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Abstract 

Acquiring the sounds of a language involves learning to recognize distributional 

patterns present in the input. We show that among adult learners, this distributional 

learning of auditory categories (which are conceived of here as probability density 

functions in a multidimensional space) is constrained by the salience of the 

dimensions that form the axes of this perceptual space. Only with a particular ratio of 

variation in the perceptual dimensions was category learning driven by the 

distributional properties of the input. 

1. Introduction 

Learning the sounds of a language is a daunting task faced by 

both infants and the learners of a second language. 

Distributional learning is a reasonable candidate for a 

domain-general category discovery mechanism and almost 

certainly plays a central role in the acquisition of phonetic 

categories. In the case of the infant, such learning is 

necessarily unsupervised since infant listening abilities 

precede their speaking abilities (Juszcyk, 1997; Aslin, 

Juszcyk, & Pisoni, 1998).  

To the extent that the members of two categories occupy 

distinct regions of perceptual or conceptual space, given 

sufficient data a distributional learner could, in principle, 

determine that there are two categories, and discover the 

important characteristics of those categories. Evidence 

consistent with distributional learning of visual and auditory 

categories has been shown even in infants (Younger 1985; 

Saffran, Aslin, & Newport 1996). Maye, Werker and Gerken 

(2002) demonstrated such learning in a laboratory setting. 

They exposed two groups of infants to stimuli on an artificial 

voice-onset-time (VOT) continuum extending from [da] to 

unaspirated [ta], a distinction not present in English. One 

group of infants listened to sounds in which the VOT 

followed a unimodal distribution and the other group listened 

to sounds that followed a bimodal distribution. Following this 

exposure, infants listened to stimuli that were either 

alternating or non-alternating stimulus sets. Only the infants 

that were exposed to the bimodal stimuli evidenced a 

preference for alternating over non-alternating stimuli. Maye 

and Gerken (2001, 2002) found a similar sensitivity to 

distributional information for adults with similar stimuli. 

Infant learning of phonetic categories takes place without 

the benefit of feedback. Unsupervised learning has been 

studied in many visual category learning experiments (Ashby, 

Queller & Beretty, 1999; Love, 2003) but rarely in the 

auditory domain. In the present studies, listeners were never 

given trial-by-trial feedback about their categorizations. There 

were cues to category membership, however. In all 

experiments the distributional properties of the stimuli could, 

in principle, be used to determine the category structure and 

classify the stimuli accordingly. In addition to distributional 

information, a condition with a perfectly correlated, but 

temporally distinct, auditory cue to category membership was 

also tested. 

Speech is a multidimensional signal containing 

regularities of many different sorts. As a result, any viable 

account of distributional learning of speech categories must 

account for the learning of categories that are defined over 

more than one dimension. To address this, we constructed a 

two dimensional perceptual space (Shepard, 1957), spanned 

by the dimensions formant frequency and sweep rate. 

Stimulus tokens were inharmonic tone complexes selected 

from this space of possible sounds. Formant frequency was 

defined as the frequency of the spectral peak of the signal. 

Sweep rate was defined in octaves per second as the speed 

with which the base frequency of the signal (F0) rose with 

time. The dimensions that constituted the perceptual space 

were equalized in terms of just noticeable difference (JND), a 

common procedure in psychophysical experimentation 

(Thurstone, 1927; Ashby & Perrin, 1988). In experiment 1, 

the JND for sweep rate equivalent to that found for formant 

frequency was determined to aid in stimulus scaling for the 

subsequent categorization experiments. 

Formant frequency and sweep rate have been shown to be 

important in the speech signal. For example, formant 

frequency plays a crucial role in determining the identity of 

vowels (Ladefoged & Broadbent, 1957; Hillenbrand, Getty, 

Clark, & Wheeler, 1995). Fundamental frequency variation is 

central to prosody and is a particularly important component 

of child directed speech (e.g., Fernald, 1989). 

