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Abstract

Pax3andPax7are transcription factors sharing high sequence identity and overlapping patterns of expression in particular in the dorsal
spinal cord. Analysis ofPax3 and Pax7 double mutant mice demonstrates that both genes share redundant functions to restrict ventral
neuronal identity in the spinal cord. In their absence, theEn1 expression domain is expanded dorsally but that ofEvx1 is not affected. In
addition,Pax3andPax7are expressed in commissural neurons and double mutant embryos exhibit highly reduced ventral commissure. Our
findings reveal two distinct regulatory pathways for spinal cord neurogenesis, only one of which is dependent onPax3/7and6.  1998
Elsevier Science Ireland Ltd. All rights reserved
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1. Introduction

The fate of cells within the neural tube depends on ventral
and dorsal signals from the notochord and epidermal ecto-
derm, respectively (Placzek, 1995; Dickinson et al., 1995;
Tanabe and Jessel, 1996). ThePax3andPax7genes, which
encode two members of thePax family of transcription
factors, are expressed in the dorsal neural tube (Goulding
et al., 1991; Jostes et al., 1991). Transplantation experi-
ments in the chick have shown that they are regulated
both ventrally by sonic hedgehog (Shh) and dorsally by
bone morphogenetic proteins (BMPS) 4 and 7 (Goulding
et al., 1993; Liem et al., 1995, 1997; Ericson et al., 1996).
These observations led to the hypothesis that thesePax
genes, together withPax6, are involved in the dorso-ventral
patterning of the spinal cord (Goulding et al., 1993; Liem et
al., 1995, 1997; Ericson et al., 1996). Loss ofPax3function
results in theSplotch(Sp) phenotype which has defects in
neural tube closure and neural crest emigration and/or dif-
ferentiation (for review see Mansouri et al., 1994). Ectopic
expression ofPax3in the spinal cord of the mouse, using the

Hoxb4 enhancer, leads to the agenesis of the floor plate in
the affected area (Tremblay et al., 1996). Recently it has
also been shown that in ascidians, the overexpression of
HrPax-37(a homologue ofPax3andPax7) causes ectopic
expression of dorsal neural markers (Wada et al., 1997). The
analysis ofPax7− / − mice, generated by homologous recom-
bination in embryonic stem cells, revealed defects in some
cephalic neural crest derivatives only and indicated that
Pax3 and Pax7 may share redundant functions due to co-
activity in several tissues (Mansouri et al., 1996).

In order to specifically address the role of both genes in
the spinal cord,Pax3/Pax7double mutant embryos (Pax3/
Pax7− / −) were generated. Our analysis revealed thatPax3
and Pax7 are expressed in commissural neurons and are
necessary to restrict ventral neuronal identity in the spinal
cord. In the absence of both genes, some cells located dor-
sally have acquired a ventral cell fate of interneuron type.
This is documented by a dorsal expansion ofEn1which has
been shown to define V1 interneurons and corroborated by a
distinct change in thePax2 and Lim1 pattern. Our results
provide evidence that there may be two distinct pathways
for neurogenesis in the spinal cord, one dependent onPax3/
7 and6, shown byEn1cells, and one pathway independent
of Paxgenes, exemplified byEvx1cells.
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2. Results

Pax3/Pax7− /− embryos die at E11.0 and exhibit extensive
exencephaly and spina bifida. Histological analysis revealed
no obvious alterations in the spinal cord. Due to early leth-
ality it was impossible to study the consequence of the
mutations in more mature spinal cords. Therefore, the
expression of several early ventral and dorsal molecular
markers have been examined, in order to analyse if the
dorso/ventral patterning, i.e. the dorsal cell fate has been
changed.

2.1. Wnt4 is not expressed in the dorsal neural tube of
Pax3/Pax7− /− embryos

The expression of several markers remained unchanged.
Specifically, the expression of dorsal markers like the
homeobox genesmsx1and msx2and the signalling mole-
culesWnt1, Wnt3andWnt3ais not modified, indicating that
the formation of the roof plate is not affected (data not

shown). At E9.5Wnt4 normally starts to be expressed in
the dorsal spinal cord (Parr et al., 1993). InPax3/Pax7− / −

embryosWnt4 transcripts are not detectable at this stage
(data not shown) or at E10.5 (Fig. 1F), while the expression
in the ventral spinal cord is only reduced (floor plate, see
white arrow in Fig. 1F). Thus,Pax3andPax7are necessary
for the initiation and/or maintenance ofWnt4expression in
the dorsal spinal cord.

