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Abstract

Despite the pivotal role of the pancreas in hormonally-regulated pathways in the body, e.g. glucose homeostasis, the genetic mechanisms

de®ning it have for many years remained largely enigmatic. After years out of the spotlight, pancreas development has once again come to

centre stage. To a large extent, this is due to recent advances made through the detailed analysis of transgenic mice which have been

engineered to carry mutations in speci®c developmental control genes. This review speci®cally focuses on the speci®cation of the endocrine

pancreas lineage and in particular on the role of the developmental control genes Pax4 and Pax6 in the generation of speci®c endocrine cell

types. The comparison of various phenotypes of different mouse mutants affecting endocrine development supports a model in which Pax4

and Pax6 are required for the differentiation of certain endocrine cell lineages and implies a potential for acting at different levels of

endocrine development. q 2000 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The importance of the pancreas for glucose homeostasis

and its implication in pathological states such as diabetes

mellitus had been documented already by the ancient

Greeks. It was not until the last 2 centuries that break-

throughs in the understanding of fundamental aspects of

pancreatic cell biology and pathophysiology were achieved,

for example by the identi®cation of the cellular components

of the islets of Langerhans, and the discovery by Banting

and Best in 1922 that lack of insulin is the primary reason

for elevated blood glucose levels in diabetic patients (Bant-

ing and Best, 1922; Banting et al., 1922). In addition, over

the last 2 decades, classical embryological experiments and

studies on the co-expression of pancreatic hormones led to

signi®cant progress in the understanding of pancreatic cell

lineages (Pictet and Rutter, 1972; Palmiter et al., 1987;

Teitelman and Lee, 1987; Teitelman et al., 1987, 1993;

Evans, 1989; Ohashi et al., 1991; Gittes and Rutter, 1992;

Githens, 1993). More recently, the anlage of the pancreas

has received special attention by developmental biologists

who have demonstrated that pancreas development requires

complex combinations of transcription factors in order to

control organogenesis and cell differentiation (summarized

in Kim et al., 1997; Sander and German, 1997; Edlund,

1998). In particular, the Pax family of transcription factors

is involved in the formation of many organs. Two of its

members, Pax4 and Pax6, play important roles in islet

differentiation (Sosa-Pineda et al., 1997; St-Onge et al.,

1997).

Pax genes encode key regulators which are involved in

the embryonic development of many organs including the

eyes, brain, kidney, thyroid gland, immune system, and the

pancreas (reviewed in Mansouri et al., 1996a; Dahl et al.,

1997). A number of murine and human genetic disorders are

linked to mutations in speci®c Pax genes. For example, a

mutated Pax1 gene is responsible for the murine undulated

(un) phenotype (Balling et al., 1988, 1992) and mutations in

the Pax2 gene cause the human ocular-renal syndrome

(Schimmenti et al., 1997). The murine splotch (sp) allele

and human Waardenburg syndrome type I are associated

with Pax3 (summarized in Epstein et al., 1993; Goulding

et al., 1993), whereas the murine small eye (Sey) mutant,

human aniridia, and Peter's anomaly are due to mutations in

Pax6 (Hogan et al., 1988; Hill et al., 1991; Ton et al., 1991;

Jordan et al., 1992; Grindley et al., 1995; Graw, 1996)
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(reviewed in Macdonald and Wilson, 1996; Stoykova et al.,

1996, 1997; Grindley et al., 1997; GoÈtz et al., 1998).

All nine Pax genes identi®ed thus far have been inacti-

vated in mice by targeted mutagenesis (Table 1). Their

inactivation generally results in embryonal or neonatal

death accompanied by striking developmental defects:

targeted disruption of Pax1 is associated with disturbed

skeletogenesis (Wilm et al., 1998), Pax2 knock-out mice

do not develop kidneys (Torres et al., 1995) and mice de®-

cient for the Pax3 gene have severe defects in the develop-

ing neural tube, neural crest and skeleton (Mansouri and

Gruss, 1998). Pax5 mutant mice lack mature B-cells and

show brain defects (Urbanek et al., 1994). Inactivation of

the Pax7 and Pax8 genes leads to neural crest defects and

thyroid gland dysgenesis, respectively (Mansouri et al.,

1996b, 1998). Pax9 mutant mice lack pharyngeal pouch

derivatives, teeth and show craniofacial and limb defects

(Peters et al., 1998).

