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The Bicoid morphogen directs pattern formation along
the anterior–posterior (A–P) axis of the Drosophila
embryo. Bicoid is distributed in a concentration gradi-
ent that decreases exponentially from the anterior pole,
however, it transcribes target genes such ashunchback
in a step-function-like pattern; the expression domain
is uniform and has a sharply defined posterior bound-
ary. A ‘gradient-affinity’ model proposed to explain
Bicoid action states that (i) cooperative gene activation
by Bicoid generates the sharp on/off switch for target
gene transcription and (ii) target genes with different
affinities for Bicoid are expressed at different positions
along the A–P axis. Using anin vivo yeast assay and
in vitro methods, we show that Bicoid binds DNA with
pairwise cooperativity; Bicoid bound to a strong site
helps Bicoid bind to a weak site. These results support
the first aspect of the model, providing a mechanism
by which Bicoid generates sharp boundaries of gene
expression. However, contrary to the second aspect of
the model, we find no significant difference between
the affinity of Bicoid for the anterior gene hunchback
and the posterior geneknirps. We propose, instead,
that the arrangement of Bicoids bound to the target
gene presents a unique signature to the transcription
machinery that, in combination with overall affinity,
regulates the extent of gene transcription along the
A–P axis.
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Introduction

Pattern formation during embryogenesis requires the estab-
lishment of precise spatial domains of gene expression.
These domains, with their characteristic sharp boundaries,
arise through a complex set of interactions between
transcription regulatory proteins and theircis-acting DNA
binding sites. Regulatory proteins use at least three mech-
anisms to stimulate spatially correct target gene transcrip-
tion. First, regulatory proteins are localized, thereby
restricting their activity to broad regions within the embryo
(Driever and Nu¨sslein-Volhard, 1988a; Rothet al., 1989;
Pankratzet al., 1992). Second, regulatory proteins act in
combination with other co-activators or repressors of
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transcription (Riddihough and Ish-Horowicz, 1991; Small
et al., 1991; Xueet al., 1993; Sauer and Ja¨ckle, 1995).
Third, regulatory proteins interact with themselves in a
cooperative manner to activate or repress transcription
at subsaturating concentrations and to produce a sharp
threshold response (Beachyet al., 1993; TenHarmselet al.,
1993; Wilsonet al., 1993). TheDrosophila morphogen,
Bicoid, which directs pattern formation along the anterior–
posterior (A–P) axis in the developing embryo, is thought
to employ all three mechanisms to establish spatially
correct domains of target gene expression (Frohnho¨fer
and Nüsslein-Volhard, 1986; reviewed in Driever, 1993).

The first mechanism forms the basis for the classic
morphogen model of Bicoid action. Bicoid is localized
along the A–P axis into a protein concentration gradient
that spans two to three orders of magnitude decreasing
exponentially over the anterior half of the embryo (Driever
and Nüsslein-Volhard, 1988a). The importance of Bicoid’s
localization in a gradient was shown by increasing or
decreasing maternalbicoid gene dosage, which resulted
in steeper or shallower concentration gradients, thus shift-
ing the cephalic furrow towards the posterior or anterior
region of the embryo, respectively (Driever and Nu¨sslein-
Volhard, 1988b). Anterior regions that are exposed to
higher levels of Bicoid express a different set of genes
(e.g. buttonhead, orthodenticle) than more posterior
regions where the Bicoid concentration is lower (e.g.
hunchback, Krüppel). It is thought that the extent along
the A–P axis to which a Bicoid target gene is expressed
will depend on the affinity of Bicoid for its enhancer (i.e.
the gradient-affinity model). Despite its vanishingly low
concentrations at the posterior end of the embryo, Bicoid
also activates posteriorly acting segmentation genes such
as the abdominal gap geneknirps (Rivera-Pomaret al.,
1995) and the posteriormost stripe of the pair-rule gene
hairy (La Roseeet al., 1997). Thus, although Bicoid is
localized in a gradient with a peak concentration at the
anterior pole, it still functions as a transcriptional activator
along the entire A–P axis of theDrosophilaembryo.

