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Classical trajectory and statistical adiabatic channel study of the dynamics
of capture and unimolecular bond fission. IV. Valence interactions
between atoms and linear rotors
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Institut für Physikalische Chemie, Universita¨t Göttingen, Tammannstrasse 6, D-37077 Go¨ttingen, Germany

~Received 23 April 1997; accepted 24 December 1997!

The addition of atoms to linear molecules forming linear or nonlinear adducts is treated using
standardized valence potentials. The dynamics is analyzed with a combination of classical trajectory
~CT! and statistical adiabatic channel~SACM! calculations. For classical adiabatic conditions, the
two approaches coincide. The transition from adiabatic to nonadiabatic dynamics is investigated
using CT calculations. The low-temperature adiabatic quantum range is studied by SACM. Thermal
capture rate constants are represented in analytical form. Thermal rigidity factors are expressed in
terms of molecular parameters such as the frequencies of transitional bending modes, the bond
dissociation energy, the rotational constant of the linear fragment, and the ratio of the looseness and
Morse parametersa/b of the potential-energy surface. The final rate expressions are of simple form
suitable for direct practical applications. ©1998 American Institute of Physics.
@S0021-9606~98!01113-1#

I. INTRODUCTION

In parts I–III of this series we have analyzed the capture
of ions by dipoles,1 by quadrupoles,2 and of dipoles by
dipoles,3 comparing rigorous applications4 of the statistical
adiabatic channel model~SACM!5 with extensive classical
trajectory~CT! calculations. It was shown that the two treat-
ments agree completely in the range of classical adiabatic
dynamics. In the low-temperature quantum range only
SACM is applicable. Ion–dipole and ion–quadrupole cap-
ture show nonadiabatic dynamics only at very high tempera-
tures, the CT treatment allowing for an analytical represen-
tation of the transition between adiabatic and nonadiabatic
~sudden! capture rate constants.1,2 The situation is more com-
plex for dipole–dipole capture3,6–8 where numerous simple
and multiple Landau–Zener type avoided crossings between
higher adiabatic channel potential curves are encountered
and transitions between adiabatic and nonadiabatic capture
dynamics of different types have to be considered for higher
temperatures.

The combined SACM and CT treatment of Refs. 1–3
allowed for an analytical representation of the thermal cap-
ture rate constants in terms of molecular parameters. It ap-
peared promising to also apply the mentioned approach to
short-range valence potentials. One may hope to again obtain
compact analytical expressions for capture or the corre-
sponding dissociation rate constants. First attempts on a
crude level have been made earlier,9–11 using simplified os-

cillator versions of SACM, and employing simple anisotropy
models of valence potentials.12 In the present work, this con-
cept will be followed on a more rigorous level. We derive
SACM and CT capture rate constants for atoms combining
with linear species, using simple Morse-type attraction po-
tentials and simple anisotropy models for the valence poten-
tial. The capture rate constants are again expressed analyti-
cally in terms of the relevant molecular parameters. One
should keep in mind that real potentials may be more com-
plicated, showing nonsmooth transitions between short-range
valence and long-range electrostatic components~see, e.g.,
the H2O2 system in Ref. 13!. However, the present results
serve as a useful reference for comparison, in particular be-
cause an increasing number of high-pressure association
measurements is becoming available now~see summaries in
Refs. 9 and 14–16!. Capture rates are also interesting be-
cause they provide upper limits for rate constants of
complex-forming bimolecular reactions.17

Classical trajectory calculations of thermal capture~or
the reverse thermal dissociation! rate constants on valence
potential-energy surfaces obviously have frequently been
done before. Recent reviews and exemplary calculations for
specific molecular systems such as Refs. 18–21 describe the
state of the methodology and the dynamic features calcu-
lated. The present treatment differs from these studies in
some aspects:~i! the influence of key properties of the po-
tential is elaborated systematically such that capture rate con-
stants can be expressed in analytical form as a function of
few molecular parameters,~ii ! the coincidence of SACM and
CT under classical adiabatic conditions is verified,~iii ! the
transition from classical adiabatic to nonadiabatic dynamics
is quantified, and~iv! explicit rate coefficients for low-
temperature quantum adiabatic capture are elaborated. We do
these calculations for situations with linear and nonlinear
adduct formation. The addition of two linear species forming
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linear or nonlinear adducts will be treated in a subsequent
article22 ~part V of this series!.

II. REDUCED HAMILTONIAN AND MASSEY
PARAMETER

Following the concepts of parts I–III1–3 we perform
classical trajectory calculations with a Hamiltonian in re-
duced form. At first, we consider the formation of a linear
adduct from an atom and a linear species. We choose a
center-of-mass coordinate system and employ a potential en-
ergy V(r ,g) of the type

V~r ,g!5D$exp@22b~r 2r e!#22 exp@2b~r 2r e!#%

1A1@~12cosg!/2#exp@22a~r 2r e!#, ~2.1!

where r is the distance between the centers of mass of the
two combining species,g denotes the angle between the line
connecting the centers of mass and the axis of the linear
species,r e is the value ofr in the equilibrium configuration,
b is the Morse parameter,D is the Morse dissociation energy
of the adduct, anda is the ‘‘looseness parameter’’ of the
anisotropy of the potential in the sense used in the original
version of the SACM.5

The parameterA1 can be understood as an ‘‘anisotropy
amplitude’’ ~at r 5r e!. While the attraction between the two
species in Eq.~2.1! is assumed to be of the simple Morse
type, the anisotropy of the potential is characterized by
r -dependent quantae(r ) of the adduct bending vibration of
the approximate form

e~r !5e~r e!exp@2a~r 2r e!#. ~2.2!

This form was initially suggested by bond energy–bond or-
der arguments23 and generalized in the empirical exponential
eigenvalue interpolation of the original version of the
SACM.5 A simple SACM analysis of a series of high-
pressure recombination rate constants9 led to the result that
a/b'0.5. Apparently there is a fairly uniform general an-
isotropy present in many valence systems. Quantum-
chemical calculations~see e.g., Ref. 24! confirmed the order
of magnitude ofa/b although often slightly larger values of
the ratioa/b were found, being near to 0.6.

