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Significant advances have been made in elucidating the
biogenesis pathway and three-dimensional structure of the
UsnRNPs, the building blocks of the spliceosome. U2 and
U4/U6•U5 tri-snRNPs functionally associate with the pre-mRNA
at an earlier stage of spliceosome assembly than previously
thought, and additional evidence supporting UsnRNA-mediated
catalysis of pre-mRNA splicing has been presented.
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Abbreviations
CBC cap-binding complex 
NLS nuclear localization signal 
PHAX phosphorylated adaptor for RNA export
RRMs RNA recognition motifs 
SMN survival of motor neurons 
UsnRNPs uridine-rich small nuclear ribonucleoproteins

Introduction
Pre-mRNA splicing, the removal of non-coding introns
from mRNA precursors, is a pre-requisite for the expres-
sion of most eukaryotic genes. This essential reaction
proceeds in two steps. 5′ splice site cleavage and ligation of
the intron’s 5′ end to the so-called branch site occur con-
comitantly in the first step, and 3′ splice site cleavage (with
the resulting excision of the intron) and ligation of the 5′
and 3′ exons take place in the second. 

The spliceosome, the complex macromolecular machinery
that catalyzes pre-mRNA splicing, is formed from several
RNP subunits, termed uridine-rich small nuclear ribo-
nucleoproteins (UsnRNPs), and numerous non-snRNP
splicing factors [1]. Each UsnRNP particle consists of a
UsnRNA molecule complexed with a set of seven Sm or
Sm-like proteins and several particle-specific proteins [2].
The major spliceosomal UsnRNPs U1, U2, U4, U5 and U6
are responsible for splicing the vast majority of pre-mRNA
introns (so-called U2-type introns). A group of less abun-
dant snRNPs, U11, U12, U4atac and U6atac, together with
U5, are subunits of the so-called minor spliceosome that
splices a rare class of pre-mRNA introns, denoted U12-
type [3]. The UsnRNPs carry out a number of essential
functions during splicing. Via the interactions of their RNA
and protein components with the pre-mRNA, they medi-
ate the recognition and subsequent pairing of the 5′ and 3′
splice sites of an intron. In addition, they are responsible
for creating the three-dimensional (3D) structure required
for the formation of the spliceosomes’ two active sites, one

for each of the two reaction steps. Components of the
UsnRNPs also appear to catalyze the two transesterifi-
cation reactions leading to excision of the intron and
ligation of the 5′ and 3′ exons. Here we describe recent
advances in our understanding of snRNP biogenesis, 
structure and function, focusing primarily on the major
spliceosomal UsnRNPs from higher eukaryotes.

Identification of a novel UsnRNA export factor
UsnRNP biogenesis is a complex process, many aspects of
which remain poorly understood. Although less is known
about the maturation process of the minor U11, U12 and
U4atac UsnRNPs, it is assumed that they follow a pathway
similar to that described below for the major UsnRNPs
(see Figure 1). The UsnRNAs, with the exception of U6
and U6atac (see below), are transcribed by RNA 
polymerase II as snRNA precursors that contain additional
3′ nucleotides and acquire a monomethylated, m7GpppG
(m7G) cap structure. These pre-UsnRNAs must first be
exported to the cytoplasm where snRNP assembly is initi-
ated. U1, U2, U4 and U5 snRNA export is dependent on a
number of factors, including the snRNA’s m7G cap, the
m7G cap-binding complex (CBC), the export receptor
CRM1/Xpo1 and RanGTP [4–7]. 

In the past year, an additional factor, PHAX (phosphoryl-
ated adaptor for RNA export), which is required
specifically for UsnRNA export, has been identified [8••].
PHAX mediates the interaction between complexes con-
taining CBC/UsnRNA and CRM1/RanGTP to form a
UsnRNA export complex (Figure 1). Furthermore, it is
phosphorylated in the nucleus, an event that is required
for the formation of the UsnRNA export complex and, sub-
sequent to export, PHAX is dephosphorylated in the
cytoplasm, leading to disassembly of this complex. Thus,
together with GTP hydrolysis by Ran, dephosphorylation
of PHAX is thought to ensure the directionality of
UsnRNA export.

UsnRNP Sm core assembly
Following their export to the cytoplasm, UsnRNA precur-
sors interact in an ordered, stepwise manner with seven
Sm proteins, B/B′, D3, D2, D1, E, F and G to form the
snRNP Sm core structure (Figure 1). The demonstration
of a link between the disease spinal muscular atrophy
(SMA) and mutations in a UsnRNP assembly factor has
fueled interest in this step of UsnRNP biogenesis in recent
years. The Sm proteins form three distinct heteromeric
complexes prior to their interaction with the highly con-
served Sm site (PuAU4-6GPu flanked by two stem-loop
structures) of the U1, U2, U4 and U5 snRNAs [9]. In vitro
experiments indicate that the individual complexes do not
bind stably on their own; rather the D1–D2 and E–F–G
complexes bind concomitantly to the Sm site, forming a 
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so-called subcore complex, and assembly is completed by
the association of B–D3 or B′–D3 (B and B′ differ only in
their last 11 amino acids and are encoded by a single gene)
[9]. In vertebrate cells, survival of motor neurons (SMN),
the SMA disease gene product, facilitates assembly of the
U1, U2, U4 and U5 core snRNPs in vivo by a currently ill-
defined mechanism [10–12]. 