The second mechanism by which Bicoid stimulates
spatially restricted gene expression is by acting in combina-
tion with other transcription regulatory proteins. For
example, the establishment ofeven-skipped(eve) stripe 2
results from competition between activators Bicoid and
Hunchback, and repressors Giant and Kru¨ppel, for overlap-
ping sites within theevestripe 2 regulatory element, and
by a local repression mechanism termed quenching (Small
et al., 1991; Stanojevicet al., 1991). In the posterior
region of the embryo, Bicoid and the maternal homeo-
domain protein Caudal, which forms a posterior–anterior
concentration gradient, act together in a partially redundant
manner to activate the posterior geneknirps (reviewed in
Rivera-Pomar and Ja¨ckle, 1996). The regulatory region
that mediatesknirps gene activation contains twocis-
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acting regulatory elements; one is activated in response
to Caudal, the other, termedkni64, is a 64 bp enhancer
that is activated in response to Bicoid (Rivera-Pomar
et al., 1995).

In the third mechanism, Bicoid monomers are thought
to interact cooperatively with one another to bind DNA
and stimulate target gene expression. Cooperative DNA
binding by Bicoid has not been rigorously demonstrated,
but has been widely proposed as the explanation for
Bicoid’s ability to regulate spatial transcription ofhunch-
back (hb)and other genes (e.g. Ptashne, 1986; Driever,
1993). For example, cooperative binding by Bicoid to its
sites in thehb upstream regulatory element is thought to
result in a sharp posterior boundary ofhb expression that
specifies the position of the cephalic furrow.

Several indirect lines of evidence support the idea that
Bicoid binds DNA cooperatively. First, reporter genes
require multiple Bicoid binding sites to be activated in
yeast (Hanes and Brent, 1989), culturedDrosophilacells
(Driever and Nu¨sslein-Volhard, 1989) and transgenic
Drosophila embryos (Drieveret al., 1989; Struhlet al.,
1989). Secondly, the minimal Bicoid binding site (TAAT-
CCC; Hanes and Brent, 1991) does not define a unique
target sequence; this 7 bp site is expected to be present
~10 000 times in the fly genome. However, an enhancer
containing multiple sites would be comparatively rare;
such a region would act as a local sink for Bicoid
monomers. Thirdly, Bicoid-dependent transcription in
yeast andDrosophila is sensitive to the spacing between
binding sites (Haneset al., 1994) and to their relative
orientation (G.Devasahayam, Burz & Hanes, unpublished),
both hallmarks of proteins that bind DNA cooperatively
(Mao et al., 1994). Finally, in vitro evidence consistent
with cooperative DNA binding has been reported (Ma
et al., 1996).

Here we demonstrate that Bicoid binds DNA cooper-
atively in yeast andin vitro and thus provide the first
conclusive evidence for a mechanism proposed to regulate
anterior patterning in the embryo (Drieveret al., 1989).
Our experimental strategy was based on concepts drawn
from the study of cI repressor of bacteriophageλ, in
which the cooperative free energy of DNA binding is
asymmetrically distributed between strong and weak sites
in OR (Ackerset al., 1983, Beckettet al., 1993). We show
that Bicoid bound to a strong site promotes occupancy of
an adjacent weak site by cooperative DNA binding.
Without this cooperative coupling, Bicoid binding to
these weak sites, which are similar to Antennapedia-class
homeodomain sites, does not occur. Bicoid cooperativity
should therefore increase the occupancy of weak, and
otherwise unrecognized, sites, leading to a more concerted
threshold response. Furthermore, we show that Bicoid
cooperativity is pairwise, that is, DNA-bound Bicoid
interacts with only one other Bicoid monomer at a time.
This binding appears to be sequential: Bicoid binds DNA
as a monomer (Kd 0.24 nM) and engages in cooperative
interactions only when bound to DNA. Finally, we find
that contrary to the explicit prediction of the gradient-
affinity model for Bicoid action (Drieveret al.,1989), the
posteriorly-expressed geneknirps did not have a higher
affinity for Bicoid than the more anteriorly expressed gene
hunchback. This result suggests that expression of Bicoid
target genes at different positions along the A–P axis of
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Fig. 1. An in vivo assay for studying cooperative gene activation in
yeast. Yeast cells were co-transformed with plasmids that encode the
indicated proteins. Hormone (β-estradiol) was added to mid-log phase
cultures, where it entered cells and bound to the fusion protein GAL4–
ER–VP16 to drive Bicoid expression in a concentration-dependent
manner (Table I). Bicoid binds to different arrays of upstream sites to
activatelacZ transcription, which is quantitated by assaying
β-galactosidase activity.

the embryo can occur by a mechanism independent of
DNA binding affinities.