The parameterA1 is related to the moment of inertia I of
the linear fragment and the bending quantume(r e) of the
adduct in its equilibrium configuration. For the potential
~2.1!, the frequencyv(r e)5e(r e)/\ of the bending vibration
of the adduct atr 5r e is equal to

v~r e!5AA1

2 S 1

I
1

1

mr e
2D , ~2.3!

wherem denotes the reduced mass of the two fragments. In
practice, one often hasmr e

2@I ~e.g., for NO2 one would have
Be5\2/2mr e

25hc•0.422 cm21 and B5\2/2I 5hc•1.704
cm21!. Equation~2.3! then simplifies to

A1'2I @v~r e!#
25

2I

\2 @e~r e!#
25

@e~r e!#
2

B
, ~2.4!

whereB ~in energy units! denotes the rotational constant of
the linear fragment. Since adiabatic channel maxima are lo-

cated at relatively larger values, we use Eq.~2.2! and we
relate e(r e)5\v(r e) with the parameterA1 through Eq.
~2.4!.

Equation~2.1! corresponds to the formation of a linear
adduct with cosg anisotropy of the bending potential and
Morse-type attraction; hence, an anisotropy of the ion–
dipole type is employed. In addition to this simplest case, we
have also considered a series of other potentials. For ex-
ample, we have studied the formation of nonlinear adducts.
For this purpose, we have replaced Eq.~2.1! by

V~r ,g!5D$exp@22b~r 2r e!#22 exp@b~r 2r e!#%

1A2@3~cos2 g!/22q cosg1q2/6#

3exp@22a~r 2r e!#, ~2.5!

whereq is in the range 0<q,3. The parameterq is related
to the anglege of the potential minimum by

q53 cosge . ~2.6!

In the equilibrium configuration (r 5r e), potential maxima
of the magnitudeA2(3/22q1q2/6) at g50 andA2(3/21q
1q2/6) at g5p are obtained. The bending frequency
v(r e)5e(r e)/\ now is given by

v~r e!5A3A2~1/I 11/mr e
2! sin ge ~2.7!

such that, instead of Eq.~2.4!, one has

A2'
@e~r e!#

2

6B F 1

sin2 ge
G . ~2.8!

Next we have considered the formation of linear adducts
with an anisotropy varying between cosg and cos2 g type.
For these investigations, we used the potential

V~r ,g!5D$exp@22b~r 2r e!#22 exp@2b~r 2r e!#%

1A2@3~cos2 g!/22q cosg1q23/2#

3exp@22a~r 2r e!# ~2.9!

with q>3. This potential in the equilibrium configuration
(r 5r e) has a maximum of 2qA2 at g5p; the parameterq
determines the relative contribution of cos2 g and cosg
terms, the pure cosg potential being reached atq→` while
a purely quartic potential nearg50 is realized atq→3. The
bending frequencyv(r e)5e(r e)/\ now is given by

v~r e!5AA2~q23!~1/I 11/mr e! ~2.10!

such that, instead of Eq.~2.4!, one has

A2'
@e~r e!#

2

2B F 1

q23G . ~2.11!

On the basis of the described potentials, we employ the in-
verse Morse parameter as our length unitl u5b21; kT is
used as the energy unitEu5kT; with the moment of inertia
I of the linear fragment, a time unittu5(2I /kT)1/2 is de-
fined; mu52Ib2 provides a mass unit. The reduced Hamil-
tonianh5H/Eu , e.g., for the potential of Eq.~2.1!, is then
written as

5266 J. Chem. Phys., Vol. 108, No. 13, 1 April 1998 Maergoiz et al.
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h5 j 21p2/2M1d$exp@22~r2re!#22 exp@2~r2re!#%

1a1@~12cosg!/2#exp@2~2a/b!~r2re!#, ~2.12!

wherej is the reduced angular momentum of the linear rotor
and p the reduced momentum of relative translation. The
effective massM of the system is given by

M5
m

mu
5

m

2Ib2 5
mr e

2

I F 1

2~br e!
2G5

B/Be

2~br e!
2 ~2.13!

with Be5\2/2mr e
2. Furthermore, one hasr5r / l u5br , re

5r e / l u5br e , d5D/Eu5D/kT, and a15A1 /Eu5A1 /kT.
Analogous relations were obtained for the other potentials
with a25A2 /kT.

The capture rate constantkcap can be expressed with the
reduced and thermally averaged capture cross-section^s& ~in
units of b22! via

kcap5A8pkT

m

^s/p&
b2 . ~2.14!

In the following, for convenience, we represent^s/p&
5kcap/b

22A8pkT/m as a function of the parametersM ,
re , d, a/b, anda1 ~or q anda2 instead ofa1!. We concen-
trate our attention in particular on the thermal rigidity factors
f rigid which are defined by

f rigid5kcap/kcap~a150! ~2.15!

~or a250!, i.e., by the ratio of the capture rate constants in
the presence and absence of anisotropy, the latter case cor-
responding to phase space theory, see below.

The extent of adiabaticity of the linear rotor~rotational
period t rot! during the collision~collision time tcol! can be
characterized25 by the Massey parameterj5tcol /t rot which is
related to the effective massM by

j5A2M . ~2.16!

Adiabatic behavior corresponds toj@1 and nonadiabatic
~sudden! behavior to j!1. For the present situation, we
show that deviations from adiabatic dynamics only become
apparent whenj is much smaller than unity.

III. HARMONIC OSCILLATOR APPROXIMATION

Following earlier treatments in Refs. 3 and 11, in the
present study we also compare adiabatic capture rate con-
stants from classical trajectory calculations with results from
a simple classical harmonic oscillator approximation of
SACM. Adiabatic channel potential curves in reduced form,
for the linear adduct potential of Eq.~2.12!, are given by

u~l!5l2/4d2l1vA2ld ~3.1!

~at largel and assuming 2a/b51! where l and d corre-
spond tol52d exp@2(2a/b)(r2re)# andd5a1/4d with the
symbols defined for Eq.~2.12!; v denotes the quantum num-
ber of the bending vibration in the anisotropy potential.~For
more details, see the analogous cases treated in Ref. 3!. The
reduced centrifugal energy, added to Eq.~3.1!, is equal to
l 2/2Mr25eb2/r2 where l is the reduced angular momen-

tum,e is the reduced collisional energy, andb is the reduced
impact parameter. The reduced and thermally averaged cross
section then follows as

^s&/p5E
0

vmax
vdvE

0

`

e@b~e, f !#2exp~2e2ef !de

~3.2!

with f 5vAd and entrance channel energiesef ; vmax indi-
cates the maximum vibrational quantum number for bonding
channel potentials; atv.vmax, channel potentials become
repulsive. It is easy to show that

vmax5~4/3!Ad/3d. ~3.3!

b(e, f ) in Eq. ~3.2! denotes the maximum impact parameter
at a givene and f , for which capture can occur, i.e., for
which r5re can be reached classically. With the present
potential and centrifugal energy,b(e, f ) can only be calcu-
lated numerically and inserted into Eq.~3.2! which was done
in this work. The results are compared with trajectory calcu-
lations in Sec. IV.

