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Optimized Homonuclear Carr–Purcell-Type Dipolar Mixing Sequences
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Modified phase-cycled Carr–Purcell-type multiple-pulse se-
quences are optimized for coherence and polarization transfer in
homonuclear Hartmann–Hahn experiments applied to partially
oriented samples. Compared to previously suggested experiments,
the sequences yield considerably improved scaling factors for resid-
ual dipolar coupling constants, resulting in improved transfer
efficiency. C© 2001 Academic Press

Key Words: Hartmann–Hahn transfer; residual dipolar coupl-
ings; Carr–Purcell sequences; dipolar mixing; TOCSY, DCOSY.

l

6
u

d

e
s
iv

c

e
r

z
d
s

ling

is

ent
ned

l

ec-

al
c-
-

V-
INTRODUCTION

Residual dipolar couplings of partially oriented molecu
yield valuable structural information and can be used to c
relate distant nuclear spins in high-resolution NMR (1–).
Homonuclear Hartmann–Hahn (TOCSY) transfer (7–9) thro
residual dipolar couplings has found useful applications in
ological NMR (5, 6). The corresponding experiments based
J couplings (isotropic mixing) (7) and on dipolar couplings
(dipolar mixing) have several common features, but also
tinct differences (5, 9, 10). In order to create energy-matche
conditions, both isotropic and dipolar mixing experiments r
on the effective suppression of offset terms. However, the
cific forms of the isotropic and dipolar coupling tensors g
rise to very different transfer dynamics (5, 9, 11, 12). In addi-
tion, the different transformation properties under rotations
result in very different scaling properties of isotropic and dip
lar coupling constants under the same multiple-pulse sequ
(10, 13). As the rate of polarization or coherence transfe
directly proportional to the size of the (scaled) effective co
pling constants, large scaling factors are highly desirable in
der to minimize relaxation effects. Here, we present optimi
dipolar mixing sequences with useful bandwidths and consi
ably improved scaling factors compared to previously sugge
sequences.
1 To whom correspondence should be addressed. E-mail: glaser@ch.tum
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THEORY

We consider a system of dipolar-coupled spins with coup
terms of the form

H d,kl = 2πDkl(Ikx Ilx + IkyIly − 2IkzIlz) [1]

for each spin pair (kl). The residual dipolar coupling constant
given by (14)

Dkl = S
µ0γkγl hÃ

8π2r 3
kl

[
Aa(3 cos2 θ − 1)+ 3

2
Ar (sin2 θ cos 2φ)

]
, [2]

whereSis a generalized order parameter,γk is the gyromagnetic
ratio of spink, rkl is the internuclear distance, andAa andAr are
the axial and rhombic components of the molecular alignm
tensor, in whose principle axis system the bond vector is defi
by the cylindrical coordinatesθ andφ. If the form of the coupling
tensor is conserved by the multiple-pulse sequence (10), the
effective coupling terms can be expressed as

H
eff

d,kl = 2πDeff
kl (Ikx′ Ilx ′ + Iky′ Ily′ − 2Ikz′ Ilz′ ). [3]

The effective coupling constantDeff
kl is related to the residua

dipolar coupling constantDkl by a scaling factorskl that is de-
fined as

skl = Deff
kl

Dkl
[4]

with |skl | ≤ 1. Because in the principal axis system of the eff
tive HamiltonianH

eff
d,kl the transfer of transverse (x′, y′) magne-

tization is markedly different from the transfer of longitudin
(z′) magnetization, we will frequently translate transfer fun
tions Tα (for α= x, y, or z) from the rotating frame to trans
fer functionsTα (for α = x′, y′, or z′) in the principal axis
frame, in order to facilitate comparison. Compared to the MLE
16 sequence (15) with an on-resonance dipolar scaling fac
of |skl | =1/4 (13), the phase-alternating sequences WALT
16 (16) and DIPSI-2 (17) yield a more favorable on-resonan
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OPTIMIZED DIPOLAR

FIG. 1. Carr–Purcell-type basis sequence of durationτcyc = 2(d+1),
consisting of two 180◦ pulses (of durationd) surrounded by delays (of duratio
1/2).