Results

In vivo assay to study Bicoid cooperativity
To demonstrate that Bicoid activates gene expression
cooperatively, we used the assay shown in Figure 1. In
this assay, we measure Bicoid concentration-dependent
activation of lacZ reporter genes in yeast. ThelacZ
reporters carry upstream Bicoid binding sites and their
activation is quantitated by assayingβ-galactosidase
(β-gal) activity. To control the amount of Bicoid produced
in cells, we used a fusion protein, GAL4–ER–VP16, which
consists of the DNA-binding domain of Gal4, the ligand-
binding domain of human estrogen receptor and the
activation domain of VP16 (Louvionet al., 1993). GAL4–
ER–VP16 binds theGAL1promoter and drives expression
of a bicoid cDNA in a hormone-dependent manner. By
varying the amount of exogenous hormone (β-estradiol)
added to yeast cultures, we can vary the intracellular
Bicoid concentration by nearly three orders of magnitude,
as assayed by Western analysis of yeast cell extracts
(Table I). The ability to generate this broad range of
Bicoid concentrations, combined with the use oflacZ
reporters that carry particular arrays of Bicoid binding
sites, allows us to study Bicoid cooperativityin vivo.

Increasing the number of Bicoid sites results in
cooperative gene activation
We used our yeast assay to examine Bicoid-dependent
lacZ activation as a function of increasing numbers of
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Fig. 2. Cooperative gene activation by Bicoid in yeast. Activation data
were obtained using the assay shown in Figure 1. The magnitude and
steepness of each activation curve increases with an increasing number
of strong consensus sites (TCTAATCCC). S refers to the number of
strong sites (1, 2, 3 or 6) present in thelacZ reporter. The curves
represent the best fit to a simple concentration-dependent transition.
Inset: normalized activation curves show that Bicoid binds more
strongly to a two-site reporter than to a single site.

Table I. Hormone-induced Bicoid expression

Activator [β-estradiol] (µM) [Bicoid] (µM)a

GAL4–ER–VP16(mut)b 0 0.5–0.8
0.0005 0.7–1.1

GAL4–ER–VP16 0 1.2–1.9
0.0005 2.4–5
0.0025 11–40
0.01 25–85
1 62–196

a[Bicoid] is the total cellular concentration.
bGAL4–ER–VP16(mut) is mutated in the VP16 domain (F442P) to
reduce the strength of activation.

strong (S) high-affinity consensus Bicoid sites (TCTAAT-
CCC) derived from analysis of thehunchbackpromoter
(Driever and Nu¨sslein-Volhard, 1989). At low and inter-
mediate Bicoid concentrations the increase inβ-gal activity
between a one-site (S) and a two-site (SS) reporter is
greater than 100-fold, with three sites (SSS) there is an
additional two- to three-fold increase inβ-gal activity, and
with six sites (63 S) there is a further 2-fold increase
(Figure 2 and Table II). The greater-than-additive increase
in lacZ expression with an increasing number of sites
indicates cooperative gene activation. As expected, this
effect is greater at lower concentrations at which the
effects of cooperativity are most pronounced.

Cooperative gene activation by Bicoid might result
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Table II. Bicoid-dependent reporter gene expression in yeasta

Bicoid concentrationb

Reporter Genec Low Medium High

S S S 57 760 1830
S W S 41 613 1800
S S W 27 442 1350

S S 30 472 834
W S W 13 289 860
S W W 3 249 778

S X S 5 205 518
W S 0 108 427
S W 0 48 269

S 0 4 46
W W W 0 17 44

W W 0 0 3

W 0 0 0

6 3 S 336 1060d 2381
kni64 251 1018 2240
Ψkni 417 1085d 2112
2Rkni 277 1169 2287
hb 322 1172 2499

aData were obtained using the assay shown in Figure 1; results are
given in units ofβ-gal activity.
bLow, medium and high Bicoid concentrations correspond to 0, 0.0025
and 1µM β-estradiol (Table I).
cTarget sites used: S5 TCTAATCCC; W 5 TCTAATTCC; kni64 5
knirps enhancer;Ψkni 5 knirps enhancer with idealized (S) sites;
2Rkni 5 idealizedknirps enhancer with two sites reversed; 63 S 5
enhancer containing six strong sites arranged head-to-tail; hb5
hunchbackenhancer.
dSamples were assayed on different days from others in this group
(lower panel, Medium Bicoid Concentration); the values given are
extrapolated from several independent experiments.