In this review we concentrate on the development of the

pancreas which consists of mainly exocrine and endocrine

tissue. The exocrine tissue forms acinar glands that store and

secrete digestive enzymes into the digestive tract. The endo-

crine cells are clustered in islets of Langerhans and secrete

insulin, glucagon, somatostatin, and pancreatic polypeptide

directly into the blood stream. Although a number of tran-

scription factors have been identi®ed to play important roles

during pancreas development the molecular mechanisms

that de®ne the differentiation of endocrine cell types in

the pancreas have for many years remained largely

unknown.

It was only recently that the analysis of Pax4 and Pax6

knock-out mice revealed their important roles in the differ-

entiation of speci®c endocrine cell lineages during pancreas

development (Sosa-Pineda et al., 1997; St-Onge et al.,

1997). Whereas mice lacking the Pax4 gene do not generate

insulin-producing b-cells and somatostatin-producing d-

cells in the pancreas, Pax6-de®cient mice are unable to

form glucagon-producing a-cells (Table 1). The focus of

this review is the analysis of Pax4 and Pax6 gene function

during embryogenesis with special emphasis on the differ-

entiation of endocrine cells during pancreas development.

2. PAX4 and PAX6, two members of the paired domain
family of transcription factors

Pax4 and Pax6 were originally identi®ed in a homology

screen for paired box containing genes (Walther et al.,

1991). Paired box genes encode nuclear transcription factors

which are characterized by the presence of the paired

domain, a highly conserved sequence motif of 128 amino

acids which possesses DNA-binding activity (reviewed in

Noll, 1993). The Pax4 and Pax6 genes are more closely

related to each other than to other members of the Pax

gene family. In addition to the paired domain, both proteins

also have a homeodomain as well as a highly conserved

octapeptide (reviewed in Dahl et al., 1997). A characteristic

feature of Pax genes is that they are located at distinct

chromosomal loci and thus act independently and not in

tandem as other developmental control genes do, e.g. Hox

genes. The murine Pax4 gene is located on chromosome 6,

whereas Pax6 maps to chromosome 2 (Pilz et al., 1993;

Tamura et al., 1994).

During mouse embryogenesis, Pax6 is expressed in

various cellular populations in the eyes, nose, central

nervous system, and developing pancreas (Table 1)

(Walther and Gruss, 1991; Walther et al., 1991; Turque et

al., 1994). Analysis of the Pax6 promoter has led to the

identi®cation of various cis-acting elements which direct

expression in some of these tissues (Plaza et al., 1995; Xu

and Saunders, 1997, 1998; Sharon-Friling et al., 1998;

Kammandel et al., 1999; Xu et al., 1999). Although Pax6

is involved in the development of various organs, its role in

the developing eye has provided the greatest level of access

to elucidating its function. Homozygous Pax6 mutants of

Drosophila (eyeless, ey), mice (Small eye, Sey), and rats

(rSey) fail to develop eyes. In the heterozygous state a vari-

ety of ocular abnormalities are observed in mice (Small eye)
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Table 1

The Pax gene family and its association with mouse mutants and human syndromes

Gene Expressiona Knock-out phenotype Human syndrome

Pax1 Sclerotome, pharyngeal pouches, thymus Disturbed skeletogenesis

Pax2 Pro/mesonephros, metanephric

mesenchyme, mid/hindbrain, eye, ear

No kidneys Ocular-renal syndrome

Pax3 Dermamyotome, neural crest, CNS Neural tube, neural crest, skeletal defects Waardenburg syndrome