SMN is present in a protein complex that contains
SIP1/Gemin2, Gemin3 and the newly characterized
Gemin4 that, like SMN, directly interacts with several of
the Sm proteins [10–13]. Upon oligomerization, this com-
plex associates transiently with UsnRNPs in the
cytoplasm, dissociating at some point before their import
into the nucleus. Recent studies have demonstrated that
the carboxy-terminal RG dipeptide repeat domains of
SmD1 and SmD3 interact with the tudor domain of SMN
[14,15]. NMR studies have now revealed the structure of
the tudor domain and also more precisely mapped those
residues interacting with the carboxy-terminal RG repeats
of D1 [15]. Interestingly, arginines in the RG dipeptides of
SmD1 and SmD3 are symmetrically dimethylated, raising
the possibility that this unusual modification may modu-
late the interaction of SMN and thus regulate UsnRNP Sm
core assembly [16].

In budding yeast, considerably less is known about
UsnRNP biogenesis, and it is not clear whether this
process involves a cytoplasmic phase. Brr1, which is dis-
tantly related to SIP1/Gemin2, functions in yeast UsnRNP
biogenesis [17], but a yeast equivalent of SMN has not
been identified. Studies by Xue et al. [18•] now reveal that
the Saccharomyces cerevisiae homologue of the La protein
(Lhp1p), an autoantigen known to bind and stabilize
nascent Pol III transcripts (including U6 snRNA, see
below) [19], also binds to yeast U1, U2, U4 and U5 snRNA
precursors and facilitates UsnRNP assembly in vivo [18•].
Whether La functionally replaces SMN in yeast and
whether it contributes to the assembly of U1, U2, U4 and
U5 snRNPs in higher eukaryotes is presently not known.

Subsequent to UsnRNP Sm core assembly, the m7G cap of
the snRNA is converted to the 2,2,7-tri-methylated guano-
sine (m3G) form by a yet to be characterized methyl
transferase, and the UsnRNAs undergo 3′ end maturation.
Both events are dependent on proper Sm core assembly
[20,21]. Precursors of vertebrate snRNAs typically contain
less than 20 extra nucleotides, the majority of which are
removed prior to re-import into the nucleus by one or more
as yet unidentified exoribonucleases ([22] and references
therein). In the yeast S. cerevisiae, the 3′ ends of pre-
UsnRNAs (which often contain considerably longer 3′
extensions) are generated in multiple steps by a processing
reaction, and snRNP core assembly is thought to occur
concomitantly with this process [21,23]. Although alterna-
tive pathways that bypass RNAse III appear to exist,
UsnRNA 3′ end maturation in yeast involves cleavage by
RNAse III followed by 3′ trimming by the exosome, a

complex of multiple 3′ exoribonucleases [24,25], and/or by
members of the RNase D family of exonucleases [26•].

UsnRNP import and assembly
The m3G cap and the Sm core domain form a bipartite
UsnRNP nuclear localization signal (NLS) required for the
subsequent nuclear import of newly assembled core
UsnRNPs ([27] and references therein). The UsnRNA’s
m3G cap is specifically recognized by Snurportin-1, which
also interacts with the general import factor Importin β;
both are required for UsnRNP import ([28,29]; Figure 1). A
distinct import factor appears to interact with the NLS
formed by the Sm core, but its identity, as well as the mol-
ecular nature of the Sm core NLS, remains to be elucidated
[28,29]. Recent studies in S. cerevisiae have identified basic
amino acids in the carboxy-terminal domains of SmB and
SmD1 that exhibit nuclear localiz-ation properties and are
collectively essential for yeast viability, suggesting that they
may comprise the Sm core NLS [30]. However, an alterna-
tive role for these regions in snRNP biogenesis or function
could not be excluded, and it remains to be established
whether UsnRNPs in yeast transit through the cytoplasm;
yeast orthologues of PHAX or Snurportin-1, the two specif-
ic mediators of vertebrate UsnRNP export and import, for
example, have not been identified, consistent with the idea
that UsnRNP biogenesis in yeast takes place exclusively in
the nucleus [8••,29]. More definitive experiments are still
needed to clarify this issue.

At an undefined step before the association of the particle-
specific proteins, the UsnRNAs are internally modified at
several positions, primarily by pseudouridylation and 2′-O-
methylation (reviewed in [31]). In the case of the human
U2 snRNP, post-transcriptional modifications are a pre-
requisite for the assembly of a functional particle [32]. At
present the factors responsible for these modifications are
largely unknown, and it is not entirely clear whether U1,
U2, U4 and U5 modification takes place in the nucleo-
plasm or cytoplasm; however, data obtained with Xenopus
oocytes are most consistent with nuclear modification, at
least for the U2 snRNA [32]. 