from either cooperative DNA binding or from cooperative
interactions between DNA-bound Bicoid and the transcrip-
tion machinery (i.e. transcriptional synergy, Careyet al.,
1990; Lin et al., 1990). If cooperative DNA binding
occurs, then the apparent midpoint of the normalized
activation curve for a two-site reporter will shift to a lower
concentration than that of a one-site reporter, reflecting
occupancy of these sites at a lower overall Bicoid concen-
tration. This is exactly what is observed (Figure 2, inset):
there is an increase of about a half an order of magnitude
in the affinity of Bicoid for the two-site reporter relative
to that of a single site. By normalizing the data from 0 to
1, which correspond to completely vacant and fully
occupied binding sites, we have taken into account the
difference in activation potential of a single site versus
two sites, allowing us to compare concentration-dependent
curves directly, regardless of the number of sites. Finally,
we note that the midpoint of the activation curvesin vivo
is several orders of magnitude greater than the binding
affinities measuredin vitro (see below). We believe that
this is the result of the partitioning of total intracellular
Bicoid, which we measured, into cytoplasmic and nuclear
compartments. We do not know the actual nuclear concen-
tration of Bicoid, but increasing the total Bicoid concentra-
tion ultimately results in saturation of transcription, a
condition necessary for interpreting this experiment.

We also compared Bicoid binding to one- and two-site
templatesin vitro using gel-shift assays. The affinity of a
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Table III. Bicoid homeodomain (Bcd89–154) binding in vitro

Template Kd (nM) nH σ

W 1.14 1.0a 0.336
W W W 1.07 1.7 0.034

S 0.24 1.0a 0.125
S S 0.21 2.0a 0.123

S S S 0.17 2.1 0.020
S W S 0.21 3.0a 0.062

S X S 0.88 2.5 0.028
W S W 0.18 1.7 0.095

kni64 0.53 1.4 0.080
Ψkni 0.54 2.1 0.097
2Rkni 0.61 1.1 0.128
hb 0.98 3.0 0.031

nH 5 Hill Coefficient; σ 5 standard deviation of fit.
anH was held fixed during analysis, as smaller values increased the
standard deviation of the fit; all other values were resolved using the
equation given in Materials and methods.

homeodomain-containing fragment of Bicoid (Bcd89–154)
for a two-site template (Kd 5 0.21 nM) was slightly higher
than that of a one-site template (Kd 5 0.24 nM; Table
III). This increase in affinity is in general agreement with
our yeast assay; however, the difference observedin vitro
is much smaller. The fact that the difference is so small
is not unexpected because the magnitude of the cooperative
free energy is smallest when the coupled sites are of
identical affinity (Ackerset al., 1983; see also below).
Thus, in this example, only a small amount of the
total cooperative gene activation appears to be due to
cooperative DNA binding. In yeast (Figure 2, inset),
the apparent difference in affinity might be artificially
amplified due to unequal partitioning of Bicoid between
the cytoplasm and nucleus, e.g. a 10-fold increase in total
cellular Bicoid concentration might correspond to only a
2-fold increase nuclear concentration.

Bicoid bound to strong sites promotes Bicoid
binding to weak sites
The binding of proteins to adjacent DNA sites of different
affinities provides a dramatic demonstration of binding
cooperativity. This is because the cooperative free energy
is distributed asymmetrically, with most of the free energy
contributed to binding at the weaker site (Ackerset al.,
1983). The result is that weak site saturation occurs at a
lower total protein concentration. Therefore, if Bicoid
binds DNA cooperatively, then at subsaturating concentra-
tions, Bicoid bound to a strong site should promote
occupancy of a nearby weak site. We tested whether this
was true usinglacZ reporter genes that carry different
combinations of strong and weak Bicoid sites. The strong
site (S) used in these experiments was the consensus
Bicoid site (TCTAATCCC) described above. The weak
site (W) contained a C:G to T:A change at position 7 in
the Bicoid site (TCTAATTCC); the C:G base pair is
required for specific recognition by Bicoid in yeast and
in flies (Hanes and Brent, 1991; Haneset al., 1994).
The W site resembles an Antennapedia (Antp) class
homeodomain binding site that is recognized poorly if at
all by Bicoid in yeast (Hanes and Brent, 1991). Gel-shift
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analyses using Bcd89–154confirm that the affinity of Bicoid
for the W site is indeed lower than for the S site (Table III).

