

Type II D1 1 e 1 1 b 1

E2 2 2 2 1

A/B A1 n.d. n.d. 1 e 1 Nb

A2 2 2 1 b n.d.

A3 n.d. n.d. 1 b n.d.

B1 2 1 1 b 1

B2 2 1 1 b 1

C/X C1 2 1 1 b 1

C2 2 2 2 1 e

X1 1 e 1 1 e 1 e

a Dr Linda Holland kindly provided a 2±4-day larval lZap II cDNA

library of B. ¯oridae and the RNA for the gridded 5±6 h and 26 h cDNA

libraries. To exclude false positives due to cross-hybridization, eight hybri-

dization-positive clones from each experiment were randomly picked and

characterized by DNA sequencing. B1 from the A/B group seems related to

vertebrate type III proteins; C1, C2 and X1 have no obvious homologs

among the four subfamilies of vertebrate cytoplasmic IF proteins (see

text); n.d., not determined; N, expression determined by Northern blot

analysis; (1), weak expression. References to previous cDNA cloning

results are made by the following:
b Riemer et al., 1998.
c Karabinos et al., 1998.
d Luke and Holland, 1999.
e Karabinos et al., 2000.
f Here we noted the presence of two distinct k1 transcripts which show

98% identity on the amino acid sequence level.

Fig. 2. Tissue-speci®c expression of the B1 IF protein in late larva and

adult. Longitudinal (A±D) sections through the larva notochord (not) and

cross-sections through the adult lancelet body (E±H) were labelled with

Hoechst (left A,C) and guinea-pig D1 antibody (left E,G) to facilitate the

identi®cation of cells and tissues. Sections B,D,F,H were labelled with

rabbit anti-B1 antibody. C and D are a higher magni®cation of the boxed

regions of A and B, respectively. B1 decoration occurs in muscle tails,

coelomic epithelia surrounding body muscle and in the centre of the

nerve cord. The intense staining of D1 antibody in nerve cord (E) is clearly

distinguished from the B1 reactivity in this tissue (F). The repetitive stain-

ing pattern of the muscle tail bundles is not bilaterally symmetric in agree-

ment with the asymmetric arrangement of the individual muscle tail

producing myomeres in the body of the lancelet. Both B1 expressing

tissues, muscle tails and the decorated coelomic epithelia, are specialized

parts of the myomeres responsible for their innervation (Ruppert, 1997).

Thus B1 is so far the only lancelet IF protein expressed in the mesoderm.

Moreover, recombinant B1 forms, like vertebrate type III proteins, homo-

polymeric IF in vitro (Karabinos et al., 1998) and is currently the best

candidate for a type III protein. Type III proteins are typical for muscles

of vertebrates (Fuchs and Weber, 1994; Parry and Steinert, 1995) and

urochordates (Riemer and Weber, 1998; Wang et al., 2000). ce, coelom

epithelium; m, body musculature; mtl, muscle tail bundles; nc, neural cord;

not, notochord. Scale bars: 100 mm (A,B,G,H) and 50 mm (E,F).



2. Experimental procedures

B. lanceolatum (larvae, juveniles and adult) were from

Helgoland. Adult B. ¯oridae were from Tampa, FL. Eggs

from electrically stimulated animals were fertilized and

various developmental stages were collected (Panopoulou

et al., 1998). Hybridization probes for C2 and E2 were

ampli®ed from an adult B. ¯oridae Marathon cDNA library

using primers derived from the corresponding B. lanceola-

tum cDNAs. Other probes were as described before (Kara-

binos et al., 1998, 2000; Riemer et al., 1998).

Except for B1 all rabbit antibodies used were previously

shown to be speci®c for a single IF polypeptide in immuno-

blots of total lancelet extracts (Karabinos et al., 2000;

Riemer et al., 1998). The new B1 rabbit antiserum was

obtained using the synthetic peptide corresponding to the

carboxyterminal 15 residues of B1. Two additional antisera

were obtained in guinea pigs using synthetic peptides corre-

sponding to the carboxyterminal 15 or 14 residues of D1 and

X1 from B. lanceolatum. Antigen-af®nity puri®cation and

immuno¯uorescence microscopy on frozen sections were as

described (Karabinos et al., 2000; Riemer et al., 1998).