Pax4 Pancreas, neural tube No pancreatic b- and d-cells

Pax5 Pro B-cells, CNS No B-cells, brain defects

Pax6 Eye, pancreas, CNS Small eye, no pancreatic a-cells, brain defects Aniridia

Pax7 Neural crest, dermamyotome, CNS Neural crest defects

Pax8 Neural tube, CNS Neural crest defects, thyroid dysgenesis

Pax9 Pharyngeal pouches, mesenchyme No thymus, no parathyroid glands, no teeth,

craniofacial and limb defects

a Only prominent sites of expression are indicated. CNS, central nervous system.



and humans (aniridia and Peter's anomaly) (Hill et al., 1991;

Ton et al., 1991; Jordan et al., 1992; Quiring et al., 1994;

Grindley et al., 1995, 1997; Graw, 1996; Macdonald and

Wilson, 1996; Stoykova et al., 1996; Xu et al., 1997). Alter-

natively targeted expression of Pax6 genes from inverte-

brates and vertebrates induces the formation of ectopic

eyes in Drosophila, demonstrating the ability of Pax6 to

regulate complex developmental processes throughout

evolution (Halder et al., 1995).

In contrast to the widespread embryonic expression of

Pax6, the Pax4 gene is characterized by a very restricted

expression pattern with only a few Pax4-positive cells in the

ventral spinal cord, and in the endocrine pancreas (Table 1)

(Sosa-Pineda et al., 1997). Pax4 was ®rst identi®ed in mice

along with Pax6 and subsequently cloned in humans and

rats (Walther and Gruss, 1991; Pilz et al., 1993; Tamura et

al., 1994; Bonthron et al., 1998; Inoue et al., 1998; Tao et

al., 1998; Tokuyama et al., 1998). To date, there are no

known naturally occurring mutations of Pax4 in mice or

in humans.

3. Expression of Pax4 and Pax6 during pancreas
development

During mouse embryogenesis, the ®rst morphological

sign of pancreas formation is an epithelial evagination

near the junction of foregut and midgut in an area that

will become the duodenum. At embryonic day 9.5 (E9.5),

this epithelial evagination forms the dorsal pancreatic bud

(Wessells and Cohen, 1967; for review see Slack, 1995;

Edlund, 1998). Expression of PAX6 protein can be detected

already around E9.0 in a small subset of cells in the prepan-

creatic endoderm (Fig. 1). At E9.5, PAX6 protein is

expressed in a few cells of the pancreatic bud, some of

them co-expressing glucagon (Sander et al., 1997). In

contrast, Pax4 expression is ®rst detected in E10 embryos

in only a few cells of the pancreatic bud (Fig. 1) (Sosa-

Pineda et al., 1997; Sosa-Pineda, pers. commun.). Approxi-

mately half a day later (E10.5), the ®rst insulin-positive cells

can be detected, as the epithelial bud enlarges to develop

into a tree-like ductal system by branching and growth (Fig.

1).

Shortly after formation of the dorsal pancreatic bud, the

ventral bud arises at the ventro-lateral side of the gut tube.

By the time the ®rst acini and ducts can be distinguished

histologically in the dorsal bud (E14.5), the number of Pax4

expressing cells increases signi®cantly. Double labelling

experiments reveal a small subpopulation of insulin and

Pax4 co-expressing cells, compared to a larger cell popula-

tion exclusively expressing Pax4. The largest number of

Pax4 expressing cells is observed around E15.5, 1 day

after the onset of exocrine development (Sosa-Pineda,

pers. commun.). Pax4 and Pax6 expression has never

been detected in cells of the exocrine pancreas (Sander et

al., 1997; Sosa-Pineda et al., 1997; St-Onge et al., 1997). In
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Fig. 1. Schematic summary of an expression pro®le of pancreas markers during wild type, Pax4 knock-out, Pax6 knock-out and SeyNeu mutant pancreas

development. Expression is indicated by bars; decreased expression is indicated by narrow bars; dashes indicate assumed expression although not analyzed

during the corresponding stages. E, embryonic day; P, postnatal day; *, Sosa-Pineda, pers. commun.; #, St-Onge, pers. commun. Promoter activity was

determined by b-galactosidase staining.



contrast to the cell type restricted expression of Pax4 during

these stages, Pax6 expression is detected throughout all

endocrine cells of the developing pancreas producing

hormones. As the end of gestation approaches and all endo-

crine cells begin to organize into the typical islets of Langer-

hans, Pax6 expression is maintained, whereas Pax4

expression continually decreases. Finally, in the adult

pancreas Pax4 expression is no longer detectable (Sosa-

Pineda, pers. commun.).

