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Abstract

Ž . Ž .Due to the larger admixture of charge transfer CT in the intramolecular charge transfer ICT state than in the locally
Ž . Ž . X Ž .excited LE state of dual fluorescent molecules such as 4- dimethylamino benzonitrile, the radiative rate constant k ICT isf

Ž .smaller than k LE , irrespective of the ICT molecular structure. The validity of the TICT or PICT model can therefore notf
Ž . Ž .be tested with these data. The absence of dual fluorescence for 4- methylamino benzonitrile, 3- dimethylamino benzonitrile

and two dicyano-N, N-dimethylanilines, which cannot be explained by the TICT hypothesis, is caused by their large energy
Ž .gap D E S , S , which prevents the ICT state from becoming lower in energy than LE. q 2000 Elsevier Science B.V. All1 2

rights reserved.

1. Introduction

w xIn a recent Letter, Rettig et al. 1 reported spec-
tral and photophysical properties of a series of meta-
and para-substituted aniline derivatives. These data
were presented in an attempt to differentiate between

Ž .their twisted intramolecular charge transfer TICT
w xmodel 2,3 and two other models for the dual fluo-

Ž .rescence observed with 4- dimethylamino benzo-
Ž . w xnitrile DMABN and related molecules 4–9 . In

Ž .particular, the radiative rate constants k LE andf

) Fax: q49-551-201-1501; e-mail: kzachar@gwdg.de

X Ž . Ž .k ICT of the locally excited LE and the intra-f
Ž .molecular charge transfer ICT state of aminoben-

zonitriles and esters of aminobenzoic acid were dis-
cussed on the basis of the 1L r1L concept, withoutb a

considering the contribution from charge transfer
Ž .CT states. In addition, the reasons for the absence
of dual fluorescence in the case of the meta-sub-

Ž .stituted anilines such as 3- dimethylamino benzo-
Ž .nitrile m-DMABN were treated. As our model for

w xthe ICT reaction of DMABN 5–9 is in our view
w xmisinterpreted in Ref. 1 , this comment serves the

purpose of presenting a discussion of the signifi-
Ž . X Ž .cance of k LE and k ICT in connection with thef f

structure of the ICT state of the aminobenzonitriles.
Also, the predictive capabilities of the TICT and
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PICT models with respect to the occurrence or
nonoccurrence of dual fluorescence will be exam-
ined. For clarification, first an outline of the essential
aspects of the TICT, RICT and PICT models and
also of the 1L r1L nomenclature will be given.b a

2. Discussion

2.1. TICT, RICT and PICT. Statements on the struc-
ture of the ICT state

The dual fluorescence of DMABN, observed in
w xsolvents more polar than alkanes 3,10,11 , consists

of emissions from an aniline-like initially excited LE
state and from an ICT state, for which LE is the

w xprecursor 11,12 . The TICT model in its essence
makes a statement on the structure of the equili-
brated ICT state, assuming that in this state the
dimethylamino group of DMABN is twisted into a
plane perpendicular to that of the benzonitrile moi-

w x w xety. The RICT 4 and the PICT 6–9 models like-
wise define the molecular structure of the ICT state.
In these acronyms, R and P stand for ‘rehybridised’
and ‘planar’, referring to a bent and hence rehy-
bridised cyano group and to an essentially planar
molecule, similar to a quinoidal resonance structure
w x w x7,10,13 , respectively. Arguments pro 4,14 and

w xcontra 15–17 the RICT model, as well as experi-
w xments on which the PICT model is based 6–9 , can

be found in the literature. As Rettig et al. concentrate
w xtheir model comparison on TICT and PICT 1 , only

these models will be further discussed here.
In the PICT model, independent of the structure

Ž .of the ICT state, a small energy gap D E S , S1 2

between the two lowest excited singlet states is
considered to be an important requirement for the

w xoccurrence of dual fluorescence 5–9 . In this con-
nection, the terms vibronic coupling and pseudo-

w xJahn–Teller coupling have been used 5,6 . For a
discussion focused on the structure of the ICT state,
TICT should be confronted with the structural as-
pects of PICT and not in the first place with an

Ž .approach such as vibronic coupling Section 2.3 ,
which primarily addresses the dynamics of the LE™
ICT reaction, which is not an integral part of the
TICT hypothesis.