The thawed frozen section technique (Tokuyasu, 1986)

was used. Approximate IgG concentrations for the ®rst

(rabbit) antibodies were: 10 mg/ml (anti-E1 1:2, anti-E2)

and 30 mg/ml (anti-C2); approximate IgG concentrations

for both guinea pig antibodies were 50 mg/ml. The concen-

tration of both second antibodies (10-nm gold particles

conjugated anti-rabbit IgG and 5-nm gold particles conju-

gated anti-guinea pig; British BioCell International, UK)
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Table 2

Tissue-speci®c expression of keratin type I and II and other IF proteins in the late pre-metamorphic larva, early juveniles and adult Branchiostomaa

Tissue Epidermis Atrial epithelia Nerve cord Muscle tails Coelomic epithelia Cutaneous canals

Pre-metamorphic larva

Type I E1 (1) 2 2 2 2 n.f.

k1 1 2 2 2 2 n.f.

Y1 2 2 1 2 2 n.f.

Type II D1 1 2 1 2 2 n.f.

E2 1 2 1 2 2 n.f.

B1 2 (2) 2 1 1 n.f.

C/X C1b 1 2 2 2 2 n.f.

C2 1 2 1 2 2 n.f.

X1 1 2 1 2 2 n.f.

Early juveniles

Type I E1 1 2 1 2 2 n.f.

k1 (1) 1 2 2 2 n.f.

Y1 2 2 1 2 2 n.f.

Type II D1 1 1 1 2 2 n.f.

E2 1 2 1 2 2 n.f.

B1 2 (2) 2 1 1 n.f.

C/X C1 n.d. n.d. n.d. n.d. n.d. n.d.

C2 1 2 1 2 2 n.f.

X1 1 2 1 2 2 n.f.

Adultc

Type I E1 1 2 1 2 2 1

k1 2 1 2 2 2 2

Y1 2 2 1 2 2 1

Type II D1 1 1 1 2 2 1

E2 1 2 1 2 2 1

B1 2 (2) (1) 1 1 2

C/X C1b (1) 1 2 2 2 2

C2 1 1 1 2 2 1

X1 1 - 1 - - 1

a n.d., not determined; n.f., not found; (1), weak expression.
b C1 staining was performed on B. ¯oridae; all other experiments used B. lanceolatum;; (2) some B1 expression was observed in the area of the atrial

epithelium.
c References to previous expression analyses of individual IF proteins on the adult lancelet: Riemer et al., 1998; Karabinos et al., 1998, 2000; Note that

antibodies speci®c for a single IF protein, which are also suitable for immuno¯uorescence microscopy, are currently available for nine of the 13 lancelet IF

proteins (Table 1). The four IF proteins for which we lack such antibodies are the three closely related proteins A1 to A3 and B2, which is a close relative of B1

(Karabinos et al., 1998; Luke and Holland, 1999). These four IF proteins form together with B1 the A/B branch of the lancelet IF protein tree (Karabinos et al.,

2000). It remains to be seen whether some of the tissues, which are not decorated by the nine IF antibodies currently available (body musculature, digestive and

respiratory systems and the gonads) contain one or more of the IF proteins A1, A2, A3 and B2, or even express additional IF proteins.



was 2 mg/ml. Fixed and washed grids were stained in 4%

uranyl acetate, pH 7.0, for 5 min.

Epidermis and nerve cord were dissected with surgical

forceps under a stereo microscope at 48C. Tissues were

extracted with 1% Triton buffer. The resulting cytoskeletal

residue was subjected to two-dimensional gel electrophor-

esis. Gels were stained or processed for immunoblotting

using the various monospeci®c antibodies to IF proteins.
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