In summary, expression of Pax4 and Pax6 during the

early stages of pancreas development is con®ned to cellular

subsets of the endocrine lineage. Pax6, which can be

detected throughout pancreas development, is expressed in

all endocrine cells. In contrast, Pax4 is required exclusively

in cells restricted to the b- and d-cell lineage and can only be

detected during embryogenesis.

4. The pancreas of Pax6 knock-out and Small eye
(SeyNeu) mice

Sey and SeyNeu mice carry semi-dominant Pax6 alleles

which are due to point mutations in the Pax6 locus resulting

in truncated PAX6 proteins (Hill et al., 1991; Sander et al.,

1997). In Sey mutants the protein is truncated directly after

the paired domain while in SeyNeu mice the protein is trun-

cated after the homeodomain, thus leaving both protein

domains intact. To generate complete knock-out mice, the

Pax6 start codon along with the entire paired box was

replaced with the b-galactosidase gene resulting in mutant

mice in which no protein is detectable (St-Onge et al.,

1997). In the homozygous state, SeyNeu and Pax6 knock-

out mutants lack eyes, show severe brain defects, and die

shortly after birth. However, differences in the pancreatic

defects are observed in the mutant animals. Whereas Pax6

knock-out mice do not form glucagon-producing a-cells

throughout all developmental stages, SeyNeu mice express

normal levels of glucagon during the early stages of

pancreas development (Fig. 1). A decrease in the number

of glucagon-positive cells becomes evident around E10.5,

and at E12.5 glucagon- and also insulin-positive cells are

reduced signi®cantly in SeyNeu mice (Fig. 1). Although

glucagon-producing a-cells are most strongly affected in

SeyNeu mice, all four endocrine cell types are decreased

signi®cantly in number by E18.5 (Fig. 1). In contrast,

Pax6 knock-out mice only lack cells of the a-cell lineage

(Fig. 1). Furthermore, islet morphology is disrupted in Pax6

knock-out mice. The remaining insulin-, somatostatin-, and

pancreatic polypeptide-producing cells found in Pax6

knock-out mice do not form proper spherical islet structures,

but organize in elongated, stream-like clusters. d- and g-

cells (together with a-cells) which normally form a rim

around a b-cell core, mix instead with the insulin-producing

cells in the Pax6 mutant pancreas. Insulin expression is

detectable from E13.5 onwards, and expression of Pdx1

(coding for a transcription factor with a major involvement

in islet development) appears to be normal (Fig. 1) (St-

Onge, pers. commun.). The exocrine tissue on the other

hand seems unaffected, synthesizing a-amylase. In SeyNeu

mutant mice, islet morphology is also altered although in a

more subtle manner. The initial aggregation of endocrine

cells seems unaffected and the number of developing islets

appears normal. However, SeyNeu/SeyNeu islets do not form

properly with a b-cell core and a mantle of a-, d- and PP-

cells but the cell populations appear mixed within a given

islet. Furthermore, hormone production is markedly reduced

in SeyNeu mutants, pointing to a decrease in PAX6-regulated

glucagon and insulin gene transcription. In support of this

observation, biochemical studies involving the PAX6

protein demonstrate its binding to regulatory sequence

elements of the glucagon, insulin and somatostatin genes,

and transactivation of these genes has been con®rmed in

vitro (Sander et al., 1997).

Thus, although the phenotypes of SeyNeu and Pax6 knock-

out largely overlap, there are some important differences.

First, Pax6 knock-out mice do not form a-cells whereas in

SeyNeu mutant mice the number of a-cells is reduced.

Secondly, in SeyNeu mutant mice all endocrine cell types

seem to be affected whereas in Pax6 knock-out mice only

a-cells are missing.

