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Pancreas development and diabetes 
Luc St-Onge*, Roland Wehr* and Peter Grussf 

The past few years have seen an increase in interest about the 
molecular and genetic events regulating pancreas 

development. Transcription factors such as Pdxl , ~48 and 

Nkx2.2 have been shown to be essential for the proper 
differentiation of exocrine and endocrine tissue; however, 

pancreas development also involves intricate interactions 

between the pancreatic epithelium and its surrounding 

mesenchyme. Signalling factors emanating from the notochord 

have been shown to repress Sonic hedgehog expression in the 
endoderm whereas signals originating from the pancreatic 

mesenchyme determine the proportion of exocrine to 

endocrine tissue. Understanding the molecular and genetic 

events underlying pancreas development also opens the door 
for devising new therapeutic strategies against pancreatic 

diseases such as diabetes and cancer. 
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Abbreviations 
FGF fibroblast growth factor 
HNF hepatocyte nuclear factor 
Ihh Indian hedgehog 
MODY maturity-onset diabetes of the young 
NIDDM non-insulin-dependent diabetes mellitus 
PP pancreatic polypeptide 
PtC Patched 
Shh Sonic hedgehog 

Introduction 
‘The pancreas is an essential organ important for digestion 
and glucose homeostasis in higher organisms. hlalfunction 
of the pancreas results in several debilitating diseases such 
as diabetes. pancrearitis and pancreatic cancer. Recent 
advances in pancreas development have allowed the dis- 
covery of a certain number of key transcription and 
signalling factors necessary for the proper differentiation of 
the various pancreatic cell types. ‘I‘he pancreas possesses 
both an exocrine function inl,olved in the delivery of 
enzymes into the digestive tract and an endocrine function 
by i;hich several hormones are secreted into the blood- 
stream of an organism to co-ordinate and regulate the use 
of glucose. The exocrine function is performed by acinar 
cells that produce v-arious digestive enzymes (amylase, 
proteases. nuclease, etc.) and duct cells that transport 
these enzymes to the intestine. l’he functional unit of the 
endocrine pancreas are the islets of Langerhans which are 
dispersed throughout the exocrine portion of the pancreas 

and are composed of four cell types: CC, p, 6 and PI’ cells. 
‘I-he insulin-producing p cells represent the majority of the 
endocrine cell population and form the core of the islet 
whereas the sparser a, 6 and IV’ cells secrete glucagon, 

somatostatin and a pancreatic polypeptide respectively 
and are found at the periphery of the islets. 

Pancreas organogenesis involves a sequential cascade of 
inductive events in association w-ith the activation of spe- 
cific transcription factors. During early embvogenesis, the 
pancreas arises from an cvaginacion of the foregut to form 
initially a dorsal, and at a later stage, a ventral epithelial 
bud. Roth buds subsequently proliferate co form multiple 

branches and fuse together to make a functional organ. 
I)uring this process, ic is thought that both exocrine and 
endocrine cells differentiate from a common pluripocent 
progenitor derived from the endoderm. 

Transcription factors and pancreas 
development: an increasing list 
In the past few years, a growing number of transcription 
factors have been shown to be necessary for proper pan- 
creas development. ‘I‘hrse transcription factors are listed 
in ‘l’dble 1 and are discussed extensively in two recent 
reviews [l,Z]. Recent additions to the list include the 
exocrine DNA- binding factor p4X and the NKZ 
home&ox Nkx2.2. 1~48 is a pancreas-specific basic helix- 
loop-helix protein chat, along with the ubiquitously 
expressed ph4 and 1~75 proteins, will form the hetero- 
oligomeric transcription complex Pl‘Fl [3]. Whereas 
P’I’I:l is necessary but not sufficient for regulation of 
exocrine pancreas-specific gene expression, p4X by itself 
is also involved in early pancreas development: mutant 
mice lacking 1~48 fail to develop any exocrine tissue [4”]. 
IIiffcrentirltion of the endocrine cell population does 