Control experiments show that reporter genes that carry
three weak sites (WWW) are not activated, suggesting
that Bicoid does not occupy these sitesin vivo (Figure 3A).
In contrast, reporters that carry three strong sites (SSS)
are activated strongly, suggesting that Bicoid does occupy
these sites well. If Bicoid binding is cooperative, then
reporters that carry a mixture of sites (SWS) should be
activated to levels comparable to that of a three strong-
site reporter (SSS), rather than to reporters that carry only
two strong sites. Indeed, this is what we observed at all
Bicoid concentrations examined (Figure 3A). The level of
transcription elicited by SWS was always greater than
that of either SS (Table II) or SXS, where the X site lacks
all base pairs required for recognition by homeodomains,
but preserves the spacing between S sites. Activation of
SWS was virtually identical to that of SSS, particularly
at lower Bicoid concentrations. The simplest explanation
for these results is that Bicoid bound to strong sites
promotes Bicoid binding to a weak site by cooperative
coupling. The effect of transcriptional synergy is ruled
out because we compare reporter genes with identical
numbers of sites; therefore, the maximum level of activity
attainable in this experiment corresponds to three saturated
sites, while lower activity reflects partial vacancy of
these sites.

The level of β-gal activity obtained for SS is greater
than that of SXS, confirming the previous observation
that, in yeast, Bicoid activates gene expression better from
closely spaced sites than from more widely spaced sites
(Haneset al., 1994). Site-spacing preferences are often
indicative of cooperative DNA binding; changes in site-
spacing may disrupt or enhance protein–protein inter-
actions that stabilize DNA-bound monomers, thereby
affecting levels of gene activation (Maoet al., 1994).

To confirm the idea of cooperative coupling between
strong and weak sites, we comparedin vitro binding of
Bicoid89–154 to SWS versus SSS and SXS using gel-shift
assays. The results (Table III) indicate that binding to
SWS (Kd 5 0.21 nM) is much more similar to that of
SSS (Kd 5 0.17 nM) than to that of SXS (Kd 5 0.88 nM),
corroborating the results observedin vivo. Site loading,
as detected by the formation of three distinct complexes,
occurs at the same Bicoid concentration for SWS as for
SSS, and these complexes are formed in the same relative
proportions at a given Bicoid concentration (Figure 4).
However, loading of SXS requires a Bicoid concentration
about 10-fold higher than for SWS, and the complexes
form at different relative proportions. For example, at the
highest concentrations, the ratios of triply bound to doubly
bound complexes (C3:C2) for SSS, SWS and SXS are
2.6:1, 2.5:1 and 1:1, respectively. These results indicate
that the W site is readily occupied in SWS, despite the
intrinsically low affinity of Bicoid for an isolated W site,
or a W site flanked by other weak sites (WWW; Table
III). Similar experiments using full-length Bicoid show
that it also exhibits cooperative coupling, forming a triply
bound complex with SWS and SSS, but not with SXS
(data not shown). Thus,in vitro experiments demonstrate
that Bicoid bound to strong sites helps Bicoid bind to a
weak site, confirming thein vivo results.

Surprisingly, at the highest Bicoid concentrations the X
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Fig. 3. Bicoid binds DNA in a cooperative, pairwise manner in yeast, and distinguishes between sites of different affinity from thehunchback
enhancer. (A) Bicoid bound to strong (S) sites promotes binding to a weak (W) site. (B) Bicoid binds with pairwise cooperativity. (C) Cooperative
interactions amplify differences between the intrinsic affinities of strong (A1) and weak (X1) sites. The data were generated as shown in Figure 1,
and the curves represent the best fit of the data to a simple concentration-dependent transition. Reporter constructs contained the indicated sites
inserted upstream oflacZ.

site can be loaded to form a triply bound complex. We
suspect that cooperative interactions between Bicoid bound
to the adjacent S sites promotes binding to the non-specific
X site. Loading of the X site might also occurin vivo;
we observe that the level of activation of an SXS reporter
at very high Bicoid concentrations (higher than shown in
Table III) exceeds that of SS (data not shown).