In the spinal cord of the mouse, the first neurons are born
at E9.5 of gestation (Nornes and Carry, 1978). The expres-
sion ofPaxandWntgenes is detected prior to or coincident
with the generation of these first neurons (Parr et al., 1993;
Mansouri et al., 1994). LikePax genes, theWnt genes
expression patterns also clearly display dorso-ventral
restrictions in the spinal cord and have been therefore sug-
gested to play an important role in dorso-ventral variations
of neuronal precursor cells (Parr et al., 1993). Accordingly,
Pax3 and Pax7 may specify different neuronal precursor
cells by acting directly or indirectly on theWnt4gene.

For this reason we studied the expression of several genes

Fig. 1. Expression ofWnt3andWnt4 in the spinal cord of wild-type andPax3/Pax7− /− embryos at E10.5. In situ hybridization analysis ofWnt3(B,E) and
Wnt4(C,F) in the spinal cord of E10.5 embryos is shown in adjacent transverse sections. While the expression ofWnt3is still present in the mutant embryos
(E), theWnt4expression is missing in the dorsal spinal cord of the mutant (F). The expression in the floor plate is only reduced (white arrow). The expression
of Wnt3 is also reduced in the dorsal spinal cord of the double mutant. A,D: light-field; B,C,E,F: dark-field.+/+, wild-type; −/−, double mutant embryo.

172 A. Mansouri, P. Gruss / Mechanisms of Development 78 (1998) 171–178



associated with a function for neuronal subtypes in the
spinal cord (includingPax6, En1, Isl1 andLim1).

2.2. Pax3 and Pax7 restrict ventral neuronal identity in the
spinal cord

En1has been shown to define V1 interneurons generated
ventral toPax7 expressing cells (Ericson et al., 1997). In
Pax3/Pax7− /− embryos the domain ofEn1 expression is

extended into the dorsal spinal cord, wherePax3 and
Pax7 are normally expressed (Fig. 2E). In contrast, the
Evx1 expression domain which abuts the ventral limit of
Pax7 expression (Burill et al., 1997) is not affected (Fig.
2F). To further demonstrate that the expression ofEn1 is
expanded dorsally into thePax7domain, we analysedPax3/
Pax7− / − embryos which contain the LacZ gene inserted into
thePax7locus (Mansouri et al., 1996). As illustrated in Fig.
2J,K, at E10.5, the expression ofEn1 is extended dorsally

Fig. 2. Expression ofEn1andEvx1in the spinal cord of wild-type andPax3/Pax7− / − embryos, and comparison ofEn1to LacZ expression in mutant embryos
at E10.5. In situ hybridization analysis ofEn1 (B,E) andEvx1 (C,F) in the spinal cord of E10.5 embryos is shown on transverse adjacent sections. In the
mutant embryo (E), the expression ofEn1 is shifted dorsally as compared to theEvx1expression domain shown in the adjacent section (F). This is shown
schematically in G and H. Also, the expression (not changed) ofPax6is shown in the scheme. Comparison of the expression ofEn1and LacZ in the double
mutant embryo at E10.5 is shown in one part of the spinal cord without spina bifida. The LacZ gene has been inserted in thePax7 locus by homologous
recombination and reflects its expression pattern (Mansouri et al., 1996). As shown in J and K, the expression ofEn1extends dorsally into the LacZ domain.
To highlight the extension of theEn1expression into the LacZ area, the ventral limit of LacZ expression is indicated by white arrows. Thus, the dorsal area
where the expression ofEn1extends acquires ventral identity of interneurons. A,D,I: light-field; B,C,E,F,J,K: dark-field. G and H indicate schematically the
expression ofEn1, Evx1andPax6in control (G) and mutant (H) embryos as compared toPax3andPax7expression domain in the dorsal spinal cord (grey).
FP, floor plate; LacZ,b-galactosidase; RP, roof plate;+ / + , wild-type; − / − , double mutant embryo.
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within the LacZ-positive domain. This suggest some dor-
sally located cells might have acquired ventral cell fate of
the V1 interneuron type. Therefore, one possible role of
Pax3andPax7might be to restrict ventral neuronal identity.