Even without evaluatinĝs&/p explicitly, an important
general result can be derived. Replacingv by f 5vAd, Eq.
~3.2! becomes

^s&/p5d21E
0

f max
f d fE

0

`

e@b~e, f !#2 exp~2e2ef !de.

~3.4!

As a consequence, one predicts thatkcap and the rigidity
factor f rigid , for the linear adduct, become inversely propor-
tional to d and hence toA1 , i.e.,

f rigid}
1

A1
. ~3.5!

~One should note that this prediction only applies when
d@1.! Equation~3.5! confirms earlier results from more ap-
proximate oscillator models.11 The rigorous relation between
f rigid andA1 will be determined in Sec. IV.

IV. CAPTURE RATE CONSTANTS FROM CLASSICAL
TRAJECTORY CALCULATIONS: LINEAR
ADDUCTS

Classical trajectory calculations were performed such as
described in Refs. 1–3. About 104 trajectories were investi-
gated for each$M ,re ,d,a,a/b% parameter combination~a
stands fora1 or a2!. Because the used potentials contain a
repulsive component, the capture condition for a trajectory
had to be changed against that used in parts I–III: Capture in
the present work was assumed to be achieved whenr ,r e

was reached. In some cases, whenr ,r e was not accessible,
also reaching a range with oscillatory motion inr was taken
as evidence for capture. A first series of calculations, for
linear adducts with the potential of Eq.~2.1! anda/b50.5,
was done in the adiabatic range (M5100), inspecting the
dependence of̂s&/p on re5br e . Besides the dependence
on re , we consider the dependence on the anisotropy which
we characterize by the reduced parameter11

C5@e~r e!#
2/2BD. ~4.1!

5267J. Chem. Phys., Vol. 108, No. 13, 1 April 1998 Maergoiz et al.
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For the potential of Eq.~2.1!, according to Eq.~2.4! C is
equal toA1/2D or a1/2d. Calculations forC50, i.e., in the
absence of an anisotropy of the potential, correspond to
phase space theory~PST!, see, e.g., Ref. 18. Figure 1 shows
representative results. One observes that^s&/p

5kcap(8pkT/m)21/2b2 is almost a unique function of the
variablekT/@D exp(bre)#. Only at the highest temperature,
when the repulsive part of the potential matters, deviations
occur for br e51 ~a case which in practice is rare!. The
capture rate constant decreases with increasingC; i.e., in-

FIG. 1. Thermal capture rate constantskcap for the potential of Eq.~2.1! with a/b50.5; dependence onbr e ~see text!, points: classical trajectory calculations,
lines: harmonic oscillator SACM; upper set: isotropic potential withC50 ~PST!, lower set: anisotropic potential withC52, see Eq.~4.1!; j and.: br e

51, d andl: br e52, m and1: br e54; lines from bottom to top: complete Morse potential~br e54, -•-•-!, complete Morse potential~br e52, ----!, Morse
potential without repulsive term~———!, complete Morse potential~br e51, thin full line in lower right corner!.

FIG. 2. Thermal capture rate constantskcap for the potential of Eq.~2.1! with a/b50.5: dependence on the effective massM in the near-adiabatic range@see
text; br e54; full line on top:C50 ~PST!, groups of points from top to bottom:C51, 2, and 4; effective massM5100: u, h, ands, M510: 3, * , and –,
M51: ., l, and1, M50.1: j, d, andm; 0.1<M<100 corresponds to Massey parameters 0.45<j<14, see Eq.~2.17!#.

5268 J. Chem. Phys., Vol. 108, No. 13, 1 April 1998 Maergoiz et al.
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creasing anisotropy of the potential introduces ‘‘rigidity,’’
represented by a thermal rigidity factorf rigid smaller than
unity.11 Again one observes deviations from a common
curve only at the highest temperatures when the repulsive
term of the potentials matters. In contrast to theC50 curve,
here deviations are strongest forbr e54. Figure 1, for the
caseC52, also includes a comparison of the trajectory re-
sults with the classical harmonic oscillator model described
in Sec. III, four curves are shown: the full line corresponding
to a Morse potential omitting the repulsive term~this curve
practically coincides with that of a complete Morse potential
andbr e51!, the dashed curve for a complete Morse poten-
tial andbr e52, and the dash-dotted curve with a complete
Morse potential andbr e54. The general agreement between
the CT and approximate oscillator~SACM! treatments is
very good, only minor deviations being observed as a con-
sequence of slightly different capture criteria, particularly for
high temperatures where the repulsive part of the potential
matters most~overcoming of the channel maxima was the
criterion in the SACM oscillator model treatment!.

Choosing br e54 for reference, the dependence of
^s&/p on the effective massM ~or the corresponding Mas-
sey parameterj! and on the anisotropy parameterC is dem-
onstrated in Fig. 2. Only small dependences onM are noted
between 0.1 and 100, being most pronounced forC52. Ap-
parently, over the shown range of effective masses 0.1<M
<100, which correspond to Massey parameters 0.45<j
<14, adiabatic dynamics is realized. Like in Fig. 1,^s&/p
decreases below the PST result~full line! with increasing
anisotropy, i.e., whenC exceeds unity.

In order to inspect the transition from adiabatic (M
→`) to nonadiabatic~sudden! dynamics (M→0), we did

calculations with further reducedM values. Figure 3 shows
the results forC52. The transition occurs betweenM
50.1(j50.45) andM50.01(j50.14). Rate constants in
the sudden limitM→0 are 2/3 of the limiting adiabatic val-
ues~at low temperatures!. Figure 3 also includes a compari-
son of CT and analytical results forM→0, obtained for fro-
zen orientations of the linear species and subsequent
averaging over all orientations. The agreement between the
two treatments of the limiting sudden dynamics is quite sat-
isfactory.