5. The pancreas of Pax4 knock-out mice

Homozygous Pax4-de®cient new-borns are indistinguish-

able from their litter mates, but die 3±5 days after birth. The

pancreas of Pax4 mutant mice is normal in size and weight

but mature insulin- and somatostatin-producing cells are

absent (Sosa-Pineda et al., 1997). Nevertheless, insulin-

producing cells can be detected during the early stages of

pancreas development (E10.5), but the expression levels of

insulin and Pdx1 are drastically decreased by E15.5 (Fig. 1).

At this stage the pancreas of Pax4 mutant mice contains

cells expressing b-cell markers such as amylin, Islet1,

Nkx6.1, Nkx2.2 and Pdx1. However, no mature b-cell

marker, like Nkx6.1 or Pdx1, can be detected, con®rming

the absence of mature b-cells in new-born Pax42/2 mice

(Sosa-Pineda et al., 1997; Sosa-Pineda, pers. commun.).

Furthermore, in new-born Pax42/2 mice the number of

glucagon-producing cells is signi®cantly increased

compared to heterozygous litter mates and they appear to

be clustered atypically in the core of an islet-like structure

(Sosa-Pineda et al., 1997). This relative increase in gluca-

gon expressing cells suggests that endocrine progenitors

instead of differentiating into b-/d-cell precursors take on

an a-cell fate. The apparent phenotype in new-borns

suggests that insulin-producing b- and somatostatin-produ-

cing d-cells have been replaced by glucagon-producing a-

cells, supporting the hypothesis that b- and d-cells are

derived from a common lineage (Apert et al., 1988; Teitel-

man et al., 1993; Guz et al., 1995). The detailed analysis of

the progression of the Pax4 knock-out phenotype reveals

C. Dohrmann et al. / Mechanisms of Development 92 (2000) 47±5450



that the mutants are able to form immature b-cells which

subsequently fail to differentiate into mature b-cells, but

alternatively acquire a-cell characteristics.

Finally, mice lacking both Pax4 and Pax6 fail to develop

mature endocrine cells entirely, indicating that both Pax4

and Pax6 are required for endocrine development in the

pancreas (St-Onge et al., 1997).

6. The role of PAX4, PAX6 and other transcription
factors in pancreas development

In addition to PAX4 and PAX6, a number of transcription

factors, ISL1, PDX1, BETA2/NEUROD, NKX6.1, and

NKX2.2, have been implicated in pancreas development

and the differentiation of endocrine cells. Although it is

still dif®cult to assign speci®c functions to some of these

factors, the emerging picture suggests that there are three

levels to endocrine development. The ®rst step involves the

generation of endocrine progenitors which are able to differ-

entiate into all four endocrine cell types, a-, b-, d-, and PP-

cells, within the pancreatic epithelium. In a second step

these pluripotent endocrine progenitors become restricted

to either the b-/d- or a-/PP-cell fate. In a third and ®nal

step, precursor cells which are already committed to the

b- or d-cell fate develop in either b- or d-cells. The differ-

ention pathway of the a- and PP-cell lineage is less clear. It

is not understood if a- and PP-cells develop from a common

precursor or separately develop directly from pluripotent

endocrine progenitors (Fig. 2).

Pluripotent endocrine progenitor cells are thought to arise

from a duodenal portion of the foregut which is located just

posterior to the developing stomach. Little is known about

the factors involved in the formation of endocrine progeni-

tor cells, with the exception of ISL1, a LIM homeodomain

protein. Isl1-de®cient mice completely lack all endocrine

islet cells, indicating a function for Isl1 in the generation

of endocrine progenitor cells (Ahlgren et al., 1997).

However, Isl1 is also required for exocrine cell differentia-

tion in the dorsal bud. Isl1-de®cient mice lack the dorsal bud

mesenchyme and fail to develop exocrine tissue in the

dorsal bud. Therefore, Isl1 is not only speci®cally required

for endocrine, but also exocrine development (Pfaff et al.,

1996; Ahlgren et al., 1997). Consequently, early differentia-

tion of the embryonic gut epithelium towards the endo- or

exocrine lineages requires additional factors acting down-

stream of Isl1, which would subsequently specify the endo-

crine and exocrine lineage (Fig. 2).