Studies by Jády and Kiss [33••] now demonstrate that, simi-
lar to the U6 snRNA (see below), pseudouridylation and
2′-O-methylation of specific nucleotides of the human U5
snRNA are generated, at least in part, by a small nucleolar
(sno)RNA-guided mechanism [33••]. Two families of
snoRNAs, the box C/D or H/ACA snoRNAs, together with
their associated proteins, are responsible for post-transcrip-
tional modifications of rRNA; the former direct
2′-O-methylation exclusively and the latter, pseudouridyl-
ation (reviewed in [34]). Intriguingly, in the case of the U5
snRNA, the newly identified U85 snoRNP possesses dual
activity, directing 2′-O-methylation and pseudouridylation
at positions 45 and 46, respectively. Consistent with its
dual function, U85 appears to be a hybrid snoRNP, pos-
sessing the sequence motifs characteristic of box C/D and
H/ACA snoRNAs and containing proteins specific for each
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Figure 1
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class of snoRNP [33••]. These results also raise the 
interesting possibility that modification of some U5
nucleotides may take place in the nucleolus. In yeast,
Pus1p, a pseudouridine (Ψ) synthase involved in tRNA
modification, catalyzes conversion of uridine 44 to Ψ in U2
snRNA [35]. Thus, at least in the case of Ψ-formation,
activities in addition to the snoRNPs, appear to contribute
to UsnRNA post-transcriptional modification.

The association of the UsnRNP-specific proteins com-
pletes the biogenesis of UsnRNPs. This poorly understood
process is thought to occur in the nucleus, although there
is currently little evidence to pinpoint precisely at what
stage it occurs. Consistent with nuclear assembly, the
UsnRNP-specific proteins, U1-A and U2-B′ , unlike 
the Sm proteins, can be imported independently into 
the nucleus (i.e. without first interacting with an snRNA)
([36] and references therein). Interestingly, recent studies
suggest that their nuclear import occurs by a novel, as yet
uncharacterized, mechanism [36].

U6 biogenesis
Biogenesis of the U6 snRNP, and presumably also that 
of the U6atac snRNP, differs in many ways from that of 
the other spliceosomal UsnRNPs. The U6 snRNA is 
transcribed by RNA polymerase III and acquires a
γ-monomethyl cap structure. Assembly of the U6 snRNP is
thought to take place entirely in the nucleus.

The La protein binds to newly synthesized U6 transcripts
at their 3′ end and stabilizes them, thereby contributing to
U6 snRNP assembly [18]. The U6 snRNA is also intern-
ally modified primarily by pseudouridylation and
2′-O-methylation, a process catalyzed at least in part, if not
exclusively, by snoRNPs [37,38]. Factors directing U6
snRNA 2′-O-methylation and pseudouridylation have
been localized to the nucleolus in mammalian cells, and
recent studies indicate that U6 cycles through the nucleo-
lus to acquire these modifications [38,39]. The U6 snRNA
lacks an Sm site and formation of the U6 snRNP involves
the association of seven so-called Sm-like proteins (LSm2,
LSm3, LSm4, LSm5, LSm6, LSm7 and LSm8) with the
U tract at the 3′ end of the U6 snRNA [40,41]. LSm2–8
share the conserved structural motifs characteristic of all

Sm protein family members [42,43], but unlike the canon-
ical Sm proteins, all seven LSm proteins can be isolated as
a heteromeric complex in the absence of U6 snRNA [40].
However, whether they bind in vivo as a pre-formed ring or
stepwise in a manner analogous to the Sm proteins is
presently not clear. In yeast, the LSm2–LSm8 proteins sta-
bilize the U6 snRNA and are required for assembly of a
functional U6 snRNP [18,42,43].

The mechanism whereby the LSm proteins are trans-
ported to the nucleus also remains open to question. As U6
does not appear to transit through the cytoplasm, the LSm
proteins, in stark contrast to the Sm proteins, are most
probably imported as such, rather than as part of an snRNP
complex. Interestingly, a subset of the U6-associated LSm
proteins, LSm2 to LSm7, together with LSm1, form a
complex involved in mRNA degradation that is found 
predominantly in the cytoplasm [44••,45••]. Thus, 
substitution of LSm1 for LSm8 has a significant effect not
only on the function, but also on the cellular localization of
these complexes. In subsequent steps, the U6 snRNP
interacts with the U4 snRNP, primarily via U4 and U6
snRNA base pairing, to form the U4/U6 snRNP; LSm 
proteins facilitate this interaction in vitro [40].