In the following we do not further consider the transition
between sudden and adiabatic dynamics, but only analyze
the practically most relevant adiabatic situation. Analytical
representations of the dependences ofkcap on br e , D/kT,
and C were derived forM5100. Figure 4, as an example,
for M5100 anda/b50.5 shows the quality of fits ofkcapas
a function ofkT/@D exp(bre)# andC. The capture rate con-
stants are represented byY5kcap(8pkT/m)21/2b2 as a func-
tion of X5 ln(kT/D)2bre. As demonstrated in Fig. 4, the
results can be expressed very well as

Y~X!5a11a2X1a3X2. ~4.2!

Except for the high-temperature ends of the curves~for br e

51!, where the repulsive part of the potential produces ad-
ditional dependences onbr e ~see below!, the fit parameters
of Y(x) only depend onC. Examples of fit parameters are
given in Table I.

For cases with smallbr e and largekT/D, an extension
of the fit is required. In this case, we employed

Y5b1 sin@p~X2b2!/b3#1b41b5X1b6X2. ~4.3!

FIG. 3. Thermal capture rate constantskcap for the potential of Eq.~2.1! with a/b50.5: transition from adiabatic to nonadiabatic~sudden! dynamics, see text.
~br e54, C52; full line at the top: harmonic oscillator SACM for the adiabatic limit, see Fig. 1; points: CT from top to bottom withM5100 ~j!, 0.1 ~d!,
0.01~m!, and 10210 ~.!, i.e.,j514.1, 0.45, 0.14, and 1.431025, respectively; dashed line at the bottom: analytical calculation for the sudden limit, see text!.
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As an example, forbr e51, Table II gives fit parameters as a
function of C @here usingX5 ln(kT/D)].

An alternative representation is provided by separate fits
of the capture rate constants from phase space theorykcap

PST

and of the thermal rigidity factorsf rigid(T) defined by Eq.
~2.15!, i.e.,

kcap5 f rigid~T!kcap
PST. ~4.4!

kcap
PST is expressed with the fit parameters of Tables I and II

for C50. Figure 5 ~for br e54 and a/b50.5! shows
f rigid(T) as a function of ln(kT/D) and of C. One observes
that f rigid(T) at lower temperatures is practically temperature
independent; for higher temperatures, a minor decrease of
f rigid(T) is observed.

In the low-temperature range, the dependence off rigid on
the anisotropy of the potential can be very well represented
analytically by the expression

f rigid~T→0!'~11Z21Z8!21/8, ~4.5!

with Z5C/& or Z5(A1 /D)n/g1 where n51 and g1

5A8. For f rigid<0.8, this simplifies tof rigid'1/Z or

f rigid'2&BD/@e~r e!#
2'&/C. ~4.6!

The rigidity factor, hence, can be expressed in a simple way
by a combination of molecular parameters. The present con-
clusions from trajectory calculations fully confirm earlier
more approximate results11 which, by a simplified SACM
treatment, led to a rough estimate off rigid ~at f rigid,0.8! of
f rigid51/C. The new Eqs.~4.5! and~4.6! supersede this over-
simplified result. Figure 6 demonstrates the fit of the calcu-
lated low-temperature rigidity factors by Eq.~4.5!. It also
shows the excellent performance of Eq.~4.6! for f rigid<0.8.

A temperature-independent rigidity factorf rigid(T) from
Eq. ~4.4! would lead to identical temperature dependences of
kcap and kcap

PST. However, in real systems the high-
temperature decrease off rigid(T) at ln@kT/D exp(bre)#.29
cannot always be neglected. It could be fitted by expressions
of the form

f rigid~T!5d11d2 exp~X/d3!, ~4.7!

whereX5 ln@kT/D exp(bre)#. Such fits are included in Fig. 5.
The high-temperature decrease off rigid below the low tem-
perature limit f rigid(T→0) can also be expressed in general
form by

f rigid / f rigid~T→0!5120.94 exp~X/2.044!, ~4.8!

with X5 ln@kT/D exp(bre)# at C>2 and

f rigid / f rigid~T→0!5120.94~C/2!exp~X/2.044! ~4.9!

FIG. 4. Thermal capture rate constantskcap for the potential of Eq.~2.1! with a/b50.5: CT results and their fit by Eq.~4.2! ~examples forbr e51, 2, 4 and
M5100; C50 ~PST!, 0.5, 1, 2, 2.5, 4, and 8 from top to bottom!.

TABLE I. Fit parametersa i in Eq. ~4.2! for thermal capture rate constants
calculated with the potential of Eq.~2.1! @anisotropy parameterC from Eq.
~4.1!#.

C a1 a2 a3

0 215.7706 28.6364 0.9975
0.5 236.5761 211.6146 0.8305
1 235.3951 210.3463 0.8409
2 220.0489 24.7740 0.8501
2.5 256.9892 212.0888 0.2863
4 210.4879 22.5247 0.4264
8 215.4267 23.1423 0.1288
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at 0<C<2. Figure 7 compares the fit curves from Fig. 5
with the satisfactory general representation of Eqs.~4.8! and
~4.9!.

Temperature-independent low-temperature rigidity fac-
tors f rigid(T→0) would only be obtained ifa/b50.5 is ful-
filled, i.e., when attraction and anisotropy of the potential
with increasingr ‘‘decrease synchronously.’’ Deviations of
the ratio a/b from 0.5 destroy this feature; ifa/b.0.5,
comparably stronger anisotropies are sampled by the dynam-
ics at higher temperatures such thatf rigid(T→0) @apart from
the behavior described by Eqs.~4.7!–~4.9!# decreases with
increasing temperature; the opposite applies fora/b,0.5.
We demonstrate this dependence of the capture rate con-
stants on the ratioa/b in Figs. 8–10. The deviation of
f rigid(T) from Eqs.~4.5! and ~4.6! in the case ofa/bÞ0.5
can also be represented analytically in a satisfactory manner.
We do this by replacingC in Eqs. ~4.5! and ~4.6! by an
effectiveCeff which is related toC, a/b, andkT/D by

Ceff5CF~kT/D !2a/b21 ~4.10!

with

F5110.9~2a/b21!220.8~2a/b21!3. ~4.11!