SincePax3andPax7inhibit the dorsal extension of some
ventral cell fate determining gene in the spinal cord, we
studied whether the expression of additional neuronal mar-
kers is also affected. TheLim family of transcription factors
defines different cell progenitors in the spinal cord (Tsu-
chida et al., 1994; Lumsden, 1995). In thePax3/Pax7− /−

embryos,Lim1 and Isl1 expression domains exhibit subtle
modifications, while that ofLim3 remains unchanged. The
overall amount ofIsl1 mRNA is reduced in the medial but
not in the longitudinal dorsal spinal cord (data not shown).
The Lim1 expression domain is usually discontinuous and
exhibits a gap at the limit of ventral and dorsal cell types
(Tanabe and Jessel, 1996). This gap is not detectable in
Pax3/Pax7− /− embryos (Fig. 3D,H). A similar modification
is also observed for thePax2expression domain. Normally,
Pax2is expressed in longitudinal columns on both sides of
the sulcus limitans (Nornes et al., 1990). In thePax3/Pax7− /

− embryos the ventral and dorsal columns are fused (Fig.
3B,F; see also Fig. 3I,J). TheEn1-positive interneurons
coexpressLim1 and Pax2 (Burill et al., 1997; Ericson et
al., 1997). Accordingly, the observed modifications of the
Lim1 andPax2expression domains are consistent with the
expansion of ventral cell fate (interneurons) into the dorsal

part of the spinal cord in the mutant embryo (see scheme of
Fig. 3I,J). From these observations we conclude thatPax3
andPax7appear to restrict ventral neuronal identity in the
spinal cord.

2.3. Pax3 and Pax7 are expressed in commissural neurons

RecentlyPax6has been shown to be responsible for the
establishment of different ventral cell populations. It med-
iatesShhsignals to control the identity of motor neurons and
ventral interneurons in the ventral spinal cord (Ericson et
al., 1997). By analogy,Pax3 and Pax7 may control the
identity of some dorsal cell populations by mediating dor-
sally locatedBMPsignals (Liem et al., 1997). We generated
a newSplotchmouse mutant by introducing the LacZ gene
via homologous recombination in thePax3 locus (data not
shown). The comparison of the LacZ pattern with the pre-
viously described expression ofPax3 revealed a new
expression domain in the spinal cord. As shown in Fig.
4A,B, Pax3LacZ staining is observed in fibres originating
in Pax3/7-positive alar plate, elongating ventrally, and
crossing the ventral midline. Contralateral axonal projec-
tions of this type are considered as dorsal commissural neu-
rons (Altman and Bayer, 1984). ThusPax3 is expressed in
commissural neurons. In adjacent sections the staining is
shown for b-galactosidase and N-CAM protein, which
labels commissural neurons (Dodd et al., 1988) (Fig.

Fig. 3. Expression ofPax2andLim1 in the spinal cord of wild-type andPax3/Pax7− /− embryos at E10.5. In situ hybridization analysis of the expression of
Pax2andLim1 on transverse sections in the spinal cord of E10.5 control (A–D) and mutant (E–H) embryos, respectively. In the control embryos there is a
gap between the ventral and dorsal expression domains ofPax2and alsoLim1, indicated in both cases by white arrow in B and D. These gaps are not present
in the mutants. For Pax2 it is shown in a part of the spinal cord without spina bifida (E,F). The results are schematically shown in I for control and J for the
mutant embryo in comparison to the expression ofPax3 and Pax7 (grey). A,C,E,G: light-field; B,D,F,H: dark-field.+/+, wild-type; −/−, double mutant
embryo; FP, floor plate; RP, roof plate.
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5A,B). This prompted us to look at thePax7 knock-out
embryos also carrying the LacZ gene (Mansouri et al.,
1996). It revealed that alsoPax7 is expressed in commis-
sural neurons (Fig. 4C). The analysis ofPax3/Pax7− /−

embryos using LacZ staining forPax3showed no staining
in commissural neurons (Fig. 4D). As compared toSplotch
embryos,Pax3/Pax7− / − embryos have greatly reduced ven-
tral commissure underlying the floor plate of the spinal cord.
Also, little LacZ staining is observed there and the N-CAM
and neurofilament expression are highly reduced ( Fig.
5C,D, and data not shown). This phenotype has been already
observed in Netrin-1-deficient mice (Serafini et al., 1996).
However, the Netrin-1 gene is expressed inPax3/Pax7− / −

mice as revealed by whole-mount in situ hybridization (data
not shown).