 

2. Experiment 1: JNDs  

Perceptual spaces are traditionally constructed by equalizing 

the JNDs of the perceptual dimensions spanning the space 
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(Shepard, 1957). The JND for formant frequency has been 

determined by Glasberg and Moore (1990) to be 2.98 Hz (or 

0.12 ERB, a perceptual counterpart of Hz). In Experiment 1 

the JND for sweep rate was determined using a same/different 

paradigm. 

2.1. Method 

2.1.1. Subjects 

Thirty-seven listeners participated in the pilot experiments. In 

this and the following experiments, participants were drawn 

from the subject pool of the Max Planck Institute for 

Psycholinguistics and received a small payment for their 

participation. All were students from the University of 

Nijmegen and reported normal hearing. Listeners were 

randomly assigned to one of three conditions. 

2.1.2. Stimuli 

The stimuli were inharmonic tone complexes that varied in 

formant frequency and sweep rate. Table 1 shows the range of 

the stimuli tested; the size of the difference in sweep rate 

between the members of each stimulus pair; the specific 

sweep-rate differences that were tested in each condition; and 

the ERB level at which these differences were tested. For 

example, Condition 3 tested whether subjects could reliably 

detect differences of 1 and 2 octaves per second at two ERB 

levels (18.8 and 19.7) with stimuli ranging from 5 octaves per 

second to 15 octaves per second. A stimulus pair in this 

condition could thus be (5.0 octaves per second-18.8 ERB 

versus 6.0 octaves per second – 18.8 ERB) testing the ability 

to judge a difference of 1 octave per second at 18.8 ERB.  

 

Table 1: Stimulus characteristics per condition and the 

experimental properties of the 3 conditions. 

 

Cond

. 

Stimulus 

Range 

(oct/s) 

Step 

Size 

(oct/s) 

Differences 

Tested 

(oct/s) 

No. 

of 

pairs 

Tested  

ERB 

levels 

1 2.2-2.8 0.2 0.2/0.4/0.6 192 17.9/20.6 

2 5.0-15 0.5 0.5/1.5 400 18.8/19.7 

3 5.0-15 1.0 1.0/2.0 400 18.8/19.7 
 

2.1.3. Procedure 

All conditions consisted of same/different judgment tasks in 

which half of the stimulus pairs were same trials and half were 

different trials. Listeners were seated comfortably in a sound-

attenuated room and listened over Sennheiser headphones (HD 

270). If they considered the sounds to be the same, they 

pressed a button labeled (the Dutch equivalent of) “same”. If 

they considered the sounds to be different, they pressed a 

button labeled (the Dutch equivalent of) “different”. 

All conditions took about 30 minutes and participants 

were offered a break halfway through the experiment. The 

comparisons were done at two levels of ERB and sweep rate. 

For example, in Condition 1, the difference between 2.2 

octaves per second and 2.4 octaves per second was compared 

at two ERB levels (18.8 and 19.7). This way, possible 

interactions between the two dimensions could be 

investigated. Differences in sweep rate were also compared at 

different levels to investigate possible differences in JNDs at 

different levels of sweep rate. For example, in Condition 3 the 

differences between 5.0 and 6.0 octaves per second and that 

between 14.0 and 15.0 octaves per second were investigated 

to assess the discriminability of 1 octave per second. 

2.2. Results and discussion 

All three conditions yielded hit and false alarm rates that were 

used to compute the d' values associated with each difference 

in sweep rate. A d' of about 1 is considered to reflect two just 

perceptually separable stimuli; our goal was to find a sweep 

rate with a d' as close to 1 as possible. Table 2 shows the 

results. ERB of “Low” refers to 17.9 in Condition 1 and 18.8 

otherwise; “High” refers to 20.6 in Condition 1 and 19.7 

otherwise, as listed in Table 1. 

 

Table 2: Mean d’ values for the judged differences in sweep 

rate at two different ERB levels. d’ values of at least 1.0 are 

given in boldface. 