ReplacingC in Eq. ~4.5! by Ceff from Eqs.~4.10! and~4.11!
for general values ofa/b, one obtains thermal rigidity fac-
tors f rigid(T→0) such as shown in Fig. 10. As explained
above, f rigid decreases with increasing temperature fora/b
.0.5 and increases fora/b,0.5. Figure 10 compares the
analytical results forf rigid(T→0) from Eqs. ~4.1!, ~4.5!,
~4.10!, and~4.11! with the true SACM results. At low tem-
peratures, the agreement is very good. At high temperatures,
the temperature dependence described by Eqs.~4.7!–~4.9!
was not included in the analytical representation such that
some deviations arise. If necessary this effect could also be
accounted for by combining Eqs.~4.5! with Eqs.~4.7!–~4.9!.

Equations~4.1!, ~4.5!, and~4.8!–~4.11! hence provide a
very quick estimate off rigid in terms of the parameterskT,
D, e(r e), B, and a/b. While the first four parameters are
directly available, the ratioa/b has to be determined from
quantum chemistry. Apparently it is most frequently close to
0.5 (60.1)24 such that it can also be estimated reasonably
well without havingab initio results.

FIG. 5. Thermal rigidity factorsf rigid @see Eq.~4.4!# for capture calculated with the potential of Eq.~2.1! anda/b50.5 @CT results forbr e54; curves from
top to bottomC50.25 ~h!, 0.5 ~j!, 1 ~d!, 2 ~m!, 2.5 ~s!, 4 ~.!, and 8~n!#.

TABLE II. Fit parametersb i in Eq. ~4.3! for thermal capture rate constants calculated with the potential of Eq.
~2.1! ~high-temperature details included,br e51!.

C b1 b2 b3 b4 b5 b6

0 28.75377 2.76016 3.52573 1.42352 23.26427 1.80325
0.5 29.39689 2.76665 3.53617 2.6172 21.51771 1.88866
1 28.87187 3.2177 3.72405 5.7115 0.86385 1.98657
2 24.41999 1.24957 2.81331 25.3147 22.44171 1.23978
4 23.89236 13.1667 4.2395 5.99931 2.50412 0.95012
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V. CAPTURE RATE CONSTANTS FROM CLASSICAL
TRAJECTORY CALCULATIONS: NONLINEAR
ADDUCTS

The methods described in Sec. IV next are applied to the
more complicated potentials of Eq.~2.5!, i.e., to potentials

with nonlinear adducts. At first, the casea/b50.5 is consid-
ered. While the harmonic part of the potential of Eq.~2.1!
with linear adduct formation dominated the results of Sec.
IV, vibrational–rotational coupling effects become apparent
with the potential of Eq.~2.5!. Anharmonicity effects are

FIG. 6. Low-temperature thermal rigidity factors from Eq.~4.5! ~full line! and Eq. ~4.6! ~dashed line! in comparison to calculated results~points!
@a/b50.5; d: linear adduct, Eq.~2.1!; m: T-shaped adduct, Eq.~2.5! with q50; .: nonlinear adduct, Eq.~2.5! with q51; l: Eq. ~2.5! with q51.5; 1:
Eq. ~2.5! with q52; * : Eq. ~2.5! with q53A3/2; 3: Eq. ~2.5! with q52.8; –: linear adduct, Eq.~2.9! with q53; u: Eq. ~2.9! with q54; h: Eq. ~2.9! with
q55; s: Eq. ~2.9! with q510; linear case:g15A2 andn51; all other cases:C replaced by (A2/D) andg1 andn1 from Eqs.~5.6! and ~5.7!#.

FIG. 7. Temperature dependence of rigidity factors for linear adducts, Eq.~2.1! with a/b50.5 andbr e54. Full lines: CT results forC50.25, 0.5, 1, 2, 4,
and 8 from top to bottom; dotted lines: simplified representation by Eqs.~4.8! and ~4.9!.
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studied in particular with the potential of Eq.~2.9! ~corre-
sponding to linear adducts!. A few representative results are
illustrated in the figures; more general results are summa-
rized in the tables and fit expressions.

Figure 11 shows thermal capture rate constants fora/b
50.5 and forq50 in Eq. ~2.5!, i.e., for T-shaped adducts

with an anisotropy such as governing also even ion–
quadrupole capture.2 The full lines in the figure correspond
to fits in the form of Eq.~4.2!. Similarly good fits are ob-
tained for otherq values. Table III gives examples of fit
parameters for a series ofq values in Eqs.~2.5! and~2.9!. @In
Table III only calculations forbr e54 are included, withX

FIG. 8. Thermal capture rate constantskcap for the potential of Eq.~2.1! with varying a/b. Open symbols: CT results and their fit by Eq.~4.2! for a/b
50.5, M5100,br e54, and1(C50.25), 3(C50.5), L(C51), h(C52), s(C54), n(C58), and,(C516), line at the top: PST; closed symbols:
CT results fora/bÞ0.5, j:a/b50.6 (C52), d:a/b50.6 (C54), m:a/b50.6 (C58), .:a/b50.6 (C516), l:a/b50.75 (C562.5).

FIG. 9. Same as Fig. 8; open symbols:a/b50.5 with C50.5 ~h!, 1~s!, 2~n!, 4~,!, 8~3!, and 16~* !; closed symbols:a/b50.4 with C50.125~l!, 0.25
~1!, 0.5 ~j!, 1 ~d!, 2 ~m!, and 4~.!; L:a/b50.25 andC50.25.
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corresponding to ln(kT/D); results for otherbr e can be ob-
tained by usingX542br e1 ln(kT/D).# The table also in-
cludes, for 0,q,3, the equilibrium anglesge and the
smaller and larger potential barriers of the angular potential
at r 5r e .

The comparison of the capture rate constants with results
from PST as before leads to the thermal rigidity factors. Fig-

ure 12 shows an example~for q50 anda/b50.5!. Again
one observes nearly temperature-independent values off rigid

at lower temperatures while some decrease arises at higher
temperatures. The high-temperature decrease can be fitted
quite similar to the results of Sec. IV. One just has to replace
C in Eqs. ~4.8! and ~4.9! by A2 /D. Similar qualities of the
fits are obtained as demonstrated in Fig. 7. We do not further

FIG. 10. Thermal rigidity factors at low temperatures for varyinga/b in Eq. ~2.1!. Lines: representations by Eq.~4.5! with Eqs.~4.10! and~4.11!. Points: CT
results fora/b50.75 andC562.5, ~m! a/b50.6 andC54 ~j! or C58, ~d! a/b50.4 andC50.25 ~h! or C50.5, ~s! a/b50.25 andC50.125n.