3. Discussion

To elucidate the function ofPax3andPax7 in the spinal
cord, we generated double mutant embryos. The results of
our analysis provide evidence thatPax3/7restricts ventral
neuronal identity. This is documented by a dorsal expansion
of En1 expression domain into thePax3andPax7expres-
sion area, and corroborated by a distinct change in thePax2
andLim1 pattern. However,Evx1which also labels a sub-
population of ventral interneurons (Burill et al., 1997; Eric-
son et al., 1997) and abuts the ventral limit ofPax7
expression, is not modified. Interestingly, also inPax6− / −

mice theEn1cells andEvx1cells behave differently. While
the En1 expression disappears, that ofEvx1 is not affected
(Burill et al., 1997; Ericson et al., 1997). Taken together,
these results suggest that there are two distinct pathways for
neurogenesis in the spinal cord. One pathway is dependent
on Pax3/7 and 6 as shown forEn1 cells, and the other,
independent ofPaxgenes, as exemplified byEvx1cells.

In the brain, the absence ofPax6 function affects the
border between two adjacent domains, the cortex and the
ganglionic eminence (Stoykova et al., 1996). In addition, a
failure in cell adhesion properties of cortical but not striatal
cells has been established (Stoykova et al., 1997). Our
results demonstrate thatPax3 and Pax7 are necessary for
the expression ofWnt4 in the dorsal spinal cord. TheWnt
family of signalling molecules have been implicated in
cell–cell adhesion mechanisms (Papkoff et al., 1996).
Therefore,Pax3andPax7may also mediate cell–cell adhe-
sion properties to restrict ventral neuronal identity. Also
Pax6 is involved in the specification of hindbrain motor
neuron subtypes through the regulation ofWnt7bexpression
(Osumi et al., 1997). Such a mechanism may be common to
the function ofPaxgenes in the CNS. However, recently the
analysis of mice lacking bothWnt1andWnt3arevealed that
these genes are involved in the proliferation of dorsal neural
precursors in the hindbrain (Ikeya et al., 1997). Mice lacking
Wnt4 have no phenotype in the spinal cord (Stark et al.,
1994). Furthermore,Wnt4 (alsoWnt1andWnt3) has been

proposed to be involved in signals from the dorsal neural
tube on somite development (Mu¨nsterberg et al., 1995).
Therefore, the absence ofWnt4 in the neural tube ofPax3/
Pax7− / − mutant mice may not be related to the phenotype
described here but rather may be responsible for the pheno-
type observed in the somites ofPax3/Pax7− / − embryos
(Mansouri and Gruss, in preparation).

The regulation ofEn by Pax genes have been also
observed forPax2,5and 8. Two binding sites forPax2,5
and8 proteins were identified inEn2 regulatory sequences.
Mutation of the binding sites disrupts initiation and main-
tenance ofEn2 expression in the brain of transgenic mice
(Song et al., 1996). Therefore by analogy,Pax3/7might
directly regulate transcription of theEn1gene.

Using the LacZ knock-in we show thatPax3andPax7are
expressed in commissural neurons. The observation that
ventral commissure underlying the floor plate are highly
reduced in the double mutant suggests that both genes are