  Condition 1 Condition 2 Condition 3 

  Difference (octave per second) 

 ERB 0.2 0.4 0.6 0.5 1.5 1.0 2.0 

Low 0.3 0.9 1.1 0.6 1.3 1.9 3.1 
d' 

High 0.5 0.7 1.3 0.4 1.4 1.5 2.9 

 

A difference in sweep rate between 0.6 octaves per second 

(Condition 1) and 1.5 octaves per second (Condition 3) has a 

d' of approximately 1. Condition 1 shows that sweep rate 

differences below 0.4 octaves per second were difficult to 

distinguish. Condition 2 and 3 showed that differences in 

sweep rates greater than 1.5 were very easy to distinguish. 

Somewhere between 0.6 and 1.5 lies the d' value of 1 sought 

in this pilot experiment. Because the d's for 0.5 from 

Condition 2 were considerably lower than 1, we estimated 

that a sweep rate of about 1.0 octave per second would 

constitute a JND. This value was then used in the following 

category learning experiment. 

Table 2 also seems to show that this perceptual space is 

not homogeneous: a high ERB level is associated with higher 

mean d' values for some sweep rate differences. However, the 

d's of the different ERB levels do not differ significantly (all p 

> 0.18, t[max] = 0.95). Given the absence of a significant 

difference between the higher and lower ERB rate, we took 

the simplifying step of using a single JND for sweep rate at all 

ERB levels. 

3. Experiment 2: Category Learning 

In Experiment 2, listeners were exposed to members of two 

categories separable by sweep rate (with category-irrelevant 

variation in formant-frequency), or separable by formant-

frequency (with irrelevant variation in sweep rate). This 

approach is very similar to paradigms used in visual category 

learning research. The JND for sweep rate determined in the 

pilot experiments (1.0 octave per second) and the JND for 

formant frequency (0.12 ERB) derived from Glasberg and 

Moore (1990) were used to construct the stimuli.  

The experiment consisted of a learning phase in which 

listeners heard sample members of each category, drawn from 

each category’s distribution (left and middle panels of Figure 

1) and a maintenance phase where the stimuli were 

positioned in an equidistantly (7 x 7) spaced grid, thus not 

providing any further distributional information (right panel 

of Figure 1). 
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Learning of auditory categories was examined under two 

conditions: 1) exposure to the stimuli with only the 

distributional properties of the categories as cues to category 

membership and 2) exposure to the stimuli where each 

stimulus was followed by an nonlinguistic auditory “label” 

that served as a perfectly correlated cue to category 

membership. To equalize both conditions in terms of auditory 

complexity, each stimulus of condition 1 was followed by an 

uninformative auditory label. 

The orientation of the probability density functions of the 

learning stimuli determined the relevant and irrelevant 

dimension for the listeners. In the learning phase of 

Conditions 1 and 2, formant frequency was the relevant 

dimension (second panel of Figure 1) whereas in the learning 

phase of in Conditions 3 and 4, sweep rate was the relevant 

dimension (first panel of Figure 1). 

 

Figure 1: The design of the experiments: learning phases with 

distributional information and a neutral maintenance phase 

used to test learning. 

 

Thus, the experiment had a between-subjects 2x2 design: 

two learning conditions (informative labels versus 

uninformative labels) by two orientations (sweep relevant 

versus formant frequency relevant). 

3.1. Method 

3.1.1. Subjects 

Twenty-four participants (six in each condition) were drawn 

from the MPI subject pool. 

3.1.2. Stimuli 

The 224 learning stimuli (2 categories x 112 stimuli in each 

category) as well as the 49 maintenance stimuli were 

inharmonic sound complexes that differed in both formant 

frequency and sweep. The labelling sounds were two simple 

and easily distinguishable sounds (the sound of a book being 

shut played forward or backward). 

3.1.3. Procedure  

Listeners were seated in a soundproof booth and listened to 

the stimuli over Sennheiser headphones (HD 270). In the 

learning phase, listeners heard the distributionally defined 

stimuli with informative or uninformative labels, but did not 

categorize them. Depending on condition, either formant 

frequency or sweep rate was the relevant dimension of 

variation in the learning phase. 