FIG. 11. Thermal capture rate constantskcap for the potential of Eq.~2.5! with a/b50.5: CT results and their fit by Eq.~4.2! ~examples forbr e54 and
M5100; T-shaped adduct withq50; A2 /D values50, 1, 2, 4, 8, 16, and 32 from top to bottom!.
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analyze this part of the curves. Instead, we focus attention on
the dependence of the low-temperature rigidity factors on the
strength of the anisotropy and/or the molecular angle such as
expressed by the parameterq in Eqs.~2.5! and~2.9!. For the

T-shaped adduct withq50, the curve of Fig. 12~at f rigid

<0.8! can be well fitted by

f rigid'21/4@&/~A2 /D !#1/2. ~5.1!

Combining Eqs.~2.8! and ~4.1! with A2 /D5C/3, for q50,
one may also express Eq.~5.1! with the quantityC from Eq.
~4.1! by

f rigid'21/431/2~&/C!1/252.06~&/C!1/2. ~5.2!

The exponent 1/2 ofC in Eq. ~5.2! corresponds to the single
transitional mode of the T-shaped adduct, while the exponent
unity of C in Eq. ~4.6! corresponds to two transitional modes
in the linear adduct. However, with increasingq more com-
plicated expressions forf rigid arise which do not follow the
relation

f rigid}~A2 /D !2b* /2 ~5.3!

whereb* is the number of transitional modes.11 Part of this
deviation is attributed to the increasing importance of anhar-
monicity and vibrational–rotational coupling of the potential.

For q53, i.e., a linear adduct with a quartic potential,
f rigid ~at f rigid<0.8! can well be represented by

FIG. 12. Thermal rigidity factorsf rigid for capture calculated with the po-
tential of Eq.~2.5! anda/b50.5 ~CT results forbr e54 andq50; curves
from top to bottomA2 /D51, 2, 4, 8, 16, and 32!.

TABLE III. Fit parametersa i in Eq. ~4.2! for thermal capture rate constants, calculated with the potentials of
Eqs.~2.5! and~2.9! ~first line with A2 /D50: PST; nonlinear adducts for 0<q<3 with equilibrium anglesge

~°! and angular maximaVmax 1 and Vmax 2 at r 5r e ; linear adducts with mixed cosg//cos2 g potential forq
.3; see text!.

q ge Vmax 1/D Vmax 2/D A2 /D a1 a2 a3

-- -- 0 0 0 31.1530 218.1582 0.8685

90° 1.5 1.5 1 20.4551 219.3545 0.7260
0 3 3 2 8.2717 220.8341 0.5111

6 6 4 7.5691 214.2121 0.6212
12 12 8 6.2358 210.2049 0.4269

70° 1.3 5.3 2 12.2545 218.4010 0.5902
1 2 8 3 10.6892 215.7893 0.6067

4 16 6 6.0333 212.4456 0.4382
8 32 12 4.7941 28.6203 0.3458

48° 0.33 8.33 2 13.2291 214.2952 0.6495
2 0.67 16.7 4 12.6061 210.5926 0.5713

1.33 33.33 8 6.9216 29.5022 0.3456
2.67 66.7 16 3.2315 27.9951 0.2261

30° 0.027 5.22 1 15.4871 215.5046 0.7781
33/2/2 0.054 10.4 2 12.0812 211.5999 0.6170

0.11 20.9 4 8.3907 29.1273 0.4208
0.22 41.8 8 9.0149 25.7689 0.4283

0° 6 1 12.3342 214.3722 0.7283
3 12 2 9.7148 210.0103 0.5444

24 4 6.8744 27.2387 0.3744
48 8 5.2012 24.9549 0.2808

0° 4 0.5 8.2966 217.9126 0.6467
4 8 1 4.4169 212.5088 0.4869

16 2 0.8964 28.8056 0.2099
32 4 1.0960 24.7705 0.2273

0° 5 0.25 20.6675 214.8738 0.4929
10 10 0.5 21.7080 28.8057 0.2246

20 1 20.2790 24.3687 0.1403
40 2 20.4594 22.3287 0.0697
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f rigid'0.65@&/~A2 /D !#1/2. ~5.4!

The simple relation~5.3! between the exponentb! and the
number of transitional modes indeed has broken down be-
cause of the marked anharmonicity effects. Continuing the
increase ofq from 3 to `, decreasing contributions from
anharmonicity in the linear adducts can be followed. A
smooth transition from Eq.~5.4! to Eq. ~4.6! is encountered.
For a series ofq values, Table III includes fit parametersa1 ,
a2 , anda3 for capture rate constants expressed by Eq.~4.2!
~fitting range214<X<21 with X5 ln kT/D2br e).

The described rigidity factors can again be expressed in
the form of Eq.~4.5! with A1 /D replaced byA2 /D from the
potential of Eqs.~2.5! and ~2.9!. In all cases

f rigid'g1~A2 /D !2n ~5.5!

provides a good representation forf rigid<0.8. Table IV sum-
marizes fit parameters for a series ofq values. Because of the
combined contributions of anharmonicity and nonlinearity,
the transition from Eq.~5.1! for a T-shaped adduct to Eq.
~4.6! for a linear adduct cannot be represented in a simple
way. Nevertheless, a fit is possible in the form

g15
&23.3~q/2!61~&17/q!~q/2!8

11~q/2!8q
, ~5.6!

n51/~111.1/q11800/q6!110/~201q3!. ~5.7!

Figure 13 shows the quality of the fit expressions forg1 and
n such as given by Eqs.~5.5!–~5.7!. Figure 6 includes
examples for the complete dependence off rigid(T→0)

on A2 /D. One may also represent the temperature depen-
dence off rigid in a simple way: With the results from Table
III one derives relations analogous to Eq.~4.8!. One finds
that f rigid/ f rigid(T→0) switches from an expression 1
20.410 exp(X/2.359) for q50–2 to an expression 1
20.313 exp(X/4.234) for q52.6–3 ~with X5 ln kT/D
142br e).