scaling factor of|skl | =1/2 (13). In principle, a scaling fac-
tor |skl | =1 can be achieved by Carr–Purcell-type sequen
(18), consisting of a series of ideal, hard 180◦ pulses (13). How-
ever, previously such sequences have not been considere
applications in practical dipolar mixing sequences, because
finitely short pulses cannot be implemented in practice. In fa
pulse sequences of this type were suggested in the semina
per on homonuclear isotropic mixing experiments based oJ
couplings (7), but never found widespread use because of th
limited bandwidth (9). However, as will be shown below, serie
of properly phase-cycled 180◦ pulses with finite amplitudes an
optimized durations of the delays between the pulses form
attractive class of homonuclear dipolar mixing sequences.
refer to this class of mixing sequences asmodified phase-cycled
Carr–Purcell-type (MOCCA) sequences.

The basis cycle of a Carr–Purcell sequence (characterize
the length of the 180◦ pulsed and the duration of the window
1) is shown in Fig. 1. In a toggling frame defined by the
sequence and considering just zero-order effects, offset te
average to zero, creating energy-matched conditions (9). The
zero-order average dipolar coupling terms can be derived
straightforward way (see Appendix) and have the form

H
-

d,kl = 2π
{
Deff,x

kl Ikx Ilx + Deff,y
kl IkyIly+ Deff,z

kl IkzIlz
}

≡ 2πDkl

{
Ikx Ilx + 21− d

2(d+1)
IkyIly− 41+ d

2(d+1)
IkzIlz

}
.

[5]

This (zero-order) average Hamiltonian approximates a valid
fective HamiltonianH eff provided that the cycle timeτcyc of
the sequence fulfills

τcyc= 2(d+1)¿ 1

νmax
off

, [6]

whereνmax
off is the largest offset in the spin system (19, 20). For

1 ¿ d, the average coupling termH
-

d,kl in Eq. [5] has the
form of H

eff
d,kl in Eq. [3] with Deff

kl =−Dkl/2 andx′ = z, y′ = y
andz′ = x. This limit corresponds to the case of CW irradiatio
(1 = 0) withskl =−1/2 and has the same on-resonance aver
Hamiltonian as DIPSI-2 and WALTZ-16 (13). On the other hand

H

-
d,kl =H d,kl with the most favorable scaling factorskl = 1

and x′ = x, y′ = y, and z′ = z are found in the limit of ideal
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pulses (1À d). For an effective Hamiltonian of the form o
Eq. [5], the transfer functions ofx, y, andz magnetization are
given by (9)

Tα = sin
(
πDeff,β

kl τ
)

sin
(
πDeff,γ

kl τ
)
, [7]

where{α, β, γ } are permutations of{x, y, z}.
For the two limiting cases1¿ d and1À d, where the effec-

tive Hamiltonian has the form of Eq. [3] the transfer functio
reduce to the following form in the principle axis system{x′, y′,
z′} of the effective dipolar coupling tensor:

Tx′ = Ty′ = −sin
(
πDeff

kl τ
)

sin
(
2πDeff

kl τ
)
,

[8]
Tz′ = sin2

(
πDeff

kl τ
)
.

For1¿ d, Deff,x
kl = Dkl andDeff,y

kl = Deff,z
kl =−Dkl/2 in Eqs. [5]

and [7] (corresponding toDeff
kl =−Dkl/2 in Eqs. [3] and

[8]). In this case the transfer curvesTx′ = Ty′ = Ty= Tz (see
Fig. 2B, thin curve) reach extrema at approximatelyτ =
0.3/|Deff

kl | ≈0.6/|Dkl | andTz′ = Tx (see Fig. 2A, thin curve) has
a maximum atτ = 1/(2|Deff

kl |) ≈ 1/|Dkl |. These transfer curves
are identical to the on-resonance transfer functions found
DIPSI-2. In contrast, transfer times are reduced by a facto
2 for1À d, whereDeff,x

kl = Deff,y
kl = Dkl andDeff,z

kl =−2Dkl in
Eqs. [5] and [7] (corresponding toDeff

kl = Dkl in Eqs. [3] and
[8]). In this case, the transfer curvesTx′ = Ty′ = Tx = Ty (see
Fig. 2B, dashed thin curve) reach extrema approximately
τ = 0.3/|Deff| ≈0.3/|D| andTz′ = Tz (see Fig. 2A, dashed thin
curve) has a maximum atτ = 1/(2|Deff|)≈ 1/(2|D|). This is the
most desirable limit with the fastest transfer rate.