The UsnRNP Sm core structure
As the UsnRNPs are spliceosomal subunits, information
regarding their structure also provides insight into the
probable structure of the spliceosome and its assembly
intermediates. Much progress has been made in recent
years in uncovering the molecular structure of the
UsnRNP Sm core domain, which is formed upon interac-
tion of the Sm proteins with a UsnRNA’s Sm site. The
hallmark of the Sm protein family, which also includes the
LSm proteins, is the presence of the Sm motif, which is
composed of two conserved regions, Sm1 and Sm2, that are
separated by a linker of variable length [46,47]. A struc-
tural model of the mammalian Sm core domain based on
electron microscopy (EM) of native snRNP particles,
Sm–Sm protein interaction assays and X-ray crystallog-
raphy of two human Sm protein complexes (B–D3 and
D1–D2) was recently proposed [48]. This model depicts
the UsnRNP Sm core as a seven-membered ring structure
containing one copy of each Sm protein, in the order

Figure 1 legend

The UsnRNP biogenesis pathway. A cartoon model of the U1 snRNP
maturation pathway is shown. Subsequent to transcription and
capping, the pre-U1 snRNA becomes complexed with several factors,
including the CBC, the newly identified phosphorylated adaptor for
RNA export (PHAX), XpoI (also denoted CRM1) and Ran-GTP, which
together mediate UsnRNA export to the cytoplasm. Subsequent to
export, dephosphorylation of PHAX and GTP hydrolysis of Ran-GTP
lead to dissociation of this complex. In the following step the Sm
proteins interact as pre-formed heteromic complexes with the
UsnRNA’s Sm site (indicated by a black box) to form the so-called
snRNP Sm core. This step is facilitated by the SMN complex, which
consists of the survival of motor neuron protein (SMN), Gemin2

(GM2), Gemin3 (GM3) and Gemin4 (GM4); the SMN complex
interacts with the Sm proteins. This complex dissociates from the Sm
proteins/UsnRNP core at an unknown step prior to UsnRNP nuclear
import. Subsequent to cap hypermethylation and 3′ trimming, the
snRNP Sm core is imported into the nucleus. Import is mediated by
snurportin-1 (SPN1), which binds to the snRNA’s m3G cap, Importin
β which forms a complex with SPN1, and an unidentified Sm core
NLS receptor. After import, these factors dissociate and the
U1-specific proteins, which appear to be imported independently of
the U1 snRNA, associate with the U1 snRNP Sm core. The UsnRNA
is internally modified, apparently at a step prior to specific protein
association.
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G–E–F–D2–D1–B–D3, with the Sm site RNA–Sm protein
contacts occurring on the inner surface of the proposed
ring ([48]; Figure 1). LSm proteins also form a related
structure; a complex of LSm2–8 lacking RNA appears
highly similar to the snRNP Sm core in the electron micro-
scope [40]. The structure of the Sm core appears to be
evolutionarily conserved between humans, S. cerevisiae and
trypanosomal UsnRNPs [49].

A number of studies in the past year have provided experi-
mental evidence for the proposed model of the Sm core.
In vitro studies performed with an apparent Sm protein
progenitor from the archaeon Archeoglobus fulgidus indi-
cated that the propensity to form multimeric complexes
and bind to short U-rich stretches of RNA is an ancient
property of Sm-motif-containing proteins [50•]. EM of the
RNP complex formed upon interaction of this Sm-related
protein with oligo-uridine revealed a ring-like structure
similar to the mammalian UsnRNP Sm core. Significantly,
multivariate statistical analysis of these EM images
revealed that the observed ring exhibits a seven-fold sym-
metry, demonstrating for the first time that an Sm protein
ring indeed consists of seven subunits. 

In a separate study, several Sm proteins were shown to
contact specific nucleotides of the Sm site within the
mammalian Sm core [51•]. In addition, Sm protein amino
acids contacting the Sm site were identified and, signifi-
cantly, these amino acids were found to be present in a
region predicted to protrude into the hole of the Sm pro-
tein ring, namely loop L3 of the Sm1 motif. These data

provided the first evidence that multiple Sm protein–RNA
contacts occur on the inner surface of the UsnRNP’s Sm
protein ring. Experimental support for the proposed
UsnRNP Sm core model was also provided by cryo-EM
studies of the human U1 snRNP, which revealed the 3D
structure of the Sm core at 10 Å resolution (see below).

Elucidation of the three-dimensional structure
of the human U1 snRNP
Owing to its relatively simple composition, the human U1
snRNP has been the best characterized of the UsnRNPs at
the biochemical and structural level. Together with the Sm
proteins, it contains three specific proteins, denoted 70K,
A and C, that associate with the 164 nucleotide long U1
snRNA (reviewed in [2]). The U1–70K and U1–A proteins,
which contain classical RNA recognition motifs (RRMs),
bind directly to stem-loops I and II of the U1 snRNA,
respectively, whereas the U1–C protein associates via pro-
tein–protein interactions with U1–70K and/or one or more
of the Sm proteins (reviewed in [2]). Information about the
tertiary structure of this UsnRNP was previously limited to
the atomic structure of a fragment of U1–A bound to the
U1 snRNA stem-loop II that was determined by X-ray
crystallography [52].