When the ratio a/b differs from 0.5, the low-
temperature rigidity factors again are no longer temperature
independent. The qualitative behavior is quite similar to that
shown for linear adducts in Figs. 8 and 9 such that we do not
have to illustrate the effect again. Instead we give only fit
parameters. To a first approximationC ~or A2 /D! in Eqs.
~5.1!, ~5.2!, ~5.4!, and~5.5! has just to be replaced by effec-
tive valuesCeff @or (A2 /D)eff# such as given in Eq.~4.10!.
The best fits are obtained by using

Ceff5FC~kT/D !2a/b21 ~5.8!

with

F5120.4~2a/b21!10.9~2a/b21!2 ~5.9!

for q50,

F5120.7~2a/b21!1~2a/b21!2 ~5.10!

for q52,

F5120.7~2a/b21!10.7~2a/b21!2 ~5.11!

for q53. PuttingF simply equal to unity reproducesf rigid to
within 610% over the range 0.4<a/b<0.6.

VI. SACM TREATMENT OF LOW-TEMPERATURE
RIGIDITY FACTORS

The classical trajectory results described in the previous
sections on the one hand characterize the transition from
nonadiabatic~sudden! to adiabatic dynamics. On the other
hand, they provide analytical expressions for capture rate
constants in the adiabatic classical range. For example, Eqs.
~4.5! and ~4.6! provide low-temperature rigidity factors
whereas Eq.~4.8! includes high-temperature effects. The
given formulas allow for a quick estimate of the rigidity
factors as a function of molecular parameters governing the
attraction and anisotropy parts of the potential.

In the following section two additional aspects are inves-
tigated. First, the agreement between SACM and CT calcu-
lations is demonstrated for the range of adiabatic dynamics.
This result is in complete analogy with parts I–III of this
series.1–3 Second, SACM expressions are derived for very
low temperatures where the CT treatment becomes invalid.

Similar to the treatment of Refs. 1–4 we have calculated
adiabatic channel potential curves along the reaction pathr
diagonalizing the Hamiltonian, e.g., Eq.~2.13!. Via the chan-
nel maxima, the activated complex pseudo-partition func-
tions and finally the capture rate constants were calculated.
Figure 14 represents the results for linear adducts anda/b
50.5. The lowest set of curves~III ! with the largest value of
the parameterC @Eq. ~4.1!# corresponds to the strongest an-
isotropy of the potential. In this case adiabatic zero-point
barriers arise which result in an exponential decrease ofkcap

with decreasing temperature. At high temperatures, the
FIG. 13. Fit parameters for thermal rigidity factors in Eq.~5.5! @s: calcu-
latedn values,j: calculatedg1 values, full lines: Eqs.~5.6! and ~5.7!#.

TABLE IV. Fit parametersg1 in Eq. ~5.5! for low-temperature thermal
rigidity factors of capture in the potentials of Eqs.~2.5! and ~2.9!.

q g1 n

0 1.43245 0.5
1 1.40299 0.48927
1.5 1.22813 0.44276
2 1.00499 0.38396
3 0.77935 0.5
4 0.59621 0.68944
5 0.46503 0.80805

10 0.19174 0.92244
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SACM calculations well approach the CT results~due to a
limitation of the range of quantum numbers included in the
SACM treatment, at the end of the calculated range one ob-
serves a decrease of the SACM values below the CT values
which here is not a relevant numerical artifact!. With de-
creasing the strength of the anisotropy~decreasingC values
in groups II and I!, the effect of adiabatic zero-point barriers
disappears. The SACM results forkcap with increasingT
approach the CT results from below, overshoot, and finally
approach the CT results accurately~the artifact at the high-
temperature end is again visible!. Figure 14 demonstrates
that ~apart from the described small calculational high-
temperature artifact! SACM and CT results agree very well
in the classical adiabatic range such as it should be and was
also found in Refs. 1–3. In the quantum range, only SACM
works. A plot ofkcap

SACM/kcap
CT as a function of ln (kT/B) in Fig.

15 illustrates the dominant importance of the ratiokT/B and
the change of the quantum rate constant with varying anisot-
ropy strengthC.

Unlike Refs. 1–3, a rigorous analytical low-temperature
limiting expression ofkcap

SACM cannot be formulated easily
because the perturbation treatment cannot be elaborated ex-
plicitly. Nevertheless, approximate analytical results can be
produced such as shown in the following. There are two
ranges of conditions: for weak anisotropies (C<2), no adia-
batic zero-point barriers appear, for stronger anisotropies
(C>2), zero-point barriers become apparent. As long as
there are zero-point barriers, they govern the limiting low-
temperature rate constants. The calculated adiabatic zero-

point barriersE0( l 50) ~l 5quantum number of orbital mo-
tion! can be approximated empirically by

E0~ l 50!

B
'

3

2 FC22

C
10.47S C22

C D 3.43G2

for 2<C<3.2115, ~6.1!

E0~ l 50!

B
'

C22

4
2

0.223

C
for C>3.2115. ~6.2!

The corresponding positionsr Þ of the channel maxima are
expressed by

lÞ'3~C221C2/36!/C for 2<C<3.2115, ~6.3!

lÞ'C2/810.11 for C>3.2115, ~6.4!

wherelÞ is related tor Þ by

br Þ5br e2 ln@lÞ~B/D !/C#. ~6.5!

The resulting limiting low-temperature capture rate constants
have the form

kcap
SACM~T→0!'r Þ2A8pkT/m exp@2E0~ l 50!/kT#

~6.6!

to be combined with Eqs.~6.1!–~6.5!. In the ‘‘strong-field
limit’’ 26 of large anisotropies (C@1), this approaches

kcap
SACM~T→0!'b22A8pkT/m@br e2 ln~B/D !2 ln~C/8!#2

3exp@2~C/421/2!B/kT#. ~6.7!

Figure 15 compares the accurate SACM results with the sim-

FIG. 14. Low-temperature capture rate constants from SACM calculations for the potential of Eq.~2.1! with a/b50.5 andbr e54 @groups of curves I:C
51, II: C52, and III: C54; A1 exp(2bre)/B5183.2~full lines!, 36.63~dashed lines!, and 9.158~dotted lines!: comparison with CT calculations~dash-dot-
dotted lines!#.
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plified explicit results from Eqs.~6.1!–~6.6!. The agreement
in the limiting low-temperature behavior is excellent. One
may improve the agreement for higher temperatures even
more by taking into account that, for rigid situations, higher
channels contribute much more strongly to the rotational par-
tition function in the denominator of Eq.~6.6! than to the

activated complex partition function of the numerator of Eq.
~6.6!. Replacing Eq.~6.6! by

kcap
SACM~T→0!'r ÞA2 8pkT/m@113 exp~22B/kT!#21

3exp@2E0~ l 50!/kT#, ~6.8!

