
A generation-oriented workbench for Performance Grammar:
Capturing linear order variability in German and Dutch

Karin Harbusch1, Gerard Kempen2,3, Camiel van Breugel3, Ulrich Koch1

1Universität Koblenz-
Landau, Koblenz

{harbusch, koch}
@uni-koblenz.de

2Max Planck Institute
for Psycholinguistics,

Nijmegen
gerard.kempen@mpi.nl

3Department of
Psychology,

Leiden University
cvbreuge@liacs.nl

Abstract

We describe a generation-oriented
workbench for the Performance
Grammar (PG) formalism, highlighting
the treatment of certain word order and
movement constraints in Dutch and
German. PG enables a simple and uni-
form treatment of a heterogeneous col-
lection of linear order phenomena in
the domain of verb constructions
(variably known as Cross-serial De-
pendencies, Verb Raising, Clause Un-
ion, Extraposition, Third Construction,
Particle Hopping, etc.). The central
data structures enabling this feature are
clausal “topologies”: one-dimensional
arrays associated with clauses, whose
cells (“slots”) provide landing sites for
the constituents of the clause. Move-
ment operations are enabled by unifica-
tion of lateral slots of topologies at ad-
jacent levels of the clause hierarchy.
The PGW generator assists the gram-
mar developer in testing whether the
implemented syntactic knowledge al-
lows all and only the well-formed per-
mutations of constituents.

1 Introduction

Workbenches for natural-language grammar
formalisms typically provide a parser to test
whether given sentences are treated adequately
— D-PATR for Unification Grammar (Kart-
tunen, 1986) or XTAG for Tree-Adjoining
Grammars (Paroubek et al., 1992) are early
examples. However, a parser is not a conven-
ient tool for checking whether the current
grammar implementation licenses all and only
the strings qualifying as well-formed expres-
sions of a given input. Sentence generators that

try out all possible combinations of grammar
rules applicable to the current input, are better
suited.

Few workbenches in the literature come
with such a facility. LinGO (Copestake &
Flickinger, 2000), for Head-Driven Phrase
Structure Grammar, provides a generator in
addition to a parser. For Tree Adjoining
Grammars, several workbenches with genera-
tion components have been built: InTeGenInE
(Harbusch & Woch, 2004) is a recent example.

Finetuning the grammar such that it neither
over- nor undergenerates, is a major problem
for semi-free word order languages (e.g., Ger-
man; cf. Kallmeyer & Yoon, 2004). Working
out a satisfactory solution to this problem is
logically prior to designing a generator capable
of selecting, from the set of all possible para-
phrases, those that sound “natural,” i.e., the
ones human speakers/writers would choose in
the situation at hand (cf. Kempen & Harbusch,
2004).

Verb constructions in German and Dutch
exhibit extremely intricate word order patterns
(cf. Seuren & Kempen, 2003). One of the fac-
tors contributing to this complexity is the phe-
nomenon of clause union, which allows con-
stituents of a complement clause to be inter-
spersed between those of the dominating
clause. The resulting sequences exhibit, among
other things, cross-serial dependencies and
clause-final verb clusters. Further complica-
tions arise from all sorts of ‘movement’ phe-
nomena such as fronting, extraction, disloca-
tion, extraposition, scrambling, etc. Given the
limited space available, we cannot describe the
Performance Grammar (PG) formalism and the
linearization algorithm that enables generating
a broad range of linear order phenomena in
Dutch, German, and English verb construc-
tions. Instead, we refer to Harbusch & Kempen
(2002), and Kempen & Harbusch (2002, 2003).

Here, we present the generation-oriented PG
Workbench (PGW), which assists grammar
developers, among other things, in testing
whether the implemented syntactic and lexical
knowledge allows all and only well-formed
permutations.

In Section 2, we describe PG’s topology-
based linearizer implemented in the PGW gen-
erator, whose software design is sketched in
Section 3. Section 4 shows the PGW at work
and draws some conclusions.