By performing single-particle electron cryomicroscopy,
Stark et al. [53••] have determined the 3D structure of the
human U1 snRNP at 10 Å resolution; this is the first
reported 3D structure of a UsnRNP. Two different views of
the U1 structure obtained after particle averaging, angular
reconstitution and 3D reconstruction are shown in

Figure 2

The 3D structure of the human U1 snRNP at
10 Å resolution. (a) Side view and (b) top
view of the U1 snRNP obtained by
cryoelectron microscopy. The major
protuberances contain the 70K and A
proteins, whereas the smaller two, which are
connected by a neck, arise from the U1
snRNA’s stem-loop IV and four-way junction
(4W), as indicated. The main body is marked
by a circle in (b). (c) Secondary and (d) 3D
structural models of the U1 snRNA. The four
stem-loops, four-way junction and Sm site are
color coded. (e) Model of the 3D arrangement
of the RNA and proteins in the human U1
snRNP. A surface representation of the Sm
protein ring was fitted into the 3D structure.
The precise positions of stem-loops I and II of
the U1 snRNA are not known. Reprinted with
permission from Nature (409:539-542)
copyright 2001 Macmillan Magazines Ltd.
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Figures 2a and b. A model of the 3D molecular architec-
ture of the U1 snRNP, based on the constraints provided
by the 3D reconstruction and all available structural and
biochemical data, is shown in Figure 2e. The major struc-
tural features of the 3D map are: a ring-shaped main body
with an outer diameter of 70–80 Å, within which a 
heptameric Sm protein ring fits well and through which
the Sm site RNA appears to thread, thus supporting the
proposed Sm core model; two large and one small density
element protruding from the top of the ring, which can be
attributed to the U1–70K and U1–A proteins, and
stem–loop IV of the U1 snRNA, respectively; and lastly, a
fourth protuberance extending radially from the main body
that can be assigned as the four-way helical junction of the
U1 snRNA (see Figures 2c and d for 2D and space filling
models of the U1 snRNA). U1–C and the carboxy-terminal
domain of the SmB protein could be placed within the
density located opposite the 70K and A protuberances, in
front of the ring. These data provide exciting insights into
the higher order structure of the U1 snRNP, cryo-EM thus
represents a highly useful tool for future investigation of
the 3D structure of the remaining UsnRNPs, as well as the
spliceosome and its assembly intermediates.

Crystal structure of a U4 snRNA–protein complex
In the past year much has been learned about the mor-
phology of the human U4/U6 snRNP. The U4 and U6
snRNAs are extensively base paired in the U4/U6 snRNP,
and both Sm and LSm heptameric complexes are compo-
nents of this particle. At least five additional proteins
associate with the U4/U6 snRNP, including a 15.5 kDa
protein, polypeptides of 20, 60 and 90 kDa that form a
complex with one another [54,55] and a newly character-
ized 61 kDa protein that is homologous to the S. cerevisiae
Prp31p protein (O Makarova, E Makarov, R Lührmann,
unpublished data). The 20 kDa protein (now termed
cyclophilin H) belongs to the cyclophilin family of pep-
tidyl-prolyl isomerases; recently, its atomic structure was
determined by X-ray crystallography and shown to resem-
ble that of cyclophilin A, with notable differences seen
only in their surface properties [56]. A 13S U4/U6 snRNP
containing the aforementioned proteins has now been iso-
lated by dissociation of human 25S U4/U6.U5 tri-snRNPs
(O Makarova, E Makarov, R Lührmann, unpublished
data). Electron micrographs revealed that this U4/U6 
particle exhibits a bicycle-like structure, with two round
domains (attributed to the U4–Sm and U6–LSm complexes)
separated by what are probably parts of the two snRNAs
and U4/U6-specific proteins.

The 15.5 kDa U4/U6 protein binds to the 5′ stem-loop of
the U4 snRNA, and it has been suggested that it serves as
a platform for the subsequent association of the remaining
U4/U6 proteins [57]. Interestingly, the crystal structure of
the 15.5 kDa–U4 5′ stem-loop complex has now been
resolved at 2.9 Å resolution [58••]. The 15.5 kDa protein
folds into a single globular domain that exhibits a so-called
α–β–α sandwich structure, one of the most commonly

observed protein folds (Figure 3). Only one side of the pro-
tein contacts the RNA, interacting predominantly with a
purine-rich (5+2) internal loop formed within the U4
snRNA 5′ stem-loop, which adopts a stem–internal-
loop–stem structure. The RNA folds into an unusual
structure, with the double helical stems converging at an
angle of approximately 30° and one helix containing two
tandem sheared GA base pairs. U31 of the internal loop

Figure 3

Structure of the human 15.5 kDa–U4 5′ stem-loop complex.
(a) Secondary structure model of the U4 and U6 snRNAs. The
nucleotide sequence of the fragment of the 5′ stem-loop used for
crystallization studies is indicated. Nucleotides previously shown to be
essential for binding of the 15.5 kDa protein that are 100% conserved
are shaded grey, whereas those shaded black are preferentially purines.
(b) 3D ribbon diagram of the 15.5 kDa protein (alpha helices and beta
sheets are shown in purple and blue, respectively) bound to a fragment
of the U4 snRNA 5′ stem-loop. Green and yellow are used to
distinguish the two RNA strands. Reprinted with permission from [58•• ].
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protrudes from the rest of the RNA and fits into a pocket
of the 15.5 kDa protein. As the 15.5 kDa protein belongs
to a larger family of RNP-associated proteins that possess a
novel RNA-binding motif, the determination of the atomic
structure of the 15.5 kDa–U4 5′ stem-loop complex also
provides insight into how this family generally recognizes
RNA ([57] and references therein).