FIG. 15. Same as Fig. 14, reduced representation of capture rate constants from SACM (kcap
SACM) and CT (kcap

cl ) @groups of curves I:C51, II: C52, III: C
52.5, IV: C54, V: C58, and VI: C516. A1 exp(2bre)/B5183.2 ~full lines!; comparison with limiting low-temperature expressions from SACM, Eqs.
~6.1!–~6.6! ~dotted lines!, and Eqs.~6.1!–~6.5!, ~6.8! ~dashed lines!#.

FIG. 16. Same as Fig. 15 for T-shaped adduct, Eq.~2.5! with a/b50.5, q50, br e54 @groups of curves I:C52, II: C54, III: C58, and IV: C516.
A2 exp(2bre)/B536.63; full lines: SACM results; dotted lines: Eqs.~6.6!, ~6.9!–~6.11!; dashed lines: Eqs.~6.8!–~6.11!#.
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with E0(1) and r Þ from Eqs. ~6.1!–~6.5!, therefore, gives
even better agreement, see Fig. 15. However, Eq.~6.8! can
only be used for the range wherekcap curves up; at higher
temperatures, the neglection of higher terms becomes notice-
able. For the opposite case without adiabatic zero-point bar-
riers~at 0<C<2!, Fig. 15 shows thatkcapmarkedly deviates
from the classical value only at extremely low temperatures.
In this case, however, the standard valence potential used in
our work in practice becomes unrealistic since other long-
range potentials dominate the capture. For this reason, we
did not further investigate this limit for a Morse potential.

In the rangeC.2, the transition from the limiting low-
temperature capture constants of Eqs.~6.1!–~6.7! to the clas-
sical rate constants of Eq.~4.2! cannot be so well represented
in reduced form as in ion–dipole capture.4 The overshoot of
the classical capture rate constant prevents the appearance of
a universal doubly reduced representation. For this reason,
we do not further construct transition curves but refer to the
results of Fig. 15.

Besides the SACM low-temperature quantum limit of
capture forming linear adducts, we also describe results for
capture forming T-shaped adducts (q50). Quite similar be-
havior is found as for linear adduct formation. ForC>2,
adiabatic zero-point barriers arise with

E0~ l 50!

B
'

3

8
~C22!. ~6.9!

The corresponding positions of the channel maxima are

lÞ'3C2/6 for C>2 ~6.10!

wherelÞ is related tor Þ by

br Þ'br e2 ln@lÞ~B/D !/C#. ~6.11!

This leads to a capture rate constant of the form of Eq.~6.8!
with r Þ and E0( l 50) from Eqs. ~6.9!–~6.11!. Figure 16
shows several examples. For the case of the T-shaped ad-
duct, the perturbation-theoretical eigenvalues for ion–
quadrupole capture2 have been modified to derive Eqs.
~6.9!–~6.11!. The same procedure would also allow one to
account for variations of the ratioa/b from the value 0.5
which was used in Fig. 16.

VII. CONCLUSIONS

Our present combined quantum statistical adiabatic
channel and classical trajectory calculations showed again
that, in the range of adiabatic dynamics, the SACM and CT
treatments coincide for classical conditions. In the quantum
range, only the SACM gives correct results. The transition
from adiabatic to nonadiabatic dynamics was treated by CT
methods.

In order to facilitate the practical application of the
present study, in the following we briefly summarize the
most important results of our work. We only consider the
temperature rangekT/B@1 where CT results apply. For
kT/B,1, where only SACM is valid, either the results of
Sec. VII can be used or individual calculations should be
made by analogy to this section.

In the range of classical adiabatic dynamics, the capture
rate constant from phase space theory can be well repre-
sented by Eq.~4.2!,

Y~X!5a11a2X1a3X2, ~7.1!

with Y5kcap
PST(8pkT/m)21/2b2, X5 ln(kT/D)2bre, a1

5215.7706,a2528.6364, anda350.9975 ~see Table I;
some minor deviations arise for smallbr e at very high tem-
peratures, see Eq.~4.3! and Table II!.

Accounting for the anisotropy of the potential introduces
thermal rigidity factorsf rigid5kcap/kcap

PST. At low tempera-
tures~but still in the classical range!, these are of the form
@Eq. ~4.5!#

f rigid~T→0!'~11Z21Z8!21/8, ~7.2!

whereZ5(A1 /D)n/g1 or Z5(A2 /D)n/g1 . The anisotropy
amplitudesA1 or A2 are related to the parameter@Eq. ~4.1!#

C5@e~r e!#
2/2BD, ~7.3!

by A1/2D5C ~linear adducts! or A2 /D5C/3 sin2 ge @non-
linear adducts Eqs.~2.4! and~2.9!; anharmonicity effects for
linear adducts are described byA2 from Eq.~2.9!#. When the
ratio a/b of the looseness parametera and the Morse pa-
rameterb of the potential differs from the value 0.5, in Eq.
~7.2! C, A1 /D, or A2 /D have to be replaced by effective
values given by Eqs.~4.10! and ~4.11! or Eqs.~5.8!–~5.11!.
The parametersn andg1 used in Eq.~7.2! can be well rep-
resented by Eqs.~5.6! and~5.7! as a function of the quantity
q which accounts for nonlinearity and anharmonicity of the
potential@see Eqs.~2.5!–~2.11!#. A high-temperature correc-
tion of the rigidity factor finally is provided by Eqs.~4.8! and
~4.9!, e.g., atC>2 by

f rigid / f rigid~T→0!'120.94 exp~X/2.044!, ~7.4!

with X5 ln kT/D2bre @for nonlinear adducts, see remarks
after Eq.~5.7!#.

In spite of the number of expressions to be used, the
described calculation ofkcap is very direct and without com-
putational effort. It is of considerable exploratory value as
long as no complete and reliable potential-energy surfaces
are available. Being based on systematic trajectory calcula-
tions, it provides a clear picture of the contributions of vari-
ous molecular parameters to the capture rate constant.
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