Fig. 4. Expression ofPax3andPax7 in commissural neurons. Transverse
sections of E10.5 embryos showing LacZ staining forPax3− / − embryos
(A,B), at two different levels,Pax7− /− embryo (C) (Mansouri et al., 1996)
andPax3/Pax7− /− (D). LacZ staining is observed in fibres originating in
Pax3/7-positive alar plate, elongating ventrally, and crossing the ventral
midline. Contralateral axonal projections of this type are considered as
dorsal commissural neurons (Altman and Bayer, 1984). ThusPax3 and
Pax7 are expressed in commissural neurons. A:Pax3− /−; white arrows
indicate the LacZ-positive fibres; B:Pax3− /− at the level of the spina
bifida; black arrowheads indicate the LacZ-positive fibres; C:Pax7− /
− ; black arrows indicate the LacZ-positive fibres; D:Pax3/Pax7− / −, LacZ
staining is not observed, indicating that the fibres are missing; the LacZ
staining is shown for thePax3allele.
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expressed in a subpopulation of commissural neurons.
Alternatively, the differentiation of these neurons is affected
so that their axons are not projected to the floor plate.
The fact that Netrin-1 expression is not modified inPax3/
Pax7− /− embryos indicate that they act in parallel pathways,
and it is worth speculating what happens to the expression
of Evx1in the spinal cord of Netrin-1-deficient mice. Alter-
natively, Netrin-1 acts upstream ofPax3,7genes. InDro-
sophila, two structurally related genes,gooseberry-
proximal and gooseberry-distal, which are homologous to
the Pax3andPax7genes, specify row 5 neuroblasts (Noll,
1993; Zhang et al., 1994; Skeath et al., 1995; Duman-Scheel
et al., 1997). In zebrafish, it has been reported that thePax2
homologue is expressed in a subpopulation of commissural
neurons (Mikkola et al., 1992).

In summary,Pax3andPax7may specify a subpopulation
of commissural neurons. They restrict ventral neuronal cell
fate in the spinal cord. Our results provide evidence that
there may be two distinct pathways of spinal cord neurogen-
esis, only one of which is dependent onPax genes.

4. Experimental procedures

4.1. Animals

To generate double mutant embryos,Pax3/Pax7com-
pound heterozygotes were generated by matingSplotch
2H mice (Epstein et al., 1991) toPax7 knock-out mice
(Mansouri et al., 1996). Two different alleles ofPax7
were used (one withb-galactosidase insertion and the sec-
ond with neomycin insertion) (Mansouri et al., 1996). Mice
are kept in a mixed genetic background of 129sV and
C57Bl/6. Embryos were staged on the assumption that the
day of vaginal plug is considered as E0.5.

4.2. In situ hybridization and immunohistochemistry

Embryos were fixed in 4% paraformaldehyde overnight
at 4°C and further processed for whole-mount hybridization
or in situ hybridization on sections using35S-labelled ribop-
robes as described (Wilkinson, 1992). Immunohistochemis-

Fig. 5. The ventral commissure underlying the floor plate of the spinal cord is greatly reduced inPax3/Pax7− /−. Transverse sections ofPax3− / − andPax3/
Pax7− /− embryos at E10.5 showing the ventral commissure. No LacZ-staining is observed inPax3/Pax7− / − (C). Also, N-CAM staining is highly reduced in
Pax3/Pax7− / − (D). Arrows and arrowheads indicate the ventral commissure in the respective section. A:Pax3− /− stained for LacZ (Pax3); B: adjacent section
to A, stained with N-CAM antibody; C,Pax3/Pax7− /− stained with LacZ (Pax3); D: adjacent section to C stained with N-CAM antibody. In B and D the
sections were counterstained with methyl green.
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try was performed on cryostat sections as described (Dodd
et al., 1988). After fixation embryos were passed through
30% sucrose overnight and embedded in OCT compound
(Tissue Tek). Embryonic membranes were used to genotype
the embryos forPax3andPax7by PCR or Southern blot as
described (Epstein et al., 1991; Mansouri et al., 1996).

4.3. Antibodies

Primary antibody was monoclonal anti-N-CAM (Devel-
opmental Studies Hybridoma Bank). Anti-mouse antibody
coupled to HRP (Capell) was detected with a colour-devel-
opment substrate solution containing diaminobenzidine.
Antibodies were diluted according to the companies’
recommendations.

4.4. LacZ staining

Embryos were dissected from the uterus in cold PBS and
fixed in a solution of PBS containing formaldehyde, glutar-
aldehyde and NP-40, and stained overnight forb-galactosi-
dase as described (Allen et al., 1988). For sectioning,b-
galactosidase stained embryos were fixed for 1 h in 4%
paraformaldehyde at 4°C. After dehydration in ethanol,
embryos were washed in isopropanol, cleared in xylene,
and embedded in paraffin. Ten-mm sections were deparaffi-
nized and counterstained with neutral red.
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