The area of the foregut which is thought to give rise to the

pluripotent endocrine progenitor can be identi®ed with the

help of molecular markers before morphological signs of

pancreas development become apparent. The pancreatic

epithelium is marked by a lack of sonic hedgehog expres-

sion (a secreted factor in¯uencing polarity of the developing

gut) (Ahlgren et al., 1997), which is detected in the endo-

derm just anterior and posterior to pancreatic epithelium,

and the restricted expression of Pdx1 (Ohlsson et al.,

1993; Jonsson et al., 1994; Of®eld et al., 1996). Although

Pdx1 expression speci®es this early pancreatic epithelium, it

is not required for the early differention of insulin- and

glucagon-producing cells. It is more likely that Pdx1 is

involved in the proliferation of endocrine progenitor cells

or, alternatively, in the proliferation of already differentiated

precursors expressing insulin and glucagon (Fig. 2) (Jonsson

et al., 1994; Ahlgren et al., 1998).

Once endocrine progenitors are established, Pax genes

play a crucial role in the differentiation of speci®c endocrine

cell lineages and even speci®c endocrine cell types. Loss of

Pax4 function results in a complete lack of the b- and d-cell

lineage (Sosa-Pineda et al., 1997). This suggests that after

the establishment of a pluripotent endocrine progenitor

which has the potential to develop into all four endocrine

cell types, those cells that express Pax4 adopt a more

restricted cell fate, i.e. only insulin- and somatostatin-produ-

cing cells (Fig. 2). In fact, in the absence of Pax4 function

endocrine progenitors are unable to fully differentiate into

b- or d- cells and instead convert to an a-cell fate.

In contrast, Pax6 is speci®cally involved in the differen-

tiation of a-cells (St-Onge et al., 1997). Whether a-cells

directly differentiate from a pluripotent endocrine progeni-

tor or a precursor that is already restricted to the a- and PP-

cell fate is presently unclear (Fig. 2). In either case, addi-

tional factors are required for the differentiation of g-cells

and possibly for the differentiation of an a-/PP-precursor.

There is further evidence that Pax6 function is not just

required for a-cell differentiation but that it is also involved

in the proliferation of all endocrine cells (Fig. 2). Although

the Pax6-de®cient pancreas completely lacks glucagon-

producing cells, no increase in cell number of other cell

types has been observed. Moreover, in SeyNeu mutants all

C. Dohrmann et al. / Mechanisms of Development 92 (2000) 47±54 51

Fig. 2. Model for endocrine cell differentiation based on functional analysis

of developmental control genes. a, glucagon-producing cell; b, insulin-

producing cell; d, somatostatin-producing cell; PP, pancreatic polypep-

tide-producing cell.



Pax6 expressing endocrine cell types (a-, b-, g-, and PP-

cells) are reduced in number indicating their inability to

proliferate properly (Sander et al., 1997). A role for Pax6

in the general proliferation of endocrine cells is also

supported by the phenotype of double-mutant Pax4/Pax6

mice which seem to lack all endocrine cells (St-Onge et

al., 1997). Since Pax4-de®cient mice only lack b- and d-

cells and Pax6-de®cient mice only lack a-cells, it is not

clear why PP-cells are missing as well.

The cell type-restricted basic helix-loop-helix (bHLH)

transcription factor BETA2/NEUROD is likely to be

involved in the proliferation rather than the differentiation

of endocrine cells. Beta2/NeuroD is expressed in all endo-

crine cells of the pancreatic epithelium and targeted gene

disruption results in mice suffering severe diabetes and

dying shortly after birth (Lee et al., 1995; Naya et al.,

1997). Although the proliferation of insulin-producing

cells seems to be most strongly affected, all endocrine cell

types are signi®cantly reduced in number, suggesting a role

for BETA2/NEUROD not only in the differentiation of b-

cells but in the general proliferation of endocrine cells.