occur in the absence of p4X but these cells are found dis- 
persed throughout the adjoining spleen. ‘I’he exact 
circumstances which allow the endocrine cells co populate 
rhe spleen are difficult to understand. Ic is most likely 
that, in the absence of exocrine tissue, the differentiated 
endocrine cells migrate freely from the pancreatic cpithe- 
lium through the surrounding mesoderm and into the 
spleen. What is less clear is why the spleen is chosen as 
the final resting place for the cells instead of other tissues, 
such as the intestine or the liver. It is possible that the 
spleen may provide a more favourable en\:ironmcnt for 
the survi\:al and function of the endocrine cells in the 
absence of exocrine tissue. 

‘I-he transcription factor Nkx2.Z is first expressed in the 
pancreatic epithelium as the dorsal bud is being formed in 
day 9.5 mouse embryos IS*]. As differentiation proceeds, 
Nkx2.2 expression becomes restricted to all p cells and 
most a and PP cells. Expression is not detected in mature 
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Table 1 ~ ~--.~ 

Relevant transcription factors involved in pancreas development. 

Transcription Onset of Expression in 
factor expression’ adult pancreas 

Pdxl 8.5 p-cells 

Is11 9.0 p-, a-, S-, PP-cells 
Dorsal mesenchyme 

Pax6 9.0-9.5 p-, a-, S-, PP-cells 

____- 

.---~---- ~__ 

Pancreas phenotype References 
in null mutant mice 

Absence of pancreas. mG91 

Absence of endocrine cells. 
No differentiation in dorsal bud. [401 

Absence of glucagon cells. 141,421 
Islet malformation. 

Pax4 9.5 p-, 6-, PP-cells 

Nkx2.2 9.5 p-, a-, PPcells 

Nkx6.1 9.0-9.5 p-cells 

NeuroD/BETAS 9.5 fi-, o.-, 6-, PP-cells 

Absence of insulin and Somatostatin cells. 
Increase in glucagon cells. 

Islet mass reduced. 
Absence of insulin cells. 
Decrease in glucagon cells. 

NP 

Reduction of endocrine cells. 
Islet malformation. 

1281 

[5-l 

1431 

1441 

P46 10 Exocrine cells Absence of exocrine cells. 
Endocrine cells found in spleen. 

[4”1 

*In mouse embryos. NP, not published 

6 cells. In :VkxZ.L homozygous mutant mice. there is a 
decreased islet cell mass with a complete absence of 
insulin-positive cells and a severe reduction in the 
glucagon cell population [S’]. IJnsurprisingly, somato- 
statin-producing cells remain unaffected and a slight 
reduction in the number of PI-‘-producing cells is observed. 
Cells in the mutant islet clusters do not express insulin, 
glucose transporter 2 or glucokinase characteristics of 
mature hormone-producing p cells but certain early mark- 
ers such as PA-l, Pa~6, islet amyloid polypeptide and 
prohormone convertase l/3 are detected, suggesting that 
cells had undergone some level of p-cell differentiation 
before being arrested in an immature state. Therefore, 
Nkx2.2 is involved in the terminal differentiation of p cells 
into functional hormone-producing cells. 

Finally, with the exception of ~38, almost all transcription 
factors described to date are involved in endocrine cell 
differentiation. Although these factors facilitate a better 
understanding of the genetic mechanisms involved in the 
generation of exocrine and endocrine cells, much work is 
still needed before the definitive lineage of each cell type 
can be determined. In particular, the gene(s) involved in 
establishing and defining the early multipotent progenitor 
cell from which all pancreatic cells are putatively derived 
remains unknown. It is also becoming clear that most tran- 
scription factors possess early functions involved in the 
differentiation of the various cells types and late functions 
involved in maintenance, function and the optima1 
expression of hormonal or enzymatic genes in adult 
mature cells. Tissue- and temporal-specific mouse 
mutants, as well as in aitro organ culture studies, will sure- 
ly permit us in the future to determine additional 
functions for each gene. 