2.2. The 1L r1L conceptb a

The nomenclature 1L , 1B and 1L has beenb b a

introduced for unsubstituted alternant aromatic hy-
w xdrocarbons such as benzene and naphthalene 18 .

For these molecules, the ‘forbidden’ 1L state is theb

lowest singlet state S , whereas the more ‘allowed’1
1 w x 1L state is S 19 . The L concept is based on thea 2 b

symmetrical arrangement of the occupied and unoc-
cupied molecular orbitals. When the symmetry is
destroyed by substitution, such as in toluene or
methylnaphthalenes, this concept is no longer strictly
valid and 1L is mixed with 1L for S and viceb a 1

versa for S . Apart from this 1L r1L mixing, the2 b a
Ž . Ž .presence of the electron donor D and acceptor A

substituents in the case of DMABN leads to the
w xappearance of substantial CT character 20,21 , espe-

cially in the 1L state.a

2.3. Short- and long-axis polarisation. Vibronic coup-
ling

The S state of DMABN still retains some aspects1

of the 1L state of benzene, because of its polarisa-b

tion along the short molecular axis, perpendicular to
w xthe direction of the DrA-substituents 13 . We there-

Ž1 . w xfore use the notation S L 11 , notwithstanding1 b
Ž w x.its considerable dipole moment 9–10 D 22 . In the

S state, in contrast, 1L is strongly mixed with CT,2 a

both being long-axis polarised. The polarisation
w xspectra of DMABN 13 reveal that the red edge of

Ž .the absorption spectrum S is polarised in the short1
Ž1 .axis of the molecule L , whereas the main absorp-b

Ž . Ž1 .tion band S is long-axis polarised L , CT . A2 a

similar mixed polarisation is observed for the LE
w xfluorescence in ethanol at 77 K 13 . A short-axis

polarisation is detected at the blue edge of the spec-
trum, while the main LE fluorescence band is po-
larised in the direction of the long axis. This non-
uniform polarisation of the LE emission does not
indicate that there are two fluorescence bands, but

Ž1 .shows that vibronic coupling between S L and1 b
Ž1 .S L , CT is an important phenomenon in this2 a

w xmolecule 23 . Note that the observation that the
absorption and LE fluorescence bands of DMABN
are both long-axis polarised at their maxima does not
by itself constitute a reason to conclude that the
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Ž Ž1 .Lippert model level inversion of S L and1 b
Ž1 ..S L , CT is incorrect, a conclusion that led to the2 a

w xintroduction of the TICT model 24 , as the short-
wavelength edge of the LE fluorescence band is in
fact short-axis polarised.

( ) X ( )2.4. RadiatiÕe rate constants k LE and k ICTf f

w x X Ž .In Ref. 1 , the values for k ICT of DMABNf

and the corresponding ester derivative in acetonitrile
Ž .are compared with k LE data of a series of anilinesf

not showing dual fluorescence. As discussed in the
previous section, the LE and ICT states and hence

Ž . X Ž .their radiative rate constants k LE and k ICT aref f

determined by different admixtures of the 1L , 1Lb a

and CT zero-order states. Pure CT states, such as
1Ž y q.present in intermolecular exciplexes A D , have

X Ž 7 y1.small k values of the order of 10 s , mainly duef

to the large difference in CT character of the exci-
Ž .plex as compared with its Franck–Condon FC

Ž . w xground state AD 25–27 . As the dipole moment
Ž .17 D and therefore the CT character of the ICT
state of DMABN and other dual fluorescent DrA-
benzenes is considerably larger than that of LE
Ž . Ž . w x9–10 D and the ground state 6.6 D 22,28 , it is

X Ž .not surprising that also for DMABN k ICT isf
Ž . 7smaller than k LE , with values of 1.9=10 andf

7 y1 w x5.7=10 s in toluene at 258C, respectively 9 .