Bicoid cooperative interactions are pairwise
We tested whether Bicoid cooperativity is pairwise, that
is, does Bicoid bound to a strong site interact cooperatively
with only one additional Bicoid monomer at a time. To
do this, we measured the level ofβ-gal activity resulting
from a three-site reporter gene containing a strong site in
the middle position (WSW). If Bicoid bound to the S site
facilitated Bicoid binding to both W sites, then we would
expect the level of gene expression to be comparable to
that of SSS. Instead, we find that the level of activation
by WSW is similar to that of SS, particularly at high
Bicoid concentrations (Figure 3B, Table II), suggesting
that only one or the other weak site is occupied, consistent
with the idea of pairwise cooperativity. Our assay cannot
determine whether a single weak site is being occupied,
or whether both weak sites are occupied part of the time
with equal probability; however, these two conditions are
statistically equivalent. Likewise, the activity of SWW is
similar to that of SS, again suggesting that only one of
the weak sites is occupied. Taken together, these data
support the idea that a Bicoid monomer bound to a
strong site mediates predominantly pairwise cooperative
DNA binding.

Pairwise cooperativity predicts that under certain condi-
tions, discrete pairs of adjacently bound Bicoid monomers
will dominate the binding process. Indeed, we found
that the levels of activity elicited by SSW at low and
intermediate Bicoid concentrations are similar to that of
SS, implying that the W site is vacant at these concentra-
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tions. However, at the highest Bicoid concentrations exam-
ined, SSW stimulates more gene expression than SS, but
still less than SSS (or SWS), which suggests that the W
site in SSW is only partially occupied. Thus, most of the
cooperative free energy is shared between monomers
bound to the S sites, with little available to facilitate
binding to the W site, which loads only at very high
Bicoid concentrations.

Bicoid pairwise cooperativity is directional
If Bicoid cooperativity is strictly pairwise, then the max-
imum activity resulting from Bicoid binding to a strong
and weak site (SW) should yield transcription activity
comparable to that of SS. However, the maximum level
of activity elicited by SW is 3 to 4-fold weaker than that
of SS, although it is still 5-fold greater than that of a
single S site (Table II). The reason for this is unclear. One
explanation is that Bicoid cooperativity is directional. To
test this idea, we reversed the orientation of the strong
and weak sites (i.e. WS) and found that the activity of
the WS reporter is more similar to that of SS (about twice
that of SW) at all Bicoid concentrations (Table II). Gel-
shift experiments gave similar results: WS sites are bound
with slightly higher affinity than are SW sites (data not
shown). Thus, a Bicoid monomer bound to a strong site
prefers to interact with a Bicoid monomer positioned in
the 59 direction.

Yeast assay distinguishes between A1 and X1
sites in hunchback
Drieveret al. (1989) identified two classes of Bicoid sites
in the hb promoter region: strong sites (termed A1, A2
and A3) and weak sites (termed X1, X2 and X3), and a
third uncharacterized class (termed B1, B2 and B3).
However, in vitro measurements by others of Bicoid
binding to the so-called strong and weak sites failed to
resolve a difference in affinity between them (Maet al.,
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Fig. 4. Bicoid cooperative DNA binding shows strong-site/weak-site
coupling in vitro. The upper three panels are gel-shifts of Bicoid89–154

binding to oligonucleotide templates SSS, SWS and SXS. The lower
panel shows isotherms resolved from data in the upper panels and data
from other experiments. Note that the isotherm for SWS is nearly
coincident with that of SSS, implying occupancy of the W site. Bicoid
concentration ranges are the same for all three gels (10–12 M–10–9 M,
with five steps per log unit). Free DNA, and singly (C1), doubly (C2)
and triply bound (C3) complexes are indicated. The templates are
identical to oligonucleotides used to make the reporter genes tested in
Figure 3.

1996). In contrast, our assay easily resolves differences
between Bicoid recognition of A1 and X1 sitesin vivo.
For example, Bicoid activation oflacZreporters containing
three A1 sites is virtually identical to that observed for
SSS, while the activation by reporters containing three
X1 sites is substantially lower, suggesting a reduced level
of occupancy (Figure 3C). These results are consistent with
the gradient-affinity model and experiments in transgenic
Drosophila embryos in which strong A sites have been
shown to drive reporter gene expression further along the
A–P axis than do weak X sites (Drieveret al., 1989;
Struhl et al., 1989). However, the model might not hold
for all Bicoid target genes (see below).