Early and late inductive events: the role of the 
notochord and surrounding mesenchyme 
In addition to transcription factors, pancreas formation also 
requires a series of initial and secondary inductive signals 
emanating from surrounding mesodermic tissues. Early 
events that define and pattern the region of the endoderm 
which will give rise to the pancreas are undefined but a 
pre-patterning of the endoderm seems to occur that will 
define and specify the arca of the embryonic foregut from 
which the pancreatic buds will form. Spatial expression of 
members of the hedgehog family in the endoderm strong- 
ly suggest such a patterning of the foregut [h]. Although 
both Sonic hedgehog (Shh) and Indian hedgehog (Ihh) are 
expressed along the entire endodermic gut, the region that 
will give rise to the future pancreas does not express either 
molecules (Figure la). -l‘he region devoid of hedgehog 
expression also coincides to the region where Pdxl will 
first be expressed [7,8]. It is thought that expression or 
repression of S& in the endoderm is important in deter- 
mining the differentiation of the surrounding mesoderm 
into specialised intestinal or pancreatic mesenchymes. 
This is supported by the observation that Patched (Ptc), a 
candidate receptor for Shh, is expressed in the mesoderm 
surrounding the stomach and duodenum but is absent 
from pancreatic mesoderm [Y]. Furthermore, ectopic 
expression of S’Mz in the pancreatic epithelium transforms 
the pancreatic mesoderm into smooth muscle although it 
also induces the differentiation of the epithelium into a 
mixture of pancreatic and duodenal cell types [6]. 

Experiments performed in chicken have shown that close 
contact of the notochord to the dorsal endoderm inter- 
venes in SM repression of the pancreatic epithelium and 
the subsequent activation of pancreatic genes such as 
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IVXI, Pad, Isle, insulin and glucagon in the dorsal bud 
[lo]. In the ventral bud, however, transcriptional regula- 
tion of these genes does not seem to rely entirely on the 
notochord. The exact nature of the signals provided by the 
notochord and its action, whether direct or indirect, on the 
pancreatic epithelium remains to be clarified. Notochord 
factors such as activin-PB and fibroblast growth factor 2 
(FGFZ) appear to participate in the repression of endoder- 
mal S/l/r in the pancreatic anlage [9”,11]. Additional 
factors, possibly from other sources, might also be involved 
as there is no patterning of either activin-PB, FGFZ or 
other known signalling factors in the notochord that corre- 
spond to the pre-patterning seen in the endoderm. 
Interestingly, cyclopamine, a steroid alkaloid teratogen 
produced by the plant species Veratmm caiifrnicum, can 
promote pancreatic development [ 12’1. Cyclopamine acts 
as an inhibitor of hedgehog signalling possibly by affecting 
cholesterol biosynthesis and the functional status of Ptc in 
target tissue [13]. ‘Treatment of endodermic foregut and 
surrounding mesoderm with cyclopamine increases the 
region of the endoderm that does not respond to Shh sig- 
nailing. As a result, there is an extension of Pdxl 
expression in the epithelium and formation of heterotopic 
pancreatic structures in the distal stomach and duodenum. 
Cyclopamine effect on the endoderm, however, requires 
the presence of the surrounding mesenchyme. 
Nonetheless, stomach and intestinal mesenchymes may 
also be affected by cyclopamine as PR expression in these 
tissues is also reduced. 

Pancreas development also requires signals originating 
from the pancreatic mesenchyme (Figure lb). These sig- 
nals will determine the exocrine-endocrine tissue ratio in 
the pancreas. The mesenchyme is particularly important in 
stimulating exocrine development while restricting 
endocrine differentiation. Studies have shown that the 
removal of large portions of the mesenchyme in pancreas 

organ culture will abolish development of the exocrine 
cells and promote exclusive differentiation of the epitheli- 
urn into endocrine tissue (141. One of the secreted 
mesodermic factors that could participate in the induction 
of exocrine development is follistatin, an inhibitor of fat- 
cars important for cellular differentiation such as activin 
and bone morphogenetic protein 7. Indeed, follistatin can 
replace the effect of mesenchyme on exocrine differentia- 
tion in organ culture assays [1.5”]. Fohtatin is also 
expressed in the pancreatic mesenchyme during embryo- 
genesis. As activin is known to stimulate endocrine 
differentiation, it is conceivable that follistatin restricts the 
effect of activin on the epithelium and therefore favours 
exocrine differentiation. 