2 Linearization in PG and PGW

Performance Grammar (PG) is a fully lexical-
ized grammar that belongs to the family of tree
substitution grammars and deploys disjunctive
feature unification as its main structure build-
ing mechanism. It adheres to the ID/LP format
(Immediate Dominance vs. Linear Precedence)
and includes separate components generating
the hierarchical and the linear structure of sen-
tences. Here, we focus on the linearization
component.

PG's hierarchical structures consist of unor-
dered trees composed of elementary building
blocks called lexical frames. Every word is
head of a lexical frame, which specifies the
subcategorization constraints of the word. As-
sociated with every lexical frame is a topology.
Topologies serve to assign a left-to-right order
to the branches of lexical frames. In this paper,
we will only be concerned with topologies for
verb frames (clauses). We assume that clausal
topologies of Dutch and German contain ex-
actly nine slots — see (1).

 (1) Wat wil je dat ik doe? / what want you that I do
/‘What do you want me to do?’

 F1 M1 M2 … M6 E1 E2
 wil je

 ↑ ⇑
 Wat dat ik doe

The slot labeled F1 makes up the Forefield
(from Ger. Vorfeld); slots M1-M6 make up the
Midfield (Mittelfeld); slots E1 and E2 define
the Endfield (Nachfeld). Every constituent
(subject, head, direct object, complement, etc.)
has a small number of placement options, i.e.
slots in the topology associated with its “own”
clause.

How is the Direct Object NP wat ‘what’
'extracted' from the complement clause and
‘promoted’ into the main clause? Movement of
phrases between clauses is due to lateral to-

pology sharing. If a sentence contains more
than one verb, each of their lexical frames in-
stantiates its own topology. This applies to
verbs of any type — main, auxiliary or copula.
In such cases, the topologies are allowed to
share identically labeled lateral (i.e. left-
and/or right-peripheral) slots, conditionally
upon several restrictions (not to be explained
here; but see Harbusch & Kempen, 2002)).
After two slots have been shared, they are no
longer distinguishable; in fact, they are unified
and become the same object. In example (1),
the embedded topology shares its F1 slot with
the F1 slot of the matrix clause. This is indi-
cated by the dashed borders of the bottom F1
slot. Sharing the F1 slots effectively causes the
embedded Direct Object wat to be preposed
into the main clause (black dot in F1 above the
single arrow in (1)). The dot in E2 above the
double arrow marks the position selected by
the finite complement clause.

The overt surface order is determined by a
read-out module that traverses the hierarchy of
topologies in left-to-right, depth first manner.
E.g., wat is already seen while the reader scans
the higher topology.

3 A sketch of PGW’s software design

The PGW is a computational grammar devel-
opment tool for PG. Written in Java, it comes
with an advanced graphical direct-
manipulation user interface. All lexical and
grammatical data have been encoded in a rela-
tional database schema. This contrasts with the
predominance of hierarchical databases in
present-day computational linguistics. Rela-
tional lexical databases tend to be easier to
maintain and update than hierarchical ones,
especially for linguists with limited program-
ming experience. The software was designed
with an eye toward easy cross-language port-
ability of the encoded information. For German
we developed a lexicon converter that maps the
German CELEX database automatically to the
PGW format (Koch, 2004).

4 Generating verb constructions in
Dutch and German

In order to convey an impression of the capa-
bilities of the PGW, we show it at work in gen-
erating verb constructions that involve rather
delicate linearization phenomena: “Particle
Hopping” in Dutch (2), and “Scrambling” in
German (3).

The finite complement clause (2) includes
the verb meezingen ‘sing along with,’ where
mee ‘with’ is a preposition functioning as sepa-
rable particle. The three other verbs are auxilia-
ries. According to a topology sharing rule for
Dutch, clauses headed by auxiliaries are free to
share 4, 5 or 6 left-peripheral slots of their own
topology with that of its complement. The most
restrictive sharing option is shown in (2).