2.5. PJT model

It follows from the previous sections that the
w xmodel termed PJT in Ref. 1 does not represent our

view on the photophysics of DMABN. The PJT
scheme discussed there is not applicable to a DrA-
substituted benzene such as DMABN, for which CT
interactions play an important role. In fact, it only
holds for molecules with weakly perturbing sub-
stituents, such as alkyl-substituted aromatic hydro-
carbons, with singlet excited states without an appre-
ciable CT character. Such states are not stabilised in
polar solvents, unlike what is the case for the S and1

w xS states of DMABN 5,10,13 . This means that a2

conclusion on the applicability of either the TICT or
the PICT model cannot be derived from a compari-

Ž . X Ž .son of k LE and k ICT , as the difference be-f f

tween these radiative rate constants reflects that the
ICT state has a more pronounced CT character and

hence a larger dipole moment than the LE state, an
experimentally well-established fact on which no

w xdifference of opinion exists 22,28 .

2.6. PICT model

In our PICT model, different from PJT, the
Ž1 .S L , CT state has a substantially larger dipole2 a

Ž1 . w xmoment than S L 5,6 , which preferentially de-1 b
Ž1 .creases its energy relative to that of S L upon1 b

increasing the solvent polarity, see Figs. 1 and 1, b.
Ž .When the energy gap D E S , S is sufficiently small1 2

w x6,7 , a dynamic state reversal can occur after excita-
tion, leading to an emitting ICT state alongside LE,

Ž .and dual fluorescence appears Fig. 1b . During the
reaction from LE to ICT, changes in the molecular
structure take place, involving the configuration of
the amino nitrogen as well as the bond lengths in the

w xmolecule 5–9 , which changes will contribute to the
magnitude of the ICT reaction barrier E and thea

destabilisation energy dE of the FC ground stateFC
Ž .reached after the ICT fluorescence Fig. 1b . When

the ICT state is considered to be correlated with
Ž1 .S L , CT , on the basis of the similarity of their2 a

polarisation directions, the energy difference
Ž .D E S , S will determine whether the condition1 2

Ž . Ž .E ICT -E S can be fulfilled or not, see Fig. 1.1

( )2.7. Predictions from the TICT model. E ICT

The assumption of the TICT model that in the
ICT state of DMABN the dimethylamino group is
located in a plane perpendicular to that of the ben-
zonitrile moiety does by itself not offer the possibil-
ity to predict whether for a particular molecule dual
fluorescence will occur or not. When, however, the
electronic decoupling of the amino and benzonitrile
moieties of DMABN, as required by the TICT model,
would in fact take place in the ICT state, then it

Ž .would be possible to calculate its energy E ICT
Ž q. Ž y .from the redox potentials E DrD and E A rA

of these D and A moieties and the Coulomb energy
Ž y q. Ž . w xC A D , see Eq. 1 6,7,9,29 . The ICT state is

thereby considered to be similar to a weakly coupled
1Ž y q.intermolecular exciplex A D , a logical conse-

quence of the TICT model and its principle of
w x Ž .minimum overlap 2,3 . A calculation of E ICT

could then serve to test whether the energy of the
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Ž . Ž .Fig. 1. Representation of the planar intramolecular charge transfer PICT model, for two energy gaps D E S , S , depicting the ICT1 2
Ž . Ž .reaction of a potentially dual fluorescent molecule such as 4- dimethylamino benzonitrile DMABN . The reaction coordinate j involves

Ž . Ž .changes in the configuration of the amino group towards planarity and in the bond lengths. Dual fluorescence occurs when D E S , S is1 2
Ž .sufficiently small to allow the energy of the ICT state to become lower than that of S b . The directions of the transition dipole moments1

of the S , S and ICT states have been drawn next to the molecules. The strongly polar character of the ICT state is represented by a1 2
Ž .quinoidal resonance structure. D H is the enthalpy difference between the LE and ICT states. In b , E is the activation energy for the ICTa

reaction depicted by a curved arrow and dE is the energy difference between S and the Franck–Condon ground state reached by ICTFC 0

emission.

ICT state is lower than that of LE, an essential
requirement for the occurrence of an ICT reaction.

Ž .The applicability of Eq. 1 for dual fluorescent
systems such as DMABN has been employed as a
diagnostic tool for the verification of the TICT hy-

w xpothesis 29 .