In order to increase the active offset range of dipolar tra
fer, we now consider modified phase-cycled Carr–Purc
type sequences, consisting of an inversion elementRϕ = (1/2–
180◦ϕ–1/2) that is subject to commonly used supercyles.
order to use a concise notation, we refer to the various m
bers of the MOCCA family by indicating the cycle (or su
percycle) as an extension. For example, the MOCCA-M
and the MOCCA-XY16 sequences consist of 16 elementsRϕ
with phases 0,0, π, π, π,0, 0, π , π, π,0, 0, 0, π, π,0 corres-
ponding to the MLEV-16 supercycle (15) and 0, π/2, 0, π/2,
π/2, 0, π/2, 0, π, 3π/2, π,3π/2, 3π/2, π, 3π/2, π corre-
sponding to the XY-16 supercycle (21, 22), respectively. Sim-
ilarly, in the MOCCA-M4P9 sequence the basic inversion e
mentRϕ is expanded according to the M4P9 supercycle (23, 24).
Note that the average coupling term given in Eq. [5] is not va
for MOCCA-XY16 and MOCCA-M4P9 because also phasesϕ

other than 0 orπ are used in these sequences. However, Eq.

is still valid for MOCCA-M16 if rf inhomogeneity is neglected
and the on-resonance case is considered. For MOCCA-XY16
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FIG. 2. Time dependence of characteristic ideal transfer functionsTα(τ )
and of simulated transfer functionsTinh

α (τ ) for the best MOCCA sequence
(bold type in Table 1) in the presence of rf inhomogeneity. (A) Theoret
polarization transfer functionTz′ (τ ) (Eq. [8]) based on the average Hamiltonia
H

-
d,kl (Eq. [5]) for1¿ d (z′ = x, thin curve) and1À d (z′ = z, dashed thin

curve) compared to the realistic transfer functionTinh
z (τ ), in the presence of rf

inhomogeneity for MOCCA-XY16 (bold curve) with1 = 2.2d and MOCCA-
M4P9 (dashed bold curve) with1 = 2.4d (see Table 1). (B) Theoretical transfe
functionTx′ (τ ) (Eq. [8]) based on the average HamiltonianH

-
d,kl (Eq. [5]) for

1 ¿ d (x′ = z, thin curve) and1 À d (x′ = x, dashed thin curve) compare
to the realistic transfer functionTinh

y (τ ), in the presence of rf inhomogeneit
for MOCCA-M16 (bold curve) with1 = 2.2 d and MOCCA-M4P9 (dashed
bold curve) with1 = 2.4 d (see Table 1). The on-resonance transfer functi
Tx = Tz′ andTy = Tz = Tx′ of DIPSI-2 are identical to the solid thin curve
shown in A and B.

the average coupling term on resonance is given by

H
-

d,kl = 2πDkl

(
d/4+1
d +1

)
{Ikx Ilx + IkyIly − 2IkzIlz}, [9]

since the phase cycle leads to an average between Eq. [5
Eq. [5] with x andy interchanged.

In contrast to Eq. [5], this average coupling term has the fo
of Eq. [3] for all values of1 with

skl = d/4+1
d +1 [10]

andx′ = x, y′ = y, andz′ = z. For all MOCCA-type sequences
1 À d is desirable in order to maximize the on-resonan

scaling factor. However, the maximum value of1 is limited
by Eq. [6]. Hence, based on the simple zero-order aver
ET AL.
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Hamiltonian arguments given above and considering that
180◦ pulse durationd= 1/2νrf is limited by the maximum avail-
able rf amplitudeνmax

rf , the optimal duration of the delay1 is
expected to be found in the range

1

νmax
rf

< 1 <
1

νmax
off

. [11]