Nkx6.1, a member of the NK homeobox family, is widely

expressed in the pancreatic epithelium during the early

stages of pancreas development, whereas in new-borns

Nkx6.1 expression is restricted to b-cells. Knock-out data

reveal a severe reduction in insulin-producing cells, but

normal numbers of other islet cell types, indicating an

important role for Nkx6.1 in b-cell differentiation (Sander

et al., 1998).

NKX2.2 also belongs to the NK2 homeodomain family of

transcription factors. Similar to Nkx6.1, early expression of

Nkx2.2 can be detected in all endocrine cell types. As devel-

opment proceeds, Nkx2.2 becomes restricted to b-cells,

most a-cells and PP-cells but is excluded from mature

somatostatin-producing d-cells. Nkx2.2 inactivation is asso-

ciated with arrested b-cell differentiation resulting in

complete absence of insulin-producing cells (Sussel et al.,

1998). Additionally, a severe reduction in glucagon-produ-

cing cells and a slight reduction in pancreatic polypeptide-

producing cells is observed, whereas somatostatin-produ-

cing cells remain unaffected. Late markers, including insu-

lin, glucose transporter 2 and glucokinase, indicative of b-

cell maturity are not expressed in the mutant islet, whereas

early markers such as Pdx1 and Pax6 are present. These

results indicate that Nkx2.2-de®cient mice can initiate b-

cell development but these cells are unable to terminally

differentiate into functional hormone-producing cells (Fig.

2).

7. Conclusions

The generation and analysis of mouse mutants has led to

the identi®cation of various transcription factors that play

important roles in pancreas development. Some of these

factors, ISL1, PDX1, and BETA2/NEUROD, affect the

development of all endocrine cell types, whereas other

factors seem to speci®cally affect only certain lineages.

Whereas Pax4 is involved in the differentiation of b- and

d-cells, Pax6 and Nkx2.2 speci®cally affect the development

of a- and b-cells, respectively. These differences in pheno-

type suggest that there are at least three levels to endocrine

differentiation (Fig. 2). In the ®rst step endocrine progeni-

tors are generated which have the capacity to differentiate

into all four endocrine cell types. Although Isl1 is involved

in the generation of endocrine progenitors it also affects

exocrine development. Therefore, it is likely that there are

additional, yet to be identi®ed, factors that specify the

generation of pluripotent endocrine progenitors. In a second

step, these pluripotent progenitors subsequently commit to

either the b-/d- or the a-/PP-cell lineage. The best evidence

for such a binary decision that results in precursor cells

already committed to the b-/d-lineage is the lack of b-

and d-cells in Pax4 mutant mice. However, it remains to

be determined if there are precursor cells which, in a similar

manner, are committed to the a-/PP-lineage. In the ®nal

step, precursor cells which are committed to the b-/d- line-

age differentiate into either b- or d-cells. Factors that are

required for this ®nal differentiation step from the b-/d-

precursor to the mature b-cell are NKX2.2 and possibly

NKX6.1, whereas PAX6 is required for the ®nal differentia-

tion of a-cells. Factors which are speci®cally required for

the ®nal differentiation of d- and PP-cells have yet to be

identi®ed.

Although the studies outlined here have accumulated

signi®cant knowledge, the real power of these observations

lies in their potential application to diseases involving

pancreatic dysfunction. In particular, it appears that the

highly in¯uential role of the Pax genes in the developing

embryo encompasses the process of proliferation and differ-

entiation of the endocrine pancreas. This potential of Pax

genes to trigger proliferation and differentiation is enor-

mously valuable with regard to the regenerative capacity

of the adult pancreas. Current thinking suggests the exciting

idea that developmental control genes contribute to a

genetic network where genes are interconnected by regula-

tory feedback loops. Once an entity of the network is active

it results in triggering the mature phenotype. Novel thera-

peutics that exploit these loops are becoming reality for

diseases such as diabetes. Among different approaches,

there are innovative attempts to regenerate insulin-produ-

cing b-cells using Pax, Pdx1 and other developmental

control genes from pancreatic or embryonal stem cells.

The successful regeneration of cellular populations repre-

sents an ideal opportunity towards novel therapeutics for a

growing patient population.
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