Pancreatic transcription factors and diabetes 
In general, it is assumed that most cases of non-insulin- 
dependent diabetes mellitus (NIDDM) are the results of 
polygenic disorders: however, several monogenetic forms 
have been identified. Maturity-onset diabetes of the 
young (MODY) is characterised by autosoma] dominant 

Figure 1 

(b) 

Illustration representing the mesenchymal-epithelial signalling 
occurring during pancreas development. (a) Before the formation of 
the pancreatic buds, a pre-patterning of the gut endoderm renders the 
dorsal endoderm competent to respond to specific signals coming 
from the notochord. Notochord factors such as activin$B, FGF2 and 
probably other unidentified factors will repress endodermal Shh 
expression thereby permitting the expression of Pdxl and other 
pancreatic developmental genes. (b) As the pancreatic buds form and 
proliferate, factors produced by the mesenchyme surrounding the 
pancreatic epithelium will favour the development of the exocrine 
tissue while restricting endocrine differentiation. Follistatin and 
additional unknown factors probably participate in this process. The 
gut endoderm and possibly the notochord may also be involved in 
specifying the pancreatic mesenchyme from intestinal mesenchyme. 
DB, dorsal bud; VB, emerging ventral bud. 

inheritance and defects in insulin secretion causing an 
early onset of NIDDM, usually before the age of 25. 
Members of the hepatocyte nuclear factors (HNF) family 
turned out to be responsible for different types of mono- 
genetic MODY. Recent findings [16,17] have shown that 
mutations in the homeobox-containing gene HNF-la: and 
in the orphan nuclear receptor HNF-~CX can be associated 
with MODYl and MODY3 respectively. These mutations 
interfere particularly with the transactivation, dimerization 
and DNA-binding activities of the HNF-proteins. imply- 
ing that the diabetic phenotype is caused by loss in the 
regulation of HNF target genes. Transgenic mouse models 
and analysis of the mutated proteins showed that HNF-la 
and HNF-4a participate in the control of glucose trans- 
port, glycolysis and insulin-secretion processes [ l&19’]. In 
addition, HNF-3a, -p, -y , HNF-4~ and possibly HNF-6 
are also expressed in pancreatic islets and are therefore 
probable candidates for new MODY genes [ZO]. This is 
supported by the finding that HNF-la, HNF-4a and their 
respective target genes are regulated by HNF-3a and -p in 
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embryoid bodies [21’1. tlNl;-.Jfi is also involved in the 

p-cell-specific regulation of the Po’x/ gene which is essen- 

tial for proper p-cell function [22]. 

Recent analysis of a human patient with pancreatic agenis 

led to the identification of a single-base deletion in the 

home&ox gene POXI (also known as @jY, SfjZ and i&I in 

mouse). This mutation results in the premature termina- 

tion in translation, creating a PDXl protein without its 

I>NA-binding propertics [.2.3.24”.25J. In this case. the 

patient was homoqgous for this point mutation whereas 

both parents were heterozygous for the same mutation. 

Subsequent analysis of the family pedigree showed a high 

prevalence of diabetes mellitus with a hererogcneous phe- 

notype ranging from normal glucose tolerance to o\-crt 

iVII>Dhl. ‘These data imply that /-‘I)%‘/ ma) represent a 

new genetic locus for hlODY4. 