For example, Fig. 3 shows numerical simulations of the o
set dependence of the transfer efficiency of the MOCCA-M
sequence with an rf amplitude of 12.5 kHz for a range
delays1 and D= Dkl = 10 Hz. Realistic transfer function
Tinh
α (τ ) in the presence of rf inhomogeneity were simula

using an extended version of the program SIMONE (25) by
superimposing a series of ideal transfer functionsTα(τ ) for dif-
ferent nominal rf amplitudes, weighted by a Gaussian rf
homogeneity distribution with a width of 10% at half-heig
(9). For the MOCCA-M16 sequence the on-resonance effec
Hamiltonian is identical to Eq. [5]. Based on this effecti
Hamiltonian and the theoretical transfer function given
Eq. [7], the transfer amplitudeTx(0.3/D) is given by 0.205,
0.128, 0,−0.448,−0.613,and−0.698 for a delay1of 1, 10, 20,
80, 160, and 320µs, respectively. These values are indeed fou
for the on-resonance case (ν1= ν2= 0) in Fig. 3. As expected
from Eq. [5] the on-resonance transferTinh

x (0.3/D) is positive
(Eq. [8]) for1¿ d (see Figs. 3A and 3B) and negative (Eq. [7
for 1À d (see Figs. 3E and 3F). In Fig. 3C no transfer is o
served, because the average Hamiltonian for1= d/2 is given by
H

-
d,kl = 2πDkl{Ikx Ilx − IkzIlz} (see Eq. [5]), which according

to Eq. [7] does not give rise to transfer ofx magnetization. Note
that for1 À d efficient coherence transfer is limited to a re
tively narrow region along the diagonal, with|ν1 − ν2|¿1/1;
e.g., in Fig. 3F, the transfer is limited to|ν1− ν2|< 1.5 kHz.
This example demonstrates the need to optimize the delay1 for
various members of the MOCCA family in order to find an o
timal compromise between usable bandwidth and large sca
factorsskl .

OPTIMIZED SEQUENCES

The delay1 was optimized for various MOCCA sequenc
to maximize the dipolar transfer efficiency in a defined o
set region using an extended version of the program SIMO
(9, 25). The results for a target spectral width of 8 kHz and
ferent magnetization components are summarized in Table
MOCCA-XY16, MOCCA-M16, and MOCCA-M4P9 for an r
amplitudeνrf = 12.5 kHz. In addition to the optimized pulse s
quence parameter1/d, Table 1 also summarizes scaling facto
s′ for optimal transfer time and on-resonance transfer am
tudes, as well as absolute and relative bandwidths. The sc
factors′ is defined asτid/τopt, whereτid corresponds to the firs
extremum of the transfer functions under the unscaled dip
coupling HamiltonianH d,12 (Eq. [1]) andτopt is the mixing time
age
at which the first extremum of the transfer function is reached for
a given multiple-pulse sequence, assuming both spins to be on
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FIG. 3. Influence of the duration of the delay1 on the offset characteristics of coherence transfer of the MOCCA-M16 sequence with a nominal rf amp
of 12.5 kHz, corresponding tod = 40µs and a dipolar coupling constantDkl = 10 Hz. The transfer efficiencyTinh(0.3/Dkl ) is shown for the delays (A)1=
x
1 µs, (B)1 = 10µs, (C)1 = 20µs, (D)1 = 80µs, (E)1 = 160µs, and (F)1 = 320µs. Black and white lines represent positive and negative contours,
respectively. Contour lines are shown for±0.1,±0.2, . . . ,±0.9. Areas with the same absolute value ofTinh

x (0.3/Dkl ) are filled by the same gray level.
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TABLE 1
MOCCA Sequences Optimized for Broadband Dipolar Transfer

of x, y, and z Magnetization

b νrms
rf

Tα Sequence 1/d s′ Topt
α [kHz] [kHz] b/νrms

rf

Tx MOCCA-M16 3.2 0.75 −0.62 2.5 6.1 0.41
MOCCA-M4P9 2.8 0.74 −0.66 3.6 6.4 0.56
MOCCA-XY16 2.7 0.75 −0.77 5.5 6.5 0.85

Ty MOCCA-M16 2.2 0.76 −0.91 6.2 7.0 0.89
MOCCA-M4P9 2.4 0.75 −0.86 7.0 6.8 1.03
MOCCA-XY16 2.7 0.75 −0.77 5.3 6.5 0.82

Tz MOCCA-M16 3.2 0.84 0.86 3.0 6.1 0.49
MOCCA-M4P9 2.4 0.78 0.89 4.0 6.8 0.59
MOCCA-XY16 2.2 0.74 1.00 5.5 7.0 0.79

Note. An rf amplitude ofνrf = 12.5 kHz and a dipolar coupling constan
D = Dkl = 10 Hz were assumed in the optimization. Given are the optimiz
values1/d = 2νrf1 for an inversion element of the form [1/2–(180◦x)–
1/2], expanded with XY-16 (MOCCA-XY16), MLEV-16 (MOCCA-M16),
and M4P9 (MOCCA-M4P9), respectively. For example, the optimal delay
the transfer ofz magnetization is1 = 88µs for MOCCA-XY16. In addition
the parameterss′, Topt