Surprisingly, the 15.5 kDa protein is also a component of
box C/D snoRNPs, binding directly to the snoRNA’s box
C/D motif; this motif can theoretically adopt a structure
similar to that of the U4 snRNA’s 5′ stem-loop [59••].
Interestingly, the U4/U6-61 kDa protein (Prp31p) shares
homology with both Nop56p and Nop58p, two proteins,
that, like the 15.5 kDa protein, are common to all box C/D
snoRNPs. This suggests that structural similarities
between these snoRNPs and the U4 snRNP may extend
beyond the 15.5 kDa protein–RNA complex ([60];
O Makarova, E Makarov, R Lührmann, unpublished data).
In addition to structural similarities, the U4 snRNA and
box C/D snoRNAs are thought to function in an analogous
manner, acting as chaperones via their extensive base 
pairing with the U6 snRNA and pre-rRNA, respectively.
These results thus raise the interesting possibility that box
C/D snoRNPs and the U4 snRNP evolved from a common
RNP ancestor.

Structural similarities between the major and
minor snRNPs
Our knowledge of the structure of the 18S U11/U12 and
U4atac/U6atac minor spliceosomal snRNPs is in its 
infancy. In addition to eight U11/U12-specific proteins and
two sets of canonical Sm proteins, the human 18S U11/U12
snRNP also contains four subunits of splicing factor (SF) 3b
(SF3b155, SF3b145, SF3b130 and SF3b49) that were ini-
tially identified as U2 snRNP proteins [61]. Recent studies
have revealed that a 14 kDa protein (p14), previously shown
in mammals to interact with the pre-mRNA’s branch site
adenosine, is also a component of both 17S U2 snRNPs and
18S U11/U12 snRNPs (CL Will, R Lührmann, C Query,
unpublished results). Thus, consistent with their analogous
functions in splicing, some structural characteristics might
be conserved between the U2 and U12 snRNPs. 

The U4/U6 and U4atac/U6atac snRNPs also appear to be
structurally similar. Not only do their snRNAs form a simi-
lar Y-shaped base pairing interaction ([62]; Figure 3), but
preliminary immunoprecipitation studies indicate that, at
least several, if not all of the proteins found in the U4/U6
snRNP, are also present in the U4atac/U6atac snRNP
(C Schneider, C Will, R Lührmann, unpublished data).
Correspondingly, the U4/U6 15.5 kDa protein binds to the
5′ stem-loop of the U4atac snRNA in vitro, suggesting that
a complex similar to that formed in U4/U6 is also found in
the U4atac/U6atac snRNP [57]. The apparent conser-
vation of a large number of proteins between the major and
minor UsnRNPs suggests that one class of these snRNPs
may have evolved in the presence of the other.

Novel insights into the spliceosome assembly
pathway
Two of the main functions of the spliceosomal UsnRNPs
are to recognize the 5′ and 3′ intron/exon boundaries and
to assemble onto these sites the macromolecular RNP
enzyme that catalyzes the splicing reaction. In mammals,
four distinct spliceosomal complexes, which form in the
temporal order E, A, B and C, have been detected
(reviewed in [63]). Assembly of the major spliceosome is
initiated by the ATP-independent recognition of the 5′
splice site by the U1 snRNP, which leads to the formation
of the spliceosomal complex E. This interaction is medi-
ated by base pairing of the U1 snRNA with the 5′ splice
site, as well as by protein–protein and protein–pre-mRNA
interactions involving the U1–70K (in conjunction with SR
proteins) and U1–C proteins, respectively [64].

The S. cerevisiae U1 snRNP contains nine specific proteins
(as opposed to three in mammals), some of which (Prp40p,
Nam8p and Luc7p) facilitate the U1/5′ splice site interac-
tion [65–68]. Nam8p interacts with nonconserved
pre-mRNA nucleotides downstream of the 5′ splice site
and is the only stably associated U1 protein known to
directly influence 5′ splice site choice [68]. Recent studies
have demonstrated that it is also required for Mer1p-acti-
vated splicing, one of the few examples of regulated
splicing in budding yeast, which occurs during meiosis
[69•]. Thus, Nam8p forms part of the constitutive splicing
machinery and also functions in discriminating between 5′
splice sites during regulated splicing. 

Interestingly, a human homologue of the Nam8p protein,
TIA-1, which is known to promote apoptosis, regulates the
alternative splicing of the human Fas receptor, a protein
involved in programmed cell death, and the Drosophila
msl-2, a protein involved in X chromosome dosage com-
pensation [70••]. TIA-1 binds to U-rich sequences of these
pre-mRNAs and, like Nam8p, promotes the association of
the U1 snRNP with 5′ splice sites located upstream of its
binding site. Thus, despite differences in their U1 associ-
ation behaviour (i.e. Nam8p is stably associated whereas
TIA-1 is not), these proteins appear to be orthologues. The
fact that several proteins are more stably associated with
the U1 snRNP in yeast versus vertebrates may be related
to the fact that splicing is highly regulated in the latter but
constitutive in essentially all yeast introns. That is, in ver-
tebrates the association of certain proteins with U1 appears
to be more flexible, enhancing the potential for regulating
the affinity of the U1 snRNP for different 5′ splice sites.