New informaCon has been obtained concerning the func- 

tion of the PdxJ gene in the differentiation and function of 

p cells. Mutant mice in which /‘OTTI has been spccificatl) 

deleted ,iusc in insulin-producing cells. become oI,ertly dia- 

betic as they age [36**]. Analysis of the pancreas of mutant 

mice demonstrated a progressive loss of (ilutZ and insulin 

expression in the absence of I’dxl and an upregulation of 

glucagon occurs in sonic cells. Hence, I’dxl is required for 

functional expression of the (;lucZ and insulin gene in 

mature p cells. E;urthermorc, the homeodomain transcrip- 

tion fiicm’ :\‘&.I iS dS0 hx in die abSencC of F’dxl. r\S it 

is thought that Nkx6.1 may act as a transcriptional repres- 

sor, it- is possible that l’dxl may activate expression of 

Nkx6.1, which in turn downregulates the expression of the 

glucagon gene in p cells. ‘I’he phenotype obser\,ed in the 

mucant mice is reminiscent of symptoms observed in 

RlODY4 individuals possessing a mutation in the human 

PL)ls;‘/ gene. Interestingly mice lacking only one copy of 

f’&/ also develop impaired glucose tolerance, a step lead- 

ing to overt NIDI~M [.?7]. ‘rhereforc, both mutant mice 

may prove to be feasible animal models to study some 

aspects of the human disease. 

‘I’he Pax4 transcription factor has been shown to play an 

essential role in p-cell differentiation. I’ax4deficient mice 

do not develop p cells and die shortly after birth from 

impaired insulin production [ZX]. The f’~& gene could 

therefore represent a possible susceptibility gene for dia- 

betes. Wolcott-Rallison syndrome is a rare disease 

characterised by skeletal malformations and neonatal dia- 

betes caused by an absence of p-cell development. 

Sequence analysis of two unrelated patients suffering from 

\J:RS did not show any mutation in the Pa& cI1iX.A [B]. 

‘The fact that no mutation has been found and that F’axl is 

not involved in skeletal development makes it unlikely that 

I’ax4 is associated with WRS but it may also be possible that 

the unknown gene responsible for WRS acts either dire+ 

or indirectly on Pm4 expression. Nonetheless, transcription 

factors involved in ~-cell differentiation and function should 

be studied in greater detail to determine their relevance in 

monogenetic and polygenetic forms of diabetes. 

Conclusions and future prospects 
As we begin to understand the different genes and signals 

involved in the differentiation of p cells during embryogc- 

nesis. it may be possible to use this knowledge to promote 

the generation of p cells m elitla for transplantation or even 

in &O regeneration of missing or malfunctioning p-cells in 

diabetic patients. Several lines of evidence suggest that 

some cells forming the exocrine duct system of the pan- 

creas may possess characteristics similar to the multipotenc 

progenitor cells found in the pancreatic epithelium of 

embryos. In different models of experimenrai diabetes, 
but also in adult human pancreas. duct cells stem to retain 

the capacit) for endocrine diffcren[iarion ~30..31’~. 

Activating the appropriate combination of transcription 

factors in duct cells by using a gene-deli\,ery system to 

introduce ectopic copies of these genes or applying sig- 

nailing factors involved in pancreas development to indtlce 

expression of the endogenous genes could offer new thcr- 

apeuric strategies against diabetes. 

Along this tine of thinking. several DNA deli\.ery systems 

are being studied for possibtc use in the pancreas. 

Adenovirus-mediated gene transfer into islets has been 

achieved successfully in vitro and in ~VEYJ [32-M] but exist- 
ing adenovirus vectors also produce a potent immune 

response and, in most casts. show. only transient expression 

[3.5,36]. Lentiviral vectors offer the advantage of the stable 

introduction of foreign DNA into the host genomc allou-ing 
long-term gene expression. ‘They are also capable of infect- 

ing post-mitotic cells and were used recentlv to introduce 

the P-galaotosidasc reporter gene and the Interleukin 4 

gene into whole islets [37,3X]. .-\lchough these results open 

exciting new prospects for gene therapy, the de\-elopment 

of absolutel~~ biosafe vectors uill be required considering 

the pathogenicity of the parental virus. 
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