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Classical trajectory and statistical adiabatic channel study of the dynamics
of capture and unimolecular bond fission. IV. Valence interactions
between atoms and linear rotors

A. |. Maergoiz,® E. E. Nikitin,” J. Troe,® and V. G. Ushakov?
Institut fir Physikalische Chemie, Universit&attingen, Tammannstrasse 6, D-3707 7ttmgen, Germany

(Received 23 April 1997; accepted 24 December 1997

The addition of atoms to linear molecules forming linear or nonlinear adducts is treated using
standardized valence potentials. The dynamics is analyzed with a combination of classical trajectory
(CT) and statistical adiabatic chann&@ACM) calculations. For classical adiabatic conditions, the

two approaches coincide. The transition from adiabatic to nonadiabatic dynamics is investigated
using CT calculations. The low-temperature adiabatic quantum range is studied by SACM. Thermal
capture rate constants are represented in analytical form. Thermal rigidity factors are expressed in
terms of molecular parameters such as the frequencies of transitional bending modes, the bond
dissociation energy, the rotational constant of the linear fragment, and the ratio of the looseness and
Morse parametera/ 8 of the potential-energy surface. The final rate expressions are of simple form
suitable for direct practical applications. €998 American Institute of Physics.
[S0021-960698)01113-1

I. INTRODUCTION cillator versions of SACM, and employing simple anisotropy
models of valence potentiatéIn the present work, this con-
In parts I-I1l of this series we have analyzed the capturecept will be followed on a more rigorous level. We derive

of ions by dipoles, by quadrupoled, and of dipoles by SACM and CT capture rate constants for atoms combining
dipoles? comparing rigorous applicatich®f the statistical ~ with linear species, using simple Morse-type attraction po-
adiabatic channel mod¢BACM)® with extensive classical tentials and simple anisotropy models for the valence poten-
trajectory(CT) calculations. It was shown that the two treat- tial. The capture rate constants are again expressed analyti-
ments agree completely in the range of classical adiabatigally in terms of the relevant molecular parameters. One
dynamics. In the low-temperature quantum range onlyshould keep in mind that real potentials may be more com-
SACM is applicable. lon—dipole and ion—quadrupole cap-plicated, showing nonsmooth transitions between short-range
ture show nonadiabatic dynamics only at very high temperavalence and long-range electrostatic componése®, e.g.,
tures, the CT treatment allowing for an analytical representhe H,0, system in Ref. 18 However, the present results
tation of the transition between adiabatic and nonadiabatigerve as a useful reference for comparison, in particular be-
(sudden capture rate constants.The situation is more com- cause an increasing number of high-pressure association
plex for dipole—dipole captufé=® where numerous simple measurements is becoming available n@ee summaries in
and multiple Landau—Zener type avoided crossings betweeRefs. 9 and 14—16 Capture rates are also interesting be-
higher adiabatic channel potential curves are encountereshuse they provide upper limits for rate constants of
and transitions between adiabatic and nonadiabatic captut®mplex-forming bimolecular reactions.
dynamics of different types have to be considered for higher  Classical trajectory calculations of thermal captioe
temperatures. the reverse thermal dissociatiorate constants on valence
The combined SACM and CT treatment of Refs. 1-3potential-energy surfaces obviously have frequently been
allowed for an analytical representation of the thermal capdone before. Recent reviews and exemplary calculations for
ture rate constants in terms of molecular parameters. It ampecific molecular systems such as Refs. 18—21 describe the
peared promising to also apply the mentioned approach tetate of the methodology and the dynamic features calcu-
short-range valence potentials. One may hope to again obtalated. The present treatment differs from these studies in
compact analytical expressions for capture or the corresome aspectdi) the influence of key properties of the po-
sponding dissociation rate constants. First attempts on tntial is elaborated systematically such that capture rate con-
crude level have been made earfiet! using simplified os-  stants can be expressed in analytical form as a function of
few molecular parameter§i) the coincidence of SACM and
30n leave from N. N. Semenov Institute of Chemical Physics, RussianCT under classical adiabatic conditions is Veriﬁéﬂ’) the
Academy of Sciences, 117977, Moscow. transition from classical adiabatic to nonadiabatic dynamics
PDepartment of Chemistry, Technion-Israel Institute of Technology, Haifa,js quantiﬁed, and(iv) explicit rate coefficients for low-
0)22000’ Israel. temperature quantum adiabatic capture are elaborated. We do
uthor to whom correspondence should be addressed. . . . . . .
dnstitute of Chemical Physics, Russian Academy of SciencestN€se calculations for situations with linear and nonlinear
142432 Chernogolovka. adduct formation. The addition of two linear species forming
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linear or nonlinear adducts will be treated in a subsequentated at relatively large values, we use Ed2.2) and we

articlé? (part V of this seriep relate e(ro)=fw(r,) with the parameterh; through Eqg.
(2.9).
Equation(2.1) corresponds to the formation of a linear
Il. REDUCED HAMILTONIAN AND MASSEY adduct with cosy anisotropy of the bending potential and
PARAMETER Morse-type attraction; hence, an anisotropy of the ion—

dipole type is employed. In addition to this simplest case, we
have also considered a series of other potentials. For ex-
ample, we have studied the formation of nonlinear adducts.
I;or this purpose, we have replaced E2}1) by

Following the concepts of parts I-H1® we perform
classical trajectory calculations with a Hamiltonian in re-
duced form. At first, we consider the formation of a linear
adduct from an atom and a linear species. We choose
center-of-mass coordinate system and employ a potential en- v(r,y)=D{exd —28(r—ro)]—2 exd B(r —r¢)]}
ergy V(r,vy) of the type

V(r,y)=D{exd —2B8(r—re)]—2exd —B(r—re)l}
+A[(1-cosy)/2]lexd —2a(r—rg)], (2.1

wherer is the distance between the centers of mass of th
two combining speciesy denotes the angle between the line
connecting the centers of mass and the axis of the linear =3 cosvys,. (2.6)
speciesy, is the value ofr in the equilibrium configuration,

Bis the Morse parameteb, is the Morse dissociation energy In the equilibrium configurationr(=r.), potential maxima
of the adduct, andr is the “looseness parameter” of the Of the magnitudeA,(3/2—q+q?/6) at y=0 andA,(3/2+q
anisotropy of the potential in the sense used in the originaf-9°/6) at y=m are obtained. The bending frequency