After the learning phase, listeners' category judgments 

were tested in a forced-choice category labeling task: in the 

maintenance phase they had to categorize 196 (49 stimuli x 4 

repetitions) maintenance stimuli as they saw fit. This phase 

was intended to neutrally scan the categorization tendencies 

of the listeners without providing them with new information 

about the category distributions. 

3.2. Results and discussion 

Responses were analyzed using logistic regression 

(Agresti, 1990). A logistic regression analysis yields a β-

weight for each predictor. The dimensions were entered as 

predictors for the categorization response. Figure 2 shows the 

mean β-weights of each dimension in each condition. It is 

clear that sweep rate was the dimension used whether it was 

the relevant dimension or not. Further, the “labeling sound” 

was apparently of no assistance in leading listeners to the 

distributional categories. 

An ANOVA with Dimension (relevant versus irrelevant) 

as within-subjects variable and Orientation (formant 

frequency relevant versus sweep rate relevant) and Condition 

(listening versus labeling) as between-subjects variables 

indicated no significant effects for Dimension (F [1,27] = 

0.004, n.s.), Orientation (F [1,27] = 0.46, n.s.) or Condition 

(F [1,27] = 0.47, n.s.). 

Thus, listeners favored the use of rise in fundamental 

frequency, irrespective of whether this was the relevant 

dimension, and in spite of the fact that variability in the 

category structures was approximately equalized in JND units 

for both dimensions. Apparently, listeners were not sensitive 

to the different category structures. The interaction between 

Orientation and Dimension was highly significant (F [1,27] = 

139.71, p < 0.000) indicating the preference for sweep rate, 

irrespective of whether it was the relevant condition or not.  

 

 
 

Figure 2: Mean β-weights obtained in the 

maintenance phase for two category structures 

(formant frequency. relevant or sweep rate relevant) 

and under two learning conditions (without label cue, 

or with it). Error bars represent SE.  

This absence of distributional learning warranted 

reconsideration of the chosen JNDs. Apparently, the JNDs 

from the same/different paradigm did not transfer to the 

categorization experiment. In Experiment 3, we systematically 

manipulated the size of the difference in sweep rate in an 

attempt to find a “sweet spot” for distributional learning in a 

perceptual space defined by formant frequency and sweep 

rate. 
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4. Experiment 3: finding the sweet spot 

The rationale of Experiment 3 was that by systematically 

comparing a set of ranges of variation on the sweep 

dimension, we might determine a “sweet spot” in the ratio of 

variances in sweep and formant frequency at which 

distributional information in the exposure stimuli would drive 

listeners’ category learning in the learning phase and 

subsequent identification decisions in the maintenance phase. 

4.1. Method 

4.1.1. Subjects 

Twenty-four participants (4 in each of the 6 conditions) were 

drawn from the MPI subject pool. 

4.1.2. Stimuli 

The stimuli were identical to those used in Experiment 1: 

inharmonic sounds that differed in formant frequency and 

sweep rate. Depending on condition, either the variation in 

formant frequency was relevant for distinguishing the 

categories and sweep rate was irrelevant or vice versa (see the 

first and second panel of Figure 1). The conditions also 

differed in the range of variation on each dimension in units 

determined by the pilot experiment. With respect to the JND 

of Experiment 2, where the ratio in variation between the two 

dimensions was 1:1 (sweep rate:formant frequency), 

Experiment 3 tested ratios of 0.5:1 (“sweep 2” condition), 

0.25:1 (“sweep 4” condition), or 0.125:1 (“sweep 8” 

condition). 

4.1.3. Procedure 

The procedure was identical to the informative-labeling 

conditions of Experiment 1. In the learning phase, listeners 

heard a stimulus that was immediately followed by an 

acoustic label that correlated perfectly with category 

membership. In the maintenance phase, listeners were asked 

to categorize the stimuli as they saw fit (without the acoustic 

labels present). 

There were six experimental conditions (2 category 

structures x 3 levels of range of variation in sweep rate) in the 

experiment. Four listeners participated in each condition. 