Recent studies have challenged several aspects of the 
currently accepted model of spliceosome assembly. The
U2 snRNP has long been thought to first associate in an
ATP-dependent step subsequent to E complex formation,
recognizing the pre-mRNA’s branch site (reviewed in [63]).
The U2–branch site interaction is facilitated by a 
combination of base pairing and protein–pre-mRNA inter-
actions, involving SF3b and SF3a subunits, as well as the
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non-snRNP splicing factors U2AF and SF1/BBP, and this
interaction results in the formation of splicing complex A
(i.e. the pre-spliceosome) [64]. The recent identification of
p14, a branch site adenosine interacting protein, as a U2
snRNP component suggests that this protein may also
facilitate the U2–branch site interaction (CL Will,
R Lührmann, C Query, unpublished data). Interestingly, in
contrast to the longstanding model, 17S U2 snRNPs have
now been shown to be functionally associated with the
pre-mRNA at the time of E complex formation [71••]. The
intermolecular interactions mediating the association of
the 17S U2 snRNP with this complex are presently not
clear. However, its integration into the E complex does not
require the branch site, and thus the stable interaction of
U2 with this region of the pre-mRNA appears to occur in a
subsequent step when splicing complex A is formed.
These results, together with previous studies indicating
that at least a small percentage of U1 and U2 snRNPs are
associated with one another in splicing extracts [72,73],
also suggest that the initial steps of major and minor
spliceosome assembly may be more similar than originally
thought.  In the minor spliceosome, the U11 and U12
snRNPs, which form an 18S complex before association
with the pre-mRNA, bind simultaneously to the 5′ splice
site and branch site, respectively [74].

The U4/U6•U5 tri-snRNP also functionally associates
with the pre-mRNA at a much earlier stage of spliceosome
assembly than previously thought. According to the 
consensus model of spliceosome assembly, the U4/U6•U5
tri-snRNP first interacts with the pre-mRNA after the 
pre-spliceosome (complex A) has been formed, generating
the spliceosome (complex B). At the time of complex B
formation, many UsnRNP structural rearrangements
occur, leading to the formation of a complex RNA–RNA
network within the spliceosome (reviewed in [75]). For
example, the U4/U6 base pairing interaction is disrupted
and the U6 snRNA base pairs with the U2 snRNA and
also the 5′ splice site. Furthermore, U5 snRNA loop I base
pairs with exon sequences at the 5′ splice site, and later
with exon sequences at the 3′ splice site. The 5′ and 3′
splice sites are also contacted by the U5-220 kDa protein
(Prp8p in yeast), which is thought to help tether the U5
snRNP to the spliceosome and also to contribute to 5′ and
3′ splice site recognition (reviewed in [76]). Recent 
studies have indicated that the 5′ splice site is also recog-
nized by the U4/U6•U5 tri-snRNP, together with U1, at
the earliest stages of spliceosome assembly (i.e. prior to
A complex assembly) both in nematode and HeLa cell
extracts [77••]. Surprisingly, the tri-snRNP contacts the 5′
splice site in an ATP-dependent manner, even in the
absence of a stable U2 snRNP–branch site interaction.
This early interaction appears to represent a functionally
important, initial recruitment of the tri-snRNP to the pre-
mRNA, with subsequent stabilization of tri-snRNP
association occurring at the time of complex B formation,
presumably via the formation of the aforementioned
RNA–RNA interactions.

An additional function for UsnRNP 
DExD/H-box proteins?
Major structural rearrangements lead to the formation of
spliceosomal complex C, in which the pre-mRNA has
undergone the first catalytic step of splicing. After the sec-
ond step, the spliceosome disassembles and the mRNA
and excised intron are released. Thus, the spliceosome is
highly dynamic, with multiple RNA–RNA and RNA–
protein rearrangements occurring during spliceosome
assembly, the catalytic steps of splicing and subsequent
spliceosome disassembly. Many of these conformational
changes are thought to be mediated by UsnRNP proteins.
These include known or suspected RNA unwindases (the
U5-200 and U5-100 kDa DExD/H-box proteins) and a
putative GTPase (the ribosomal elongation factor 2
(EF2)-like U5-116 kDa protein) (reviewed in [75]).
Although the in vivo targets of most of these proteins have
not been conclusively identified, the U5-200 kDa protein
(Brr2/Snu246/Slt22/Rss1p in yeast) has been shown to
unwind U4/U6 duplexes in vitro [78,79], and the yeast
orthologue of U5-100 kDa (Prp28p) has been implicated in
disrupting the U1 snRNA-5′ splice site interaction [80]. 