+A,[3(cog y)/2—q cos y+q2/6]
xexg —2a(r—rg)], (2.9

whereq is in the range €< 3. The parameteq is related
fo the angley, of the potential minimum by

version of the SACM. w(re)=€(rg)/h now is given by
The parameteA; can be understood as an “anisotropy AT Tard s
amplitude” (atr =r,). While the attraction between the two o(re)=V3Az(1/1 + 1ure) sin vy, 2.7

species in Eq(2.1) is assumed to be of the simple Morse g,ch that. instead of EG2.4), one has
type, the anisotropy of the potential is characterized by ’ ’

r-dependent quanta(r) of the adduct bending vibration of [e(re)]? 1
the approximate form 2~ "6 ﬂ . (2.8
en=elre)exg —ar=re)l. (2.2 Next we have considered the formation of linear adducts

This form was initially suggested by bond energy—bond or-with an anisotropy varying between cgsand co$ vy type.
der arguments and generalized in the empirical exponential For these investigations, we used the potential
eigenvalue interpolation of the original version of the

SACMS A simple SACM analysis of a series of high- V() =Diexg—2B(r—re)]-2exd—B(r—re)l}

pressure recombination rate constam to the result that +A,[3(cog y)/2—q cos y+q—3/2]
al B~0.5. Apparently there is a fairly uniform general an-
isotropy present in many valence systems. Quantum- xXexd —2a(r—re)] 2.9

chemical calculationgsee e.g., Ref. 24confirmed the order
of magnitude ofa/ B although often slightly larger values of
the ratioa/ 8 were found, being near to 0.6.

The parameteA is related to the moment of inertia | of
the linear fragment and the bending quante(n,) of the
adduct in its equilibrium configuration. For the potential
(2.1), the frequencyn(r,) = €(r¢)/% of the bending vibration

with gq=3. This potential in the equilibrium configuration
(r=rg) has a maximum of @A, at y=; the parameteq
determines the relative contribution of éas and cosy
terms, the pure cog potential being reached gt—o while

a purely quartic potential near=0 is realized ag— 3. The
bending frequencw(r.)=€(r¢)/% now is given by

of the adduct at =r, is equal to o(ro)= VA (q—3)(1N + Lur,) (2.10
A [l 1 .
w(re)= > (I_ P ’ 2.3 such that, instead of E@2.4), one has
e

where u denotes the reduced mass of the two fragments. In =~ Ay~
practice, one often hasri»l (e.g., for NQ one would have

Be=1f%2ur?=hc-0.422cm?* and B=#%%2l=hc-1.704  On the basis of the described potentials, we employ the in-

2
[e(re)] [ 1 _ 2.1

2B |q-3

cm™%). Equation(2.3) then simplifies to verse Morse parameter as our length upit 3~%; kT is
2] [e(ro)]? used as the energy uriii,=kT; with the moment of inertia
A1~2I[w(re)]2=ﬁ [e(re)]zzTe, (2.4 | of the linear fragment, a time untf,=(21/kT)*? is de-

fined; m,= 21 82 provides a mass unit. The reduced Hamil-
whereB (in energy units denotes the rotational constant of tonianh=H/E,, e.g., for the potential of Eq2.1), is then
the linear fragment. Since adiabatic channel maxima are loaritten as



J. Chem. Phys., Vol. 108, No. 13, 1 April 1998 Maergoiz et al. 5267

h=j2+p2%/2M +d{exd —2(p—pe)1—2 exd — (p— pe) 1} tum, e is the reduced collisional energy, ahds the reduced
impact parameter. The reduced and thermally averaged cross
+ay[(1—cosy)/2]exd —(2a/B)(p—pe)], (212 section then follows as

wherej is the reduced angular momentum of the linear rotor U max
and p the reduced momentum of relative translation. The (U>/7T=J vva
effective masdM of the system is given by

:e[b(e,f )]%exp(—e—ef)de

(3.2
2
M X B MTg 1 |_B/Be (2.13 with f=v+/8 and entrance channel energ\s v may indi-
m, 218% 1 |2(Bre)?| 2(Bre)? ' cates the maximum vibrational quantum number for bonding

channel potentials; at >uv . Channel potentials become

1 = 2 2 = =
with B,=7%/2urg. Furthermore, one has=r/l,=pr, p. repulsive. It is easy to show that

=rel/ly=pBr., d=D/E,=D/KT, anda;=A,/E,=A;/KT.
Analogous relations were obtained for the other potentials v ,,,=(4/3) Vd/34. (3.3
with a,=A,/kT.

The capture rate constaky,,can be expressed with the
reduced and thermally averaged capture cross-se@iofin
units of 872) via

b(e,f ) in Eq. (3.2 denotes the maximum impact parameter

at a givene and f, for which capture can occur, i.e., for

which p=p, can be reached classically. With the present

potential and centrifugal energl(e,f ) can only be calcu-
[87KT (ol ) lated numerically and inserted into E&.2) which was done

Keap= T g (2.14 in this work. The results are compared with trajectory calcu-

lations in Sec. IV.
In the following, for convenience, we represeir/m) Even without evaluatingo)/ explicitly, an important

=Keap/ B 287K/ as a function of the parameteM,  general result can be derived. Replacingy f=0 /8, Eq.
pe, d, a/ B, anda; (or q anda, instead ofa;). We concen- (3.2 becomes

trate our attention in particular on the thermal rigidity factors . .
Frigia Which are defined by (o) m=5"1 f "tdf J e[b(e,f )]? exp(—e—ey)de.
0 0
frigid: kcap/kca;{ a;=0) (2.19 (3.9

(or a,= O), ie., by the ratio of the capture rate constants inAS a conseguence, one predicts tﬂ{@gp and the r|g|d|ty
the presence and absence of anisotropy, the latter case CRATtor fiqq, for the linear adduct, become inversely propor-

responding to phase space theory, see below. tional to & and hence td\,, i.e.,

The extent of adiabaticity of the linear rot@otational
period t,,) during the collision(collision timet.,) can be £ oci 3.5
characterize® by the Massey parametér=t , /t,,; which is 99T AL '

related to the effective masd by (One should note that this prediction only applies when

i= \/m (2.16 6>1.) Equation(3.5) confirms earlier results from more ap-

proximate oscillator modefs. The rigorous relation between
Adiabatic behavior corresponds %=1 and nonadiabatic figia andA; will be determined in Sec. IV.