(2) ... dat ze dit (lied) zouden kunnen hebben
meegezongen

 ... that they this (song) would be-able-to have
 along-sung

 ‘... that they might have sung along this
(song)’

 M1 M2 M3 M4 M6 E1
 dat ze zouden
 ↑ ⇑
 kunnen
 ↑ ⇑
 hebben
 ↑ ⇑
 dit

lied
mee gezongen

The Direct Object NP dit (lied) ‘this (song)’
lands in M3 of the lowest topology. As this slot
belongs to the four left-peripheral ones, it is
always shared and its content gets promoted all
the way up into the highest clause (see single
arrows). Particle mee always lands in the fifth
slot (M4), i.e. in the optionally shared area.
Hence, its surface position depends on the ac-
tual number of shared left-peripheral slots. In
(2), with minimal slot sharing, mee stays in its
standard position immediately preceding the
head verb. In case of non-minimal topology
sharing, the particle may move leftward until
(but no farther than) the direct object, thus
yielding exactly the set of grammatical place-
ment options.

The quality of PGW’s treatment of Scram-
bling in German can be assessed in terms of a
set of 30 word order variations of sentence (3),
discussed by Rambow (1994), who also pro-
vides grammaticality ratings for all members of
the set. Seuren (2003) presents similar gram-
maticality judgments obtained from an inde-
pendent group of native speakers. As the rating
scores appeared to vary considerably (cf. (3a)
and (3b)), we checked which permutations are
actually generated by the PGW. It turned out
easy to find a set of topology sharing values
that generates all and only the paraphrases with
high or satisfactory grammaticality scores.

In conclusion, although the evaluation data
are very limited as yet, we believe they justify

positive expectations with respect to the poten-
tial of a topology based linearizer to approxi-
mate closely the grammaticality judgements of
native speakers and thus to avoid over- and
undergeneration.

 (3) a. … weil niemand das Fahrrad zu reparie-
ren zu versuchen verspricht

 because nobody the bike to repair
 to try promises

 ‘… because nobody promises to try to re-
pair the bike’

 b. *…weil zu versuchen das Fahrrad nie-
mand zu reparieren verspricht

References
Copestake, A. and Flickinger, D. 2000. An open

source grammar development environment and
broad-coverage English grammar using HPSG.
Procs. of the 2nd Internat. Conf. on Language
Resources and Evaluation (LREC), Athens.

Harbusch, K. and Kempen, G. 2002 A quantitative
model of word order and movement in English,
Dutch and German complement constructions.
Procs. of the 19th Internat. Conf. on Computa-
tional Linguistics (COLING), Taipei.

Harbusch, K. and Woch, J. 2004. Integrated natural
language generation with Schema-TAGs. In:
Habel, C., Pechmann, T. (eds.) Language Pro-
duction. Berlin: Mouton De Gruyter.

Karttunen, L. 1986. D-PATR: A Development En-
vironment for Unification Grammars. Tech.
Rep. CSLI-86-61. CSLI, Stanford, CA.

Kempen, G. and Harbusch, K. 2002 Performance
Grammar: A declarative definition. In Nijholt,
A., Theune, M., Hondorp, H. (eds.), Computa-
tional Linguistics in the Netherlands 2001. Am-
sterdam: Rodopi, 146-162.

Kempen, G. and Harbusch, K. 2003. Dutch and
German verb constructions in Performance
Grammar. In Seuren & Kempen, 2003.

Koch, U. 2004. The Specification of a German Per-
formance Grammar from CELEX Data in
Preparation for a German Performance Gram-
mar Workbench, Master's Thesis at the Com-
puter Science Department, U. Koblenz-Landau.

Paroubek, P., Schabes, Y., and Joshi, A.K. 1992.
XTAG – A Graphical Workbench for Develop-
ing Tree-Adjoining Grammars. Procs. of the 3rd
Applied Natural Language Processing Confer-
ence (ANLP), Trento, 216-223.

Rambow, O. 1994. Formal and Computational As-
pects of Natural Language Syntax. Ph.D. Thesis,
U. Pennsylvania, Philadelphia.

Seuren, P.A.M. 2003. Verb clusters and branching
directionality in German and Dutch. In (Seuren
& Kempen, 2003), 247-296.

Seuren, P. and Kempen, G. (eds.). 2003. Verb Con-
structions in Dutch and German. Amsterdam:
Benjamins.