In addition to potentially catalyzing RNA strand displace-
ment, the U5-200 and U5-100 kDa proteins, as well as other
spliceosomal DExD/H-box proteins, have also been pro-
posed to disrupt RNA–protein interactions [75]. The recent
demonstration that a member of the DExH-box protein
family, the Vaccinia virus protein NPH-II, can actively 
displace the U1–A protein from its extremely stable inter-
action with RNA in vitro, adds credence to the idea that the
U5-200 and U5-100 kDa proteins may directly catalyze
RNA–protein rearrangements within the spliceosome
[81••]. Indeed, in vivo studies in yeast now suggest that
Prp28p may function by actively disrupting an RNA–
protein interaction that helps to stabilize the U1 snRNA–5′
splice site base pairing interaction, namely the interaction
between the U1-C protein and the 5′ splice site [82••].

A novel RNA–RNA interaction pathway in the
minor U12-dependent spliceosome
The dynamic RNA–RNA network that guides the 
formation of the spliceosome appears to be highly similar
in the major and minor spliceosomes (reviewed in [3]).
Upon stable association of the U5 and U4atac/U6atac
snRNPs with the U12-dependent pre-spliceosome, RNA
rearrangements occur that mimic those observed in the
major spliceosome. 

The nature and dynamics of RNA–RNA interactions 
within the U12-dependent spliceosome have now been
analyzed in detail, using crosslinking and an elegant
oligonucleotide blocking/release approach [83••].
Interestingly, in addition to the well established pathway
of RNA interactions that leads to catalytic core formation
in the major spliceosome, an alternative interaction path-
way was revealed. In the latter, a structural intermediate is
formed in which the U6atac remains partially bound to
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U4atac (via stem II) and at the same time forms the well
characterized helix Ia (but not Ib) with the U12 snRNA,
but does not yet base pair with the 5′ splice site.
Previously, it was thought that the U6/5′ splice site (or
U6atac/5′ splice site) interaction had to occur before the
unwinding of the U4/U6 (or U4atac/U6atac) duplex and
the formation of U2/U6 (or U12/U6atac) helices Ia and Ib.
These studies thus indicate that, at least in the minor
spliceosome, the complex intermolecular RNA structure
that contributes to the spliceosome’s active site can be
generated by alternative pathways. Whether or not this
novel structural intermediate also forms in the major
spliceosome is presently not known.

Growing evidence that UsnRNAs catalyze
splicing
A longstanding debate in the pre-mRNA splicing field is
whether splicing is ultimately catalyzed by RNA, proteins
or both. The elucidation of similarities between the 
functionally important intramolecular structures formed in
self-splicing group II introns and intermolecular structures
formed by the pre-mRNA and the U2, U5 and U6
snRNAs, as well as the fact that both types of introns are
spliced by the same chemical pathway, has bolstered the
idea that pre-mRNA splicing is catalyzed by RNA. Much
evidence points to a central, if not exclusive, role for the
U6 snRNA in splicing catalysis. 

U6 is clearly a component of the spliceosome’s catalytic
core and is the most highly phylogenetically conserved
UsnRNA, and minor modifications in its sequence or phos-
phodiester backbone completely block the catalytic steps
of splicing (reviewed in [84]). Significantly, Yean et al.,
[85••] now demonstrate that the U6 snRNA binds to a
divalent metal ion that is required for the first step of splic-
ing. The spliceosome is a metalloenzyme [86], and thus
the ability of U6 to coordinate a metal ion required for
catalysis strongly supports the idea that splicing is catalyzed
by this UsnRNA. However, these results do not rule out
the possibility that other snRNAs, such as U2, or even 
proteins also directly contribute to splicing catalysis.
Spliceosomal proteins, such as the U5-220 kDa protein
(Prp8p), also appear to be present at the catalytic center of
the spliceosome [87,88]. An unambiguous answer to this
question awaits the determination of the atomic structure
of the spliceosome’s active sites or the establishment of a
protein-free in vitro splicing system.

Conclusions
UsnRNPs play a central role in pre-mRNA splicing and,
accordingly, much effort has been placed on understanding
their biogenesis, structure and function. Although progress
has been made in the past year, many aspects of UsnRNP
biogenesis remain poorly understood. These include the
precise order of assembly and modification events, the
molecular details of many maturation steps and, in some
instances, their cellular location. Nonetheless, a molecular
picture of this process is now beginning to emerge. Our

understanding of UsnRNP structure is also far from com-
plete. However, the growing use of X-ray crystallography
and now cryo-EM, coupled with classical biochemical
techniques, has generated much-needed information
about UsnRNP 3D structure and promises to continue to
do so in the future. UsnRNP structural information should
ultimately prove invaluable for gaining insight into the
structure and, as a consequence, the function of the
spliceosome itself. 

Data gathered in the past year have revealed new roles for
the U2 and U4/U6•U5 tri-snRNPs, namely that they func-
tion at the very early stages of splicing complex formation.
Refinements in splicing complex isolation techniques may
in the future lead to additional changes in the currently
accepted model of spliceosome assembly. Finally, evi-
dence in favor of UsnRNA-based catalysis of splicing
continues to mount. Nonetheless, the unequivocal identi-
fication of those spliceosomal components directly
responsible for catalysis remains a major challenge in the
pre-mRNA splicing field.
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