(sudden behavior to¢<1. For the present situation, we
show that deviations from adiabatic dynamics only become

apparent wherg is much smaller than unity. IV. CAPTURE RATE CONSTANTS FROM CLASSICAL
TRAJECTORY CALCULATIONS: LINEAR
ADDUCTS

Ill. HARMONIC OSCILLATOR APPROXIMATION Classical trajectory calculations were performed such as
Following earlier treatments in Refs. 3 and 11, in thedescribed in Refs. 1-3. About 4 frajectories were investi-
present study we also compare adiabatic capture rate cofated for eacHM,p.d,a,a/B} parameter combinatiota

stants from classical trajectory calculations with results fromStands fora; or a;). Because the used potentials contain a
a simple classical harmonic oscillator approximation off€pulsive component, the capture condition for a trajectory

SACM. Adiabatic channel potential curves in reduced form,had to be changed against that used in parts I-IlI: Capture in
for the linear adduct potential of E¢R.12), are given by the present work was assumed to be achieved whern,
was reached. In some cases, whetr . was not accessible,
U(N)=N2/4d—N+v 2\ 6 (8.1)  also reaching a range with oscillatory motionrinvas taken

as evidence for capture. A first series of calculations, for
linear adducts with the potential of E.1) anda/8=0.5,
was done in the adiabatic rang® & 100), inspecting the
dependence ofo)/ 7 on p.= Br.. Besides the dependence
on p., we consider the dependence on the anisotropy which
we characterize by the reduced paraniéter

(at large\ and assuming @/B8=1) where\ and § corre-
spond tox =2d exd —(2a/B)(p—ps)] and 5§=a,/4d with the
symbols defined for Eq2.12); v denotes the quantum num-
ber of the bending vibration in the anisotropy potentigbr
more details, see the analogous cases treated in R&fh8
reduced centrifugal energy, added to E8.1), is equal to
12/2M p?=eb?/p? wherel is the reduced angular momen- C=[e(re)]%/2BD. 4.2
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300 T I T l T I T I L I T
250 |- s -
200 [ " 1

150 |- ' * 7

(8mk T/n)-1/2p2

- s, -
100 > LN

K
cap
*.

-14 -12 -10 -8 -6 -4 -2
In[kT/Dexp(Bre)]

FIG. 1. Thermal capture rate constaktg, for the potential of Eq(2.1) with o/ 8=0.5; dependence B (see texk, points: classical trajectory calculations,
lines: harmonic oscillator SACM; upper set: isotropic potential vtk 0 (PST), lower set: anisotropic potential witG=2, see Eq(4.1); B and ¥: Br,
=1,@and ¢: Br.=2, A and+: Br.=4; lines from bottom to top: complete Morse potentjgt =4, ----- ), complete Morse potentigBr =2, ----), Morse
potential without repulsive tert———), complete Morse potentidj3r.= 1, thin full line in lower right cornex

For the potential of Eq(2.1), according to Eq(2.4) Cis =k 8wkT/u) *28% is almost a unique function of the
equal toA;/2D or a;/2d. Calculations forC=0, i.e., in the  variablekT/[D exp(8ro)]. Only at the highest temperature,
absence of an anisotropy of the potential, correspond teuhen the repulsive part of the potential matters, deviations
phase space theof?ST), see, e.g., Ref. 18. Figure 1 shows occur for Br,=1 (a case which in practice is rareThe
representative  results. One observes thav)/m  capture rate constant decreases with increa€ing.e., in-

300 T T T T T T T T

250

o 200
(<o}
9
E‘ 150
X
=
X
- 100
8
X
50
f
O L | L I 1 | 1 1 d
12 -10 -8 -6
In[kT/Dexp(Bre)]

FIG. 2. Thermal capture rate constaktg, for the potential of Eq(2.1) with /3=0.5: dependence on the effective masn the near-adiabatic rangsee
text; Bro=4; full line on top:C=0 (PST), groups of points from top to botton€=1, 2, and 4; effective madd = 100: |, OJ, andO, M=10: X, *, and —,
M=1:V, & ,and+, M=0.1: i, ®, andA; 0.1<M <100 corresponds to Massey parameters €.45 14, see Eq(2.17)].
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200

150

(8mkT/u)-1/232

k
cap

n

o

0 2 1 1 1 L 1 2 1
-12 -10 -8 -6

In[kT/ Dexp(Bre)]

FIG. 3. Thermal capture rate constakgg, for the potential of Eq(2.1) with o/ 8=0.5: transition from adiabatic to nonadiabatidden dynamics, see text.
(Bre=4, C=2; full line at the top: harmonic oscillator SACM for the adiabatic limit, see Fig. 1; points: CT from top to bottomMith00 (M), 0.1 (@),
0.01(A), and 10%°(V), i.e.,£=14.1, 0.45, 0.14, and 1:410°°, respectively; dashed line at the bottom: analytical calculation for the sudden limit, see text

creasing anisotropy of the potential introduces “rigidity,” calculations with further reduceld values. Figure 3 shows
represented by a thermal rigidity factdfgq smaller than the results forC=2. The transition occurs betweel
unity.!! Again one observes deviations from a common=0.1(£=0.45) andM=0.01(¢=0.14). Rate constants in
curve only at the highest temperatures when the repulsivehe sudden limitM — 0 are 2/3 of the limiting adiabatic val-
term of the potentials matters. In contrast to @e 0 curve, ues(at low temperaturgsFigure 3 also includes a compari-
here deviations are strongest f8r.=4. Figure 1, for the son of CT and analytical results fof — 0, obtained for fro-
caseC=2, also includes a comparison of the trajectory re-zen orientations of the linear species and subsequent
sults with the classical harmonic oscillator model describedaveraging over all orientations. The agreement between the
in Sec. lll, four curves are shown: the full line correspondingtwo treatments of the limiting sudden dynamics is quite sat-
to a Morse potential omitting the repulsive tefthis curve isfactory.