Is cooperative gene activation necessary for knirps
activation in the posterior of the embryo?
Expression of the gap geneknirps depends on a 64 bp
enhancer known askni64 which carries six potential
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Fig. 5. Structural analysis of thekni64 element reveals three pairs of
opposed Bicoid binding sites. (A) Hydroxyl radical footprints identify
Bicoid binding sites (bars) on both strands of thekni64 element. MG:
G 1 A cleavage of the Maxam and Gilbert reactions. Free: no protein
added to the reaction.1Bcd: 1–10 pM Bicoid89–154added to the
reaction. (B) DMS footprints of the same element; arrowheads indicate
the protected bases. (C) Summary of the Bicoid binding sites present
in the kni64 element deduced from the pattern of hydroxyl radical
attack (lines) and the DMS-protected G residues (arrowheads). Filled
arrows and open arrows identify predicted strong and weak sites,
respectively.

Bicoid binding sites, some of which are predicted to be
strong while others are predicted to be weak (Rivera-
Pomaret al., 1995). Biochemical analysis of this sequence
by hydroxyl radical footprinting and dimethyl sulfate
protection assays confirms that all six sites can be bound
by Bicoid in vitro and that they are arranged in quasi-
palindromic, opposed pairs (Figure 5). This clustering and
unique arrangement of sites within a very short stretch of
DNA (64 bp) suggested to us that cooperative interactions
between Bicoid andkni64 might result in an extraordinarily
high-affinity interaction. This could explain howknirps is
expressed far down the Bicoid gradient in the posterior of
the embryo. To test this idea, we examined the interaction
between Bicoid andkni64, and derivatives ofkni64 in
transgenicDrosophilaembryos, in yeast, andin vitro.
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Fig. 6. Orientation of Bicoid binding sites is critical for posterior
activation in embryos.In situ hybridization is used to detectlacZ
reporter gene expression in transgenic, blastoderm-staged embryos.
The arrow indicates the posterior limit of expression. Above each
embryo the schematic indicates the array of Bicoid binding sites in the
reporter transgene; filled arrows represent strong sites, open arrows
predicted weak sites. (A) LacZ expression in an embryo carrying a
kni64 reporter extends far into the posterior. (B) LacZ expression is
restricted to more anterior positions when the orientation of two of the
six Bicoid consensus sites are reversed in the 2Rkni reporter. (C) LacZ
expression using a reporter,Ψkni, in which Bicoid consensus sites are
arranged as inkni64, extends even further into the posterior than
kni64.

Kni64 drives posterior expression and is
dependent on the orientation of the Bicoid binding
sites
We generated transgenic embryos containing reporter
genes that carry thekni64 element and altered versions of
it. In contrast to the Bicoid-site reporter genes used by
Drieveret al. (1989), Struhlet al. (1989) and Haneset al.
(1994), which are anteriorly restricted,kni64 can drive
expression over the entire length of the embryo
(Figure 6A). Expression in transgenic embryos starts early
in development before nuclear cycle 13. Most of the sites
of transcription appear as ‘nuclear dots’ consisting of
two spheres of staining within the nuclei (Pritchard and
Schubiger, 1996), with some cytoplasmic accumulation of
mRNA. Note that these constructs also show strong
anterior transcription, which contrasts with the normal
expression pattern ofknirps. This is because the reporter
constructs we used lack the normalcis-acting repressor
element that inhibitsknirps expression in the anterior
region (Rivera-Pomaret al., 1995). Early activation is
completely abolished in embryos derived frombcdmutant
females, which demonstrates that the activation is Bicoid
dependent (Rivera-Pomaret al., 1995).

If cooperative DNA binding is critical for Bicoid-
dependent gene activation driven bykni64 in embryos,
then we would expect the arrangement of individual sites
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within the kni64 element to be important, since changes
in geometry often disrupt cooperative interactions (Smith
and Johnson, 1992). We tested this by reversing the
orientation of two of the six sites withinkni64 and testing
this enhancer (2Rkni) in transgenic embryos. Note that,
in this experiment, all the Bicoid sites are