E ICT sE DrDq yE AyrA qC AyDq .Ž . Ž . Ž . Ž .
1Ž .

It has been shown for a series of 4-
Ž .dialkylamino benzonitriles, however, that the linear

Ž . Ž .relation slope unity between E ICT and the differ-
Ž q. Ž y . Ž .ence E DrD yE A rA as required by Eq. 1

w xdoes not hold 9 . From the slope between 0.1 and
0.3 thereby obtained, it was concluded that the amino
and benzonitrile groups are strongly coupled in the
ICT state of DMABN, in accordance with the PICT
model, but in clear conflict with the TICT hypothe-
sis.

2.8. No dual fluorescence with MABN, m-DMABN,
34-DCDMA and 35-DCDMA

Ž . Ž .With 4- methylamino benzonitrile MABN , dual
fluorescence is not observed, even not in polar sol-

w xvents such as acetonitrile 5–9 . This cannot easily
be understood within the context of the TICT model
Ž Ž ..Eq. 1 , as the increase in oxidation potential
Ž q.E DrD of ;0.3 V brought about by the ex-

Ž .change from the dimethylamino DMABN to the
Ž .methylamino group MABN would be more than
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overcompensated by the substantial lowering of
Ž .E ICT by ;0.8 eV, due to the ICT dipole moment

w xof 17 D 22 , when going from an alkane solvent to
w xacetonitrile 6,11 . In addition, the difference of

Ž .around 0.1 eV between the energies E S of MABN1
w xand DMABN 5,9 would lead to a further increase

of yDG for the LE™CT reaction by this amount.
For m-DMABN as compared with DMABN, again

Ž Ž ..from the point of view of the TICT model Eq. 1 ,
two factors should lead to a decrease of yDG for
the ICT reaction. First, as correctly pointed out in

w xRef. 1 , the energy of the LE state of m-DMABN in
acetonitrile is ;0.5 eV lower than that of DMABN
in this solvent. Taking into account the stabilisation
of 0.8 eV for the ICT state in acetonitrile relative to
n-hexane discussed above, the remaining yDG of
;0.3 eV would still be sufficient to allow an ICT
reaction to occur with m-DMABN in acetonitrile and

w xeven to compensate for the small 1 decrease in the
Ž y q.absolute value of the Coulomb energy C A D

caused by the meta-position of the dimethylamino
and benzonitrile ions in the hypothetical TICT struc-
ture of m-DMABN. Nevertheless, dual fluorescence
is not observed for this molecule.

Another clearcut situation results when a second
cyano group is added to m-DMABN, giving 3,4-di-

Ž .cyano-N, N-dimethylaniline 34-DCDMA . In this
molecule, the energy of the proposed TICT state

Ž Ž ..would be lowered Eq. 1 by an amount of 0.65 eV
relative to that of DMABN, based on the difference
between the reduction potentials of benzonitrile
Ž . Žy2.35 V vs. SCE and 1,2-dicyanobenzene y1.70

. w xV vs. SCE 6,7,9 . When the simultaneous decrease
Ž .in energy ;0.4 eV of the LE state of 34-DCDMA

as compared to that of DMABN in acetonitrile is
taken into account, an energy gain of around 0.25 eV
relative to that of DMABN results for the ICT

w xreaction 6 and efficient dual fluorescence should
occur, which is not the case. A similar situation

Žholds for 3,5-dicyano-N, N-dimethylaniline 35-
. w xDCDMA 6,7 .

3. Conclusions

X Ž .The radiative rate constant k ICT of dual fluo-f

rescent molecules such as DMABN is smaller than
Ž . Žk LE due to the larger admixture of CT largerf

.dipole moment in the ICT state. A conclusion on the
validity of the TICT or PICT model can therefore
not be drawn from these data. The absence of dual
fluorescence for MABN, m-DMABN and two di-
cyano-N, N-dimethylanilines cannot be explained by
the TICT hypothesis. It is caused by the fact that the

Ž . Ž .requirement E ICT -E LE cannot be fulfilled due
Ž .to the large magnitude of D E S , S in these1 2

molecules, see Fig. 1a.
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