practically coincides with that of a complete Morse potential  In the following we do not further consider the transition
and Br.=1), the dashed curve for a complete Morse poten-between sudden and adiabatic dynamics, but only analyze
tial and Br.=2, and the dash-dotted curve with a completethe practically most relevant adiabatic situation. Analytical
Morse potential an@r .= 4. The general agreement betweenrepresentations of the dependenceskgf, on gre, D/KT,

the CT and approximate oscillatdSACM) treatments is andC were derived forM =100. Figure 4, as an example,
very good, only minor deviations being observed as a confor M =100 anda/ 8= 0.5 shows the quality of fits df..,as
sequence of slightly different capture criteria, particularly fora function ofk T/[D exp(Brs)] andC. The capture rate con-
high temperatures where the repulsive part of the potentia@dtants are represented y= kcap(87rkT/,u)*1’2ﬂ2 as a func-
matters mosi{overcoming of the channel maxima was thetion of X=In(kT/D)—pBr.. As demonstrated in Fig. 4, the

criterion in the SACM oscillator model treatment results can be expressed very well as
Choosing pBr.=4 for reference, the dependence of
(o) 7 on the effective masM (or the corresponding Mas- Y(X)=a;+ apX+ azX?. 4.2

sey parametef) and on the anisotropy parametens dem-
onstrated in Fig. 2. Only small dependenceshbrare noted Except for the high-temperature ends of the curifes gr
between 0.1 and 100, being most pronouncedXer2. Ap-  =1), where the repulsive part of the potential produces ad-
parently, over the shown range of effective massess®I1 ditional dependences qgfir, (see beloy, the fit parameters
<100, which correspond to Massey parameters €45 of Y(x) only depend orC. Examples of fit parameters are
<14, adiabatic dynamics is realized. Like in Fig.{I;)/=  given in Table I.
decreases below the PST res(flill line) with increasing For cases with smajBr, and largekT/D, an extension
anisotropy, i.e., whel© exceeds unity. of the fit is required. In this case, we employed

In order to inspect the transition from adiabati (
—) to nonadiabatiqsudden dynamics M—0), we did Y=y sif m(X— By)! Ba]+ Ba+ BsX+ BeX2. 4.3
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300 T T T T T T T T T T T

250 - -

200 7

150 .

(8T /) 1122

100 | , ‘ -

k
cap

In[kT/Dexp(Bre)]

FIG. 4. Thermal capture rate constaktg, for the potential of Eq(2.1) with a/8=0.5: CT results and their fit by E¢4.2) (examples foBr.=1, 2, 4 and
M=100; C=0 (PST), 0.5, 1, 2, 2.5, 4, and 8 from top to bottpm

As an example, foBr.=1, Table Il gives fit parameters as a with Z=C/v2 or Z=(A,/D)"/y, where n=1 and y;

function of C [here usingX=In(kT/D)]. = 8. Forfj5ig=<0.8, this simplifies tdf g4~ 1/Z or
An alternative representation is provided by separate fits
of the capture rate constants from phase space theg}y frigia~2vV2BDI/[ €(r¢)]*~V2/C. (4.9
and of the thermal rigidity factors,;4(T) defined by Eq. o ) )
(2.15, i.e., The rigidity factor, hence, can be expressed in a simple way
ST by a combination of molecular parameters. The present con-
Keap= frigia(T)Kcap- (44 clusions from trajectory calculations fully confirm earlier

ke is expressed with the fit parameters of Tables | and |IMore approximate resultswhich, by a simplified SACM
for C=0. Figure 5 (for Bre=4 and «/8=0.5 shows {reatment, led to a rough estimate fof;q (at frigid<0..8) of
fugia(T) @s a function of IKT/D) and of C. One observes frigia=1/C. The new Eqs(4.5) and(4.6) supersede this over-

independent; for higher temperatures, a minor decrease fited low-temperature rigidity factors by E¢.9). It also

figia(T) is observed. shows the excellent performance of £4.6) for f,g4=<0.8.
In the low-temperature range, the dependencig;gf on A temperature-independent rigidity factfygia(T) from
the anisotropy of the potential can be very well represente&d- (4.4 woglsq lead to identical temperature dependences of
> 818 temperature decrease bfg4(T) at INKT/D expBro)|>—9
Frigia(T—0)~=(1+2Z°+2%) "%, (4.5 cannot always be neglected. It could be fitted by expressions
of the form
TABLE . Fit parametersy; in Eq. (4.2) for thermal capture rate constants frigia(T) = 01+ &8, exp(X/63), 4.7
calculated with the potential of E¢2.1) [anisotropy parametet from Eq.
(4.9]. whereX=In[kT/D exp(Bry)]. Such fits are included in Fig. 5.
The high-temperature decreasefqfq below the low tem-
C ay as asz ) .
perature limitf,i;s(T—0) can also be expressed in general
0 —15.7706 —8.6364 0.9975 form by
0.5 —36.5761 —11.6146 0.8305
1 —35.3951 —10.3463 0.8409 1
5 20.0489 47740 0.8501 frigid/frigid(THO)_l 0.94 eijX/204LD, (48)
25 —56.9892 —12.0888 0.2863 .
8 —15.4267 —3.1423 0.1288

frigia/ frigia( T—0) = 1—0.94 C/2)exp(X/2.044 4.9
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TABLE Il. Fit parameterss; in Eq. (4.3) for thermal capture rate constants calculated with the potential of Eq.
(2.1 (high-temperature details includedr.=1).

c B1 B> B3 Ba Bs Bs

0 —8.75377 2.76016 3.52573 1.42352  —3.26427 1.80325

0.5 —9.39689 2.76665 3.53617 26172 -151771 1.88866

1 —8.87187 3.2177 3.72405 5.7115 0.86385 1.98657

2 —4.41999 1.24957 2.81331  —5.3147 —2.44171 1.23978

4 —3.89236 13.1667 4.2395 5.99931 2.50412 0.95012
at 0<C=2. Figure 7 compares the fit curves from Fig. 5 F=14+0.92a/B-1)°-0.82a/B—1)%. (4.1
with the satisfactory general representation of E4s8) and
4.9. ReplacingC in Eq. (4.5 by Cg from Egs.(4.10 and(4.11)