α , b, νrms
rf , andb/νrms

rf are given, which characterize the
sequences with respect to transfer time, transfer amplitude, average rf p
and bandwidth (see text). The sequences with the best transfer propertie
coherence and polarization transfer are indicated using boldface type.

resonance and taking into account the effect of rf inhomoge
ity. This scaling factors′ based on the transfer time approach
the scaling factorskl for MOCCA-XY16 which according to
Eq. [9] conserves the form of the dipolar coupling term for
values of1. For MOCCA-M16 and MOCCA-M4P9 thes′ val-
ues can still be defined based on the transfer times even th
Eq. [4] does not apply because the form of the dipolar coup
term is not conserved by these sequences. For example, fo
transfer ofy magnetizationτid = 30 ms (see thin dashed lin
in Fig. 2 B) whereas for MOCCA-M16 with1= 88 µs (see
Table 1) τopt= 40 ms, resulting ins′ = 0.76 andTinh

y (τopt)=
−0.91.These values can be rationalized based on the theo
cal transfer functions (Eq. [7]) withDx,eff

kl = 10,Dy,eff
kl = 5.313,

andDz,eff
kl =−15.313 according to Eq. [5]. The absolute ban

width b is defined as the offset range ofν1 andν2 in which the
transfer amplitudeTinh

α (τopt) is larger than 0.5. The paramet
νrms

rf indicates the root mean square of the rf amplitude whic
proportional to the square root of the average rf power of the
quences. Finally, the relative bandwidthsb/νrms

rf are summarized
in Table 1.

For polarization transfer (Tz) the sequence MOCCA-XY16
with 1/d= 2.2 gives the best results with respect to ma
mum transfer amplitudeTopt

z and bandwidthb (see Fig. 4A) fol-
lowed by MOCCA-M4P9 with1/d= 2.4 (see Fig. 4A′). For
coherence transfer,Ty is preferable toTx and the sequence
MOCCA-M16 with 1/d= 2.2 (see Fig. 4B) and MOCCA
M4P9 with1/d= 2.4 (see Fig. 4B′) are best suited. Figure

also shows the detailed time dependence of the on-reson
transfer functionsTinh

z (τ ) for the optimized MOCCA-XY16
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and MOCCA-M4P9 sequences andTinh
y (τ ) for MOCCA-M16

and MOCCA-M4P9. For the optimized MOCCA sequences
transfer of magnetization (bold curves in Fig. 2) is more th
50% faster than that for DIPSI-2 (thin curves in Fig. 2). Also t
maximum transfer amplitudes|Tinh

α (τopt)| of the MOCCA se-
quences are comparable to or even higher than the correspo
maximum transfer amplitudes of DIPSI-2 (see Fig. 2).