4.2. Results and discussion 

The results from the maintenance phase were again analyzed 

with a logistic regression analysis yielding a β-weight 

indicating each subject's use of each dimension. Figure 3 

shows the mean β-weights for all six conditions. In the Sweep 

2 condition, wherein the range in variation for sweep rate was 

half as great as it was in Experiment 2, listeners still had a 

higher β-weight for sweep rate, irrespective of whether it was 

the relevant dimension or not. 

When the range in variation for sweep rate was lowered to 

0.125 times that of the original range (i.e., in the Sweep 8 

condition), however, the variation in sweep rate was 

apparently too small and the β-weight for formant frequency 

was higher than that for sweep rate, independently of its 

relevance to the category structure.  

 

 

Figure 3: The mean β-weight obtained per orientation 

(formant frequency or sweep rate relevant) per amount 

of variation of sweep rate (0.5; 0.25; and 0.125 of the 

original 1 octave per sec.). 

Finally, with a sweep rate of 0.25 octaves per second the 

relevant dimension was the one that was used most by 

listeners. In other words, only when the JND for sweep rate 

was 0.25 of the original, the experimental manipulations were 

not washed out by the differences in salience of the different 

dimensions. The effect was still quite small when sweep rate 

was the relevant dimension, but compared to when formant 

frequency was relevant, the differences were considerable. An 

ANOVA with Dimension (relevant versus irrelevant) as 

within-subjects variable and Orientation (formant frequency 

relevant versus sweep rate relevant) as between-subjects 

variable and the β-weights of each dimension a dependent 

variables indicated a significant main effect of Dimension (F 

[1,6] = 5,87, p < 0.05). This shows that listeners were able to 

determine and use the relevant dimension in their 

categorizations. 

In sum, the stimulus set of condition “Sweep 4”, 

constructed by considering 0.25 octaves/sec as comparable to 

0.12 ERB, was the only set that yielded significant effects of 

the category learning phase. Doubling that variation in the 

sweep-rate dimension (condition Sweep 2) led listeners to 

attend primarily to sweep rate; halving that variation (Sweep 

8) led listeners to attend primarily to formant frequency. The 

numerical pattern of data suggests that the true sweep-rate 

match to a JND of 0.12 ERB might be somewhat higher than 

0.25 octaves/sec, given that at this rate listeners over-used the 

frequency dimension when sweep rate was relevant for 

categorization. 

5. General discussion 

These experiments used two important dimensions for speech 

recognition to show that category structures of identical 

formal separability varied in their learnability according to 

how variation in the dimensions was scaled. The results also 

show the validity of the logic of conducting consecutive 

categorization experiments with differing sweep rates to find 

the “sweet spot” where the distributional characteristics of the 

stimuli do drive category learning and subsequent 

identification. There may be such a “sweet spot” for all 

combinations of perceptual dimensions. However, some 

dimensions are likely to be more susceptible to learnability 

differences due to scaling than others. 
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Explanations for why some dimensions have a smaller 

and more unstable sweet spot compared to others may turn on 

the extent to which a dimension is verbalizable. Ashby, 

Alfonso-Reese, Turken and Waldron (1998) deployed a 

similar argument with regard to categorization rules. Rules 

that are easier to verbalize are used more often and guesed at 

sooner in unsupervised categorization than rules that are 

harder to verbalize. Analogously, dimensions that are easier to 

verbalize could be less vulnerable to relative range of 

variation effects.  

Another line of reasoning is that the difference in dynamic 

properties is involved in the relative range effect. Dynamic 

dimensions tend to be salient. Because sweep rate is dynamic 

and formant frequency is not, the finetuning of these 

dimensions to one another involves more than just equalizing 

their JNDs. The JND for sweep rate has to be low enough to 

compensate for the salience it has compared to formant 

frequency due to its dynamic properties. JNDs obtained in a 

discrimination task might not transfer to the JNDs in a 

categorization task (see e.g. Nosofsky, 1986 and Ashby & 

Lee, 1991), at least not when distributional learning is at 

stake. 

In sum, while distributional learning may in principle be a 

universal learning mechanism, it is constrained by saliency 

biases of the listeners. 
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