Temperature-independent low-temperature rigidity facfor general values of/ 3, one obtains thermal rigidity fac-
tors f,igiq(T—0) would only be obtained i&/=0.5is ful-  tors f;4(T—0) such as shown in Fig. 10. As explained
filled, i.e., when attraction and anisotropy of the potentialabove,f,;q decreases with increasing temperature dog
with increasingr “decrease synchronously.” Deviations of >0.5 and increases far/3<0.5. Figure 10 compares the
the ratio /B from 0.5 destroy this feature; i&/5>0.5, analytical results forf,;4(T—0) from Egs. (4.1), (4.9,
comparably stronger anisotropies are sampled by the dynani.10, and(4.11) with the true SACM results. At low tem-
ics at higher temperatures such tiiggi(T—0) [apart from  peratures, the agreement is very good. At high temperatures,
the behavior described by Eggl.7)—(4.9)] decreases with the temperature dependence described by E43)—(4.9)
increasing temperature; the opposite appliesdf8<0.5. was not included in the analytical representation such that
We demonstrate this dependence of the capture rate coseme deviations arise. If necessary this effect could also be
stants on the ratiax/B in Figs. 8—-10. The deviation of accounted for by combining Eqgt.5) with Egs.(4.7)—(4.9).
frigia(T) from Egs.(4.5 and (4.6) in the case ofa/8+#0.5 Equations(4.1), (4.5), and(4.8—(4.11) hence provide a
can also be represented analytically in a satisfactory mannevery quick estimate of ;g4 in terms of the parametetsT,

We do this by replacindC in Egs. (4.5 and (4.6) by an D, €(r.), B, anda/B. While the first four parameters are
effective C¢ which is related taC, «/B, andkT/D by directly available, the ratia/ 8 has to be determined from
_ 20/8—1 quantum chemistry. Apparently it is most frequently close to

Corr= CF(KT/D)** (4.10 0.5 (+0.1)** such that it can also be estimated reasonably

with well without havingab initio results.

0.0 | 1 | 1 1 1 | N | 1 I 1 | 1
-13 -12 -11 -10 -9 -8 -7 -6

In[kT/Dexp(Bre)]

FIG. 5. Thermal rigidity factors ;g4 [See Eq(4.4)] for capture calculated with the potential of Eg.1) anda/B8=0.5[CT results forBr.=4; curves from
top to bottomC=0.25(]), 0.5(M), 1 (@), 2 (A), 2.5(0), 4 (¥), and 8(A)].
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(T-0)

f
rigid

0.0 L | L 1 L 1 L | L

FIG. 6. Low-temperature thermal rigidity factors from E@.5 (full line) and Eq.(4.6) (dashed ling in comparison to calculated resulpointy
[a/3=0.5; @: linear adduct, Eq(2.1); A: T-shaped adduct, E42.5) with q=0; ¥: nonlinear adduct, Eq2.5) with g=1; #: Eq. (2.5 with q=1.5; +:
Eq. (2.5 with q=2; *: Eq. (2.5) with q=3/3/2; X: Eq. (2.5) with q=2.8; —: linear adduct, Eq2.9) with q=3; |: Eq. (2.9 with g=4; O: Eq. (2.9 with
q=5; O: Eq. (2.9) with q=10; linear casey; =2 andn=1; all other casesC replaced by f,/D) andy, andn; from Egs.(5.6) and (5.7)].

V. CAPTURE RATE CONSTANTS FROM CLASSICAL with nonlinear adducts. At first, the caa#8=0.5 is consid-
TRAJECTORY CALCULATIONS: NONLINEAR ered. While the harmonic part of the potential of E2.1)
ADDUCTS

with linear adduct formation dominated the results of Sec.
The methods described in Sec. IV next are applied to thdV, vibrational—rotational coupling effects become apparent
more complicated potentials of E(R.5), i.e., to potentials with the potential of Eq.2.5. Anharmonicity effects are

1.0

0.9
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(7= 0)
o o
(3] (¢}
I |
| |

f
rigid rigid
o ©
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1
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f
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©
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-13 -12 -11 -10 -9 -8 -7 -6
In[kT/ Dexp(Bre)]

FIG. 7. Temperature dependence of rigidity factors for linear adducts,2Ely.with a/8=0.5 andBr.=4. Full lines: CT results fo€=0.25, 0.5, 1, 2, 4,
and 8 from top to bottom; dotted lines: simplified representation by &g8. and(4.9).
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FIG. 8. Thermal capture rate constaikig, for the potential of Eq(2.1) with varying «/8. Open symbols: CT results and their fit by E4.2) for o/
=0.5,M=100, Br,=4, and+(C=0.25), X(C=0.5), ¢ (C=1), O(C=2), O(C=4), A(C=8), andV(C=16), line at the top: PST; closed symbols:
CT results fora/B+0.5,M:a/$=0.6 (C=2), ®:a/3=0.6 (C=4), A:a/B=0.6 (C=8), V:a/B=0.6 (C=16), ®:a/B=0.75 (C=62.5).

studied in particular with the potential of E(R.9) (corre- with an anisotropy such as governing also even ion-—
sponding to linear addudtsA few representative results are quadrupole captureThe full lines in the figure correspond
illustrated in the figures; more general results are summato fits in the form of Eq.(4.2). Similarly good fits are ob-
rized in the tables and fit expressions. tained for otherq values. Table Il gives examples of fit
Figure 11 shows thermal capture rate constantsifgi ~ parameters for a series gfvalues in Eqs(2.5 and(2.9). [In
=0.5 and forg=0 in Eq. (2.9, i.e., for T-shaped adducts Table Il only calculations foiBr.=4 are included, withX

300

250

200

(8mk T/w)-112p2
g

100

k
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50 F

14 13 12 -1 -10 -9 -8 -7 -6 -5
In[kT/Dexp(Bre)]

FIG. 9. Same as Fig. 8; open symbaig;3=0.5 withC=0.5(0J), 1(O), 2(A), 4 V), 8(X), and 16*); closed symbolsa/B=0.4 withC=0.125(4), 0.25
(+),0.5(H), 1 (@), 2 (A), and 4(V¥); O :al/B=0.25 andC=0.25.
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In[kT/Dexp(Bre)]

FIG. 10. Thermal rigidity factors at low temperatures for varyirig in Eq. (2.1). Lines: representations by E@.5 with Eqs.(4.10 and(4.11). Points: CT
results fora/=0.75 andC=62.5,(A) «/3=0.6 andC=4 (H) or C=8, (®) a/3=0.4 andC=0.25(0) or C=0.5,(0O) a/B=0.25 andC=0.125A.

corresponding to Ii(T/D); results for otheiBr, can be ob- ure 12 shows an exampléor g=0 and a/$=0.9). Again
tained by usingX=4- Br.+In(kT/D).] The table also in- one observes nearly temperature-independent valuég;gf
cludes, for 6<q<3, the equilibrium anglesy, and the at lower temperatures while some decrease arises at higher
smaller and larger potential barriers of the angular potentialemperatures. The high-temperature decrease can be fitted
atr=r. quite similar to the results of Sec. IV. One just has to replace
The comparison of the capture rate constants with result€ in Egs. (4.8) and(4.9) by A,/D. Similar qualities of the
from PST as before leads to the thermal rigidity factors. Figits are obtained as demonstrated in Fig. 7. We do not further

300 T T T T T T T T

(8mkT/n)-1/2f32

k
cap

-14 -12 -10 -8 -6
In[kT/Dexp(Bre)]

FIG. 11. Thermal capture rate constaktg, for the potential of Eq(2.5) with a/8=0.5: CT results and their fit by E¢4.2) (examples forgr.=4 and
M =100; T-shaped adduct with=0; A, /D values=0, 1, 2, 4, 8, 16, and 32 from top to bottpm
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TABLE lll. Fit parameterse; in Eq. (4.2) for thermal capture rate constants, calculated with the potentials of
Egs.(2.5 and(2.9) (first line with A, /D=0: PST; nonlinear adducts forsdg=<3 with equilibrium anglesy,
(°) and angular maximd a1 and Ve, at r=r; linear adducts with mixed cog/cog y potential forq

>3; see text
q Ye Viax1/D Vmax 2/D A,/D ay a ag
- - 0 0 0 31.1530 —18.1582 0.8685
90° 1.5 15 1 20.4551  —19.3545 0.7260
0 3 3 2 8.2717 —20.8341 0.5111
6 6 4 7.5691 —14.2121 0.6212
12 12 8 6.2358 —10.2049 0.4269
70° 1.3 53 2 12.2545  —18.4010 0.5902
1 2 8 3 10.6892 —15.7893 0.6067
4 16 6 6.0333 —12.4456 0.4382
8 32 12 4.7941 —8.6203 0.3458
48° 0.33 8.33 2 13.2291  —14.2952 0.6495
2 0.67 16.7 4 12.6061  —10.5926 0.5713
1.33 33.33 8 6.9216 —9.5022 0.3456
2.67 66.7 16 3.2315 —7.9951 0.2261
30° 0.027 5.22 1 154871 —15.5046 0.7781
3722 0.054 10.4 2 12.0812  —11.5999 0.6170
0.11 20.9 4 8.3907 -9.1273 0.4208
0.22 41.8 8 9.0149 —5.7689 0.4283
0° 6 1 12.3342 —14.3722 0.7283
3 12 2 9.7148 —10.0103 0.5444
24 4 6.8744 —7.2387 0.3744
48 8 5.2012 —4.9549 0.2808
0° 4 0.5 8.2966 —17.9126 0.6467
4 8 1 4.4169 —12.5088 0.4869
16 2 0.8964 —8.8056 0.2099
32 4 1.0960 —4.7705 0.2273
0° 5 0.25 —0.6675 —14.8738 0.4929
10 10 0.5 —1.7080 —8.8057 0.2246
20 1 —0.2790 —4.3687 0.1403
40 2 —0.4594 —2.3287 0.0697

analyze this part of the curves. Instead, we focus attention om-shaped adduct witly=0, the curve of Fig. 12at frigid

the dependence of the low-temperature rigidity factors on the< ) can be well fitted by

strength of the anisotropy and/or the molecular angle such as

expressed by the parametein Egs.(2.5 and(2.9). For the frigia~2"4{v2/(A,/D)]*2. (5.9
Combining Egs(2.8) and(4.1) with A,/D=C/3, for q=0,
one may also express Ed.1) with the quantityC from Eq.

10 T ; - - ' - - (4.1 by

frgia~2Y43Y4(v2/C) 2= 2.06v2/C)*2. (5.2

The exponent 1/2 of in Eq. (5.2) corresponds to the single
transitional mode of the T-shaped adduct, while the exponent
unity of C in Eq. (4.6) corresponds to two transitional modes
in the linear adduct. However, with increasiggnore com-
plicated expressions fdr;qq arise which do not follow the

rigid

relation
02| -
*
frigia (Ap /D) 2712 (5.3
e e s o whereb* is the number of transitional mod&sPart of this
In[kT/Dexp(Br )] deviation is attributed to the increasing importance of anhar-
FIG. 12. Thermal rigidity factord ;g4 for capture calculated with the po- monicity and V_Ibratlon_al_mtatlonal CQUpllng of the potent_lal.
tential of Eq.(2.5 anda/B8=0.5(CT results forr,=4 andq=0; curves For g=3, i.e., a linear adduct with a quartic potential,

from top to bottomA, /D=1, 2, 4, 8, 16, and 32 frigia (@t figig=0.8) can well be represented by
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TABLE IV. Fit parametersy, in Eq. (5.5 for low-temperature thermal

rigidity factors of capture in the potentials of Eq2.5 and(2.9).

Maergoiz et al.

on A,/D. One may also represent the temperature depen-
dence off 54 in @ simple way: With the results from Table
Il one derives relations analogous to Eg.8). One finds

A n " that figig/frigia(T—0) switches from an expression 1

0 1.43245 0.5 —0.410exp(X/2.359) for qg=0-2 to an expression 1
s o Pl —0.313exp(X/4.234) for q=2.6-3 (with X=In kT/D

2 1.00499 0.38396 +4-pre).

3 0.77935 0.5 When the ratio /B differs from 0.5, the low-

4 0.59621 0.68944 temperature rigidity factors again are no longer temperature
5 0.46503 0.80805 independent. The qualitative behavior is quite similar to that
10 0.19174 0.92244

frigia~0.69v2/(A,/D)]*2

(5.9

shown for linear adducts in Figs. 8 and 9 such that we do not
have to illustrate the effect again. Instead we give only fit
parameters. To a first approximati@ (or A,/D) in Egs.
(5.1, (5.2, (5.4), and(5.5) has just to be replaced by effec-
tive valuesC.y [or (A,/D)¢i] such as given in Eq4.10.

The simple relatior(5.3) between the exponeitx and the 114 pest fits are obtained by using

number of transitional modes indeed has broken down be-

cause of the marked anharmonicity effects. Continuing the ~ Ce=FC(KT/D)?*/#~* (5.8

increase ofgq from 3 to «, decreasing contributions from \\ith

anharmonicity in the linear adducts can be followed. A

smooth transition from Eq(5.4) to Eq.(4.6) is encountered. F=1-042a/p—1)+0.92a/p—1)? (5.9

For a series of| values, Table Il includes fit parametets,  for q=0,

a5, and a4 for capture rate constants expressed by (B@®) )

(fitting range— 14<X<—1 with X=1In kT/D— Br,). F=1-0.72a/p—1)+(2a/p—1) (5.10
The described rigidity factors can again be expressed ifor =2,

the form of Eq.(4.5) with A;/D replaced byA,/D from the

potential of Eqs(2.5) and(2.9). In all cases F=1-072a/f~1)+0.72a/~1)? (5.11

N “n for g=3. PuttingF simply equal to unity reproducdsq to

Frigia™71(A2/D) ©9 within =10% over the range Oda/B8<0.6. ?

provides a good representation figgi;=<0.8. Table IV sum-

marizes fit parameters for a seriesgofalues. Because of the VI. SACM TREATMENT OF LOW-TEMPERATURE

combined contributions of anharmonicity and nonlinearity,p |5 1DITY EACTORS

the transition from Eq(5.1) for a T-shaped adduct to Eq.

(4.6) for a linear adduct cannot be represented in a simple The classical trajectory results described in the previous

way. Nevertheless, a fit is possible in the form

 V2-3.30/2)°+(V2+7/9)(q/2)®

sections on the one hand characterize the transition from
nonadiabatic(sudden to adiabatic dynamics. On the other

_ hand, they provide analytical expressions for capture rate
Y1 8 ’ (56) . . . .

1+(a/2)°q constants in the adiabatic classical range. For example, Egs.
n=1/(1+ 1.1+ 18004°) + 10/ 20+ q°). (5.7) (4.5 and (4.6) provide low-temperature rigidity factors

Figure 13 shows the quality of the fit expressionsYgrand
n such as given by Egs(5.5—(5.7). Figure 6 includes

examples for the complete dependence fqfq(T—0)

FIG. 13. Fit parameters for thermal rigidity factors in E§.5 [O: calcu-

latedn values,M: calculatedy; values, full lines: Eqs(5.6) and (5.7)].

whereas EQq.(4.8) includes high-temperature effects. The
given formulas allow for a quick estimate of the rigidity
factors as a function of molecular parameters governing the
attraction and anisotropy parts of the potential.

In the following section two additional aspects are inves-
tigated. First, the agreement between SACM and CT calcu-
lations is demonstrated for the range of adiabatic dynamics.
This result is in complete analogy with parts I-Ill of this
series' 3 Second, SACM expressions are derived for very
low temperatures where the CT treatment becomes invalid.

Similar to the treatment of Refs. 1-4 we have calculated
adiabatic channel potential curves along the reaction path
diagonalizing the Hamiltonian, e.g., E&.13. Via the chan-
nel maxima, the activated complex pseudo-partition func-
tions and finally the capture rate constants were calculated.
Figure 14 represents the results for linear adducts @Rl
=0.5. The lowest set of curvéfll) with the largest value of
the paramete€ [Eq. (4.1)] corresponds to the strongest an-
isotropy of the potential. In this case adiabatic zero-point
barriers arise which result in an exponential decreade. gf
with decreasing temperature. At high temperatures, the
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FIG. 14. Low-temperature capture rate constants from SACM calculations for the potential @& Bqvith «/3=0.5 andBr.=4 [groups of curves IC
=1,11: C=2, and lll:C=4; A, exp(—Br.)/B=183.2(full lines), 36.63(dashed lings and 9.158dotted lineg. comparison with CT calculationglash-dot-
dotted lineg].

SACM calculations well approach the CT resultiie to @  point barriersEy(I=0) (I=quantum number of orbital mo-
limitation of the range of quantum numbers included in thetion) can be approximated empirically by
SACM treatment, at the end of the calculated range one ob-

serves a decrease of the SACM values below the CT values Eo(l=0) - § C-2 40 47( C_2)3'4 2

which here is not a relevant numerical artifaciVith de- B 2| C ' C

creasing the strength of the anisotroflecreasingC values

in groups Il and ), the effect of adiabatic zero-point barriers for 2=C=3.2115, 6.1
disappears. The SACM results fég,, with increasingT Eo(l1=0) C—-2 0.223

approach the CT results from below, overshoot, and finally B~ 1  C for C=3.2115. (6.2

approach the CT results accuratélize artifact at the high- _ N .
temperature end is again visibleFigure 14 demonstrates The corresponding positions™ of the channel maxima are
that (apart from the described small calculational high-€Xpressed by

temperature artifagtSACM and CT results agree very well N*~3(C—2+C?/36)/C for 2<C=<3.2115, (6.3
in the classical adiabatic range such as it should be and was )
also found in Refs. 1-3. In the quantum range, only SACM ~ A7~C?%/8+0.11 for C=3.2115, (6.4

works. A plot ofkgs kS, as a function of INKT/B) in Fig.  \yhere) * is related tor * by

15 illustrates the dominant importance of the r&i/B and

the change of the quantum rate constant with varying anisot- A~ =B8re=In[x*(B/D)/C]. (6.5
ropy strengthC. The resulting limiting low-temperature capture rate constants
Unlike Refs. 1-3, a rigorous analytical low-temperaturehave the form
limiting expression ofkga " cannot be formulated easily KSACM T, 0) ~ 1 %2 _
. ~r7°8wkT/u exd —Eq(1=0)/KT
because the perturbation treatment cannot be elaborated ex- (T=0) kTl exil ~Eo(1=0) ](6.6)

plicitly. Nevertheless, approximate analytical results can be _ _ i
produced such as shown in the following. There are twd® P& combined with Eqs6.1)—-(6.5). In the “strong-field
ranges of conditions: for weak anisotropie®<t2), no adia-  lImit” = of large anisotropies>1), this approaches
batic zero-point barriers appear, for stronger a”iSOtrODieﬁfﬁpCM(THO)~B‘2\/W[,Bre—In(B/D)—In(C/S)]2
(C=2), zero-point barriers become apparent. As long as x ex] — (Cla—1/2)BIKT] 6.7
there are zero-point barriers, they govern the limiting low- : |
temperature rate constants. The calculated adiabatic zer&igure 15 compares the accurate SACM results with the sim-
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FIG. 15. Same as Fig. 14, reduced representation of capture rate constants from 32§§m @and CT «g'a,; [groups of curves IC=1, Il: C=2, lll: C
=2.5,1V: C=4, V: C=8, and VI: C=16. A; exp(—pre/B=183.2(full lines); comparison with limiting low-temperature expressions from SACM, Egs.
(6.1)—(6.6) (dotted lineg, and Egs(6.1)—(6.5), (6.8) (dashed lined.

plified explicit results from Eqs6.1)—(6.6). The agreement activated complex partition function of the numerator of Eq.
in the limiting low-temperature behavior is excellent. One(6.6). Replacing Eq(6.6) by

may improve the agreement for higher temperatures even

more by taking_ into account that, for rigid situationg, higher kg;cm(T_)O)%r;&z\/m[lJrS exp( — 2B/kT)]~*
channels contribute much more strongly to the rotational par- P

tition function in the denominator of Eq6.6) than to the Xexd —Eq(1=0)/kT], (6.8

cl
cap

SACM
k /
cap
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In[kT/B]

FIG. 16. Same as Fig. 15 for T-shaped adduct, @) with a/B3=0.5, =0, Br.=4 [groups of curves IC=2, Il: C=4, lll: C=8, and IV:C=16.
A, exp(—pr)/B=36.63; full lines: SACM results; dotted lines: Eq$.6), (6.9—(6.11); dashed lines: Eq$6.8)—(6.11)].
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with E¢(1) andr® from Egs.(6.1)—(6.5), therefore, gives In the range of classical adiabatic dynamics, the capture
even better agreement, see Fig. 15. However,(E® can rate constant from phase space theory can be well repre-
only be used for the range whekg,, curves up; at higher sented by Eq(4.2),

temperatures, the neglection of higher terms becomes notice- _ 2

able. For the opposite case without adiabatic zero-point bar- Y(X)=artapX+agXs, (7.9
riers (at 0<C<2), Fig. 15 shows thakt,,markedly deviates with  Y=Kk3\(87kT/u) 1282, X=In(KTID)~fBre, a;
from the classical value only at extremely low temperatures= —15.7706, a,= — 8.6364, anda3=0.9975(see Table I;

In this case, however, the standard valence potential used #ome minor deviations arise for smglt . at very high tem-
our work in practice becomes unrealistic since other longperatures, see E¢4.3) and Table I).

range potentials dominate the capture. For this reason, we Accounting for the anisotropy of the potential introduces
did not further investigate this limit for a Morse potential. ~thermal rigidity factorsf giq=Keap/Keny. At low tempera-

In the rangeC>2, the transition from the limiting low- tures(but still in the classical rangethese are of the form
temperature capture constants of E@s1)—(6.7) to the clas- [Eq. (4.5)]
sical rate constants of E(#.2) cannot be so well represented . 2, -8\ —1/8
in reduced form as in ion—dipole captdt@he overshoot of Frigia(T—0)~(1+27+ 2% "% (-2
the classical capture rate constant prevents the appearancewdiereZ=(A,/D)"/y; or Z=(A,/D)"/y,. The anisotropy
a universal doubly reduced representation. For this reaso@mplitudesA; or A, are related to the paramefdiq. (4.1)]
we do not fgrther construct transition curves but refer to the C=[e(ry)]42BD, 7.3
results of Fig. 15.

Besides the SACM low-temperature quantum limit of by A1/2D=C (linear adductsor A,/D=C/3 sirf y, [non-
capture forming linear adducts, we also describe results fdinear adducts Eqg2.4) and(2.9); anharmonicity effects for
capture forming T-shaped adducts<0). Quite similar be- linear adducts are described By from Eq.(2.9)]. When the
havior is found as for linear adduct formation. F6e=2,  ratio a/g of the looseness parameterand the Morse pa-

adiabatic zero-point barriers arise with rameterp of the potential differs from the value 0.5, in Eq.
(7.2 C, A,/D, or A,/D have to be replaced by effective
Eo(1=0) - E (C—2) 6.9 values given by Eqs4.10 and(4.11) or Egs.(5.8—(5.11).
B 8 ' ' The parametera and y; used in Eq(7.2 can be well rep-

resented by Eqg5.6) and(5.7) as a function of the quantity
g which accounts for nonlinearity and anharmonicity of the
A7=~3C%6 for C=2 (6.10  potential[see Egs(2.5—(2.11)]. A high-temperature correc-
tion of the rigidity factor finally is provided by Eq$4.8) and
(4.9, e.g., atC=2 by

frlgld/frlgld(THO)%l_ogzl' eijX/204‘D, (74)

The corresponding positions of the channel maxima are

where\” is related tor * by
Br7~pre.—In[A7*(B/D)/C]. (6.11)

This leads to a capture rate constant of the form of (B . .
i * _ _ ; with X=In kT/D—gr, [for nonlinear adducts, see remarks
with r” and Ey(I=0) from Egs.(6.9—(6.11). Figure 16 %f_ter Eq.5.7)].

shows several examples. For the case of the T-shaped a In spite of the number of exoressions to be used. the
duct, the perturbation-theoretical eigenvalues for ion—d b pd lculation df....is ver E)jir t and without m
quadrupole captufehave been modified to derive Egs. escribed calcuiation e,y IS Very direct a out com-

(6.9—(6.17. The same procedure would also allow one topu'tational effort. It is of considerable exploratory value as
account for variations of the ratia/8 from the value 0.5 long as no complete and reliable potential-energy surfaces
which was used in Fig. 16 are available. Being based on systematic trajectory calcula-

tions, it provides a clear picture of the contributions of vari-
ous molecular parameters to the capture rate constant.

VII. CONCLUSIONS

Our present combined quantum statistical adiabatiACKNOWLEDGMENTS
channel and classical trajectory calculations showed again

that, in the range of adiabatic dynamics, the SACM and CT h Financial jsupr;]c;f;g; tg; YY&”‘I bkylthe '\I/?eur:sche For-
treatments coincide for classical conditions. In the quanturr?c. ungsgemeinschat . olekuiare viechanismen
unimolekularer Reaktionen’as well as by the Fund of the

range, only the SACM gives correct results. The transitio i f R h at the Techni tefull
from adiabatic to nonadiabatic dynamics was treated by C%r:?)wlz (';;l; esearch at the 1echnion are gratetully ac-

methods.
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