EXPERIMENTAL

The MOCCA and DIPSI-2 mixing sequences have been
plied to an approximately 5 mM sample of bovine red blo
cell ubiquitin in a H2O/D2O 90/10 solution at pH 6.5 and 303
(commercially available from Sigma, Inc., St. Louis, MO, a
used without further purification) in a 5-mm thin-wall tub
(550µl). Orientation was induced with a dilute liquid cryst
solution consisting of 3% CHAPSO/DLPC/CTAB (1 : 5 :0.1)
(CHAPSO, DLPC, Sigma, Inc.; CTAB, Acros, New Jerse
(26, 27). All experiments were performed at 303 K on a Bru
DRX 600-MHz spectrometer (Bruker Analytik GmbH, Rhei
stetten, Germany) equipped with TXI HCNz-gradient probes
Spectra were processed using XWINNMR 2.6 (Bruker Analy
GmbH) and Felix 98 (MSI, San Diego, CA). The basicz-filter
version of a 2D TOCSY is shown in Fig. 5. All TOCSY expe
iments (DIPSI-2, MOCCA-XY16, MOCCA-M4P9, MOCCA
M16) were recorded with an rf amplitudeνrf of 12.5 kHz. In
order to achieve the maximum transfer between the amide
tons which are not scalar coupled to each other, we irradiate
mixing sequences at the NH resonances and jumped the p
frequency back to the water resonance before detection. T
frequency jumps were also performed with DIPSI-2 for be
comparison. A typical dipolar mixing experiment for the tran
fer of z magnetization is shown in Fig. 6. For different mixin
sequences buildup curves as a function of the mixing time w
recorded for a comparison of experimental and theoretical tr
fer functions (Fig. 7). The following mixing times were use
30, 60, 90, 120, and 150 ms forz transfer using MOCCA-XY16;
30, 60, 90, and 120 ms forz transfer using DIPSI-2; and 24.12
48.24, and 72.36 ms fory transfer using MOCCA-M4P9. For a
other mixing sequences also spectra were recorded but the
listed performed best in the experiments, as expected from s
lations. For the transfer ofzmagnetization the maximum transf
amplitude of MOCCA-XY16 is between 14% (B) and 61% (A
larger than that of DIPSI-2. This difference increases dram
cally for longer mixing times. At a mixing time of 120 ms th
peaks in the MOCCA-XY16 experiment are on average a fa
of 4 larger than those in the DIPSI-2 experiment. The fastey
transfer is found for MOCCA-M4P9.

DISCUSSION
anceNew dipolar mixing sequences have been optimized and ap-
plied to a protein. If relatively small bandwidths are sufficient
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inh inh ′
FIG. 4. Offset dependence of the transfer efficiencyTz (0.68/D) for the sequence MOCCA-XY16 (A),Tz (0.64/D) for the sequence MOCCA-M4P9 (A),
andTinh

y (0.4/D) for the sequences MOCCA-M16 (B) and MOCCA-M4P9 (B′) with the optimized values1/d given in Table 1 (contour lines as in Fig. 3). The
τ

k
i

A
(see
ax-
end
chosen mixing timesτopt correspond to the first extremum of the functionsTinh
α (

for a given application, scaling factorsskl of about 1 can be
reached using MOCCA sequences with1À d. For broadband
applications, slightly reduced scaling factors have to be ta
into account. For example, the MOCCA-XY16 sequence wh
was optimized for broadband dipolar mixing transfer (Table

has a maximum scaling factorskl = 0.75 for coherence trans-
fer andskl = 0.74 for polarization transfer, which are abou
) for the respective MOCCA sequence; see Fig. 2 and Table1.

en
ch
1)

50% larger than the scaling factor|skl | = 0.5 of DIPSI-2 (or
WALTZ-16). These increased scaling factors of the MOCC
sequences directly translate into faster transfer dynamics
Fig. 2 and Fig. 7). In principle, faster transfer reduces rel
ation losses. However, the effective relaxation rates also dep
t
on the trajectories of magnetization and coherences during a
given multiple-pulse sequence. Based on a simple (invariant)
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FIG. 5. The schematic pulse sequence used to test various dipolar m
sequences for the transfer ofz magnetization. Narrow and wide bars repres
90◦ and 180◦ pulses. The default phase for pulses isx. Phase cycling:φ1 = x,
−x; φ2 = y,−y; φ3 = 4(x), 4(−x); φ4 = 2(x), 2(−x); φrec = x, 2(−x), x,−x,
2(x), −x. Quadrature detection is obtained by alteringφ1 in the States–TPP
manner (28). During a typical repetition delay of 1.5 s a low-power presaturation
was applied to reduce radiation damping. The delayz= 3µs and the following
180◦ pulse refocus chemical shift evolution during the firstt1 increment. Carrier
positions:1H = 4.65 ppm (7.6 ppm during the dipolar mixing sequence).
indicates frequency jumps between the water resonance and the amide
(see text). Except for the dipolar mixing (TOCSY) sequence, proton pulses
applied using a 36.75-kHz rf field (π pulse 13.6µs). For water suppression
watergate sequence was used (29). Gradients (sine-bell shaped):G1 = (1 ms,
30 G/cm). For the 2D version of the experiment 16 scans pert2 (768 complex
points, spectral width 7788 Hz) experiment were recorded with 2048 com
points int2 (spectral width 7788 Hz), giving rise to a total measurement tim
about 6 h for each 2D version of the experiment.

trajectory model that ignores ZQ contributions (30, 9), the fol-
lowing conclusions can be drawn for characteristic cases o
terest: In MOCCA-type sequences with1 À d the transfer
of z magnetization is mainly subject toT1 processes, wherea
the transfer ofx or y magnetization is dominated by the mu
fasterT2 relaxation. In DIPSI-type experiments (as well as
MOCCA sequences with1¿ d) the transfer ofy andz magne-
tization is subject to an average ofT1 andT2 processes wherea
the transfer ofx magnetization is dominated byT2 relaxation.
This qualitatively explains the observed decay rates of the

FIG. 6. 1HN region of the MOCCA-XY16 spectrum recorded on ubiquit

In the dipolar mixing periodzmagnetization was transferred. The mixing perio
τ was 60 ms (experimental parameters, see text and Fig. 5).
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FIG. 7. Experimental dipolar transfer functions for the mixing sequen
DIPSI-2 (z transfer, pentagons), MOCCA-XY16 (z transfer, black circles;x
transfer, diamonds) and MOCCA-M4P9 (y transfer, white circles) for the protein
ubiquitin dissolved in a H2O/D2O 90/10 solution at pH 6.5. Individual cross
peak intensities (arbitrary units) are shown as a function of the mixing timτ
for (A) the cross peaks between HN (Ile 13) and HN (Thr 12) with a distance
of 4.46Å and (B) the cross peaks between HN (Leu 43) and HN (Gln 41) with
a distance of 6.94̊A. In order to facilitate the comparison, the negative cro
peak intensities of the DIPSI-2, the MOCCA-M4P9, and the MOCCA-XY
(x→ x) experiments were multiplied by−1.

perimental transfer functions in Fig. 7. In addition, the appar
decay rates are in part a result of the fact that the spin sys
consist of more than two dipolar-coupled spins in which
transfer dynamics of coherence and polarization transfer ca
significantly different (12). In practice, the optimized MOCC
sequences are preferable to DIPSI-type sequences due to
improved scaling properties and (in particular for the transfe
z magnetization) because of their favorable effective relaxa
rates, as expected based on the presented theoretical and
imental results. For the latter reason the new mixing seque
will be important building blocks in many experiments bas
on homonuclear dipolar transfer. For example, inJHH-NOESY
experiments (31) the NOESY transfer step can be replaced
dipolar mixing step. Relative to the applied rf power, the ba
dwidth of the MOCCA sequences is comparable to the bandwidth
of DIPSI-2.
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APPENDIX

A short derivation for the average Hamiltonian˜H d,kl (see
Eq. [5]) is given below based on the toggling frame approa
(19). For the pulse sequence given in Fig. 1, the toggling fra
Hamiltonian ˜H d,kl(t) is given by

˜H d,kl = 2πDkl{ Ĩ kx Ĩ lx + Ĩ ky Ĩ ly − 2Ĩ kzĨ lz}
for 0 ≤ t < 1/2,1/2+ d ≤ t < 31/2+ d, and 31/2+
2d ≤ t < 2(1+ d), and by

˜H d,kl = 2πDkl
{
Ĩ kx Ĩ lx + (cos2 α − 2 sin2 α) Ĩ ky Ĩ ly + (sin2 α

− 2 cos2 α) Ĩ kzĨ lz− 3 sinα cosα( Ĩ ky Ĩ lz + Ĩ ly Ĩ kz)

for1/2≤ t < 1/2+ d and 31/2+ d ≤ t < 31/2+ 2d with
α = 2πνrf (t−1/2) andα = 2πνrf (t−31/2−d), respectively.
The resulting average Hamiltonian,˜H d,kl , is given by

˜H d,kl = 2πDkl

2(d+1)

2(d+1)Ikx Ilx +
21+ d

π

×
2π∫

0

(cos2 α − 2 sin2 α) dα

 IkyIly

+
−41+ d

π

2π∫
0

(sin2 α − 2 cos2 α) dα

 IkzIlz

− d

π

2π∫
0

(3 sinα cosα) dα(IkyIlz + Ily Ikz)

 ,
which is identical to Eq. [5] because

∫ 2π
0 (sin2 α−2 cos2 α) dα=∫ 2π

0 (cos2 α− 2 sin2 α) dα=−π and
∫ 2π

0 (3 sinα cosα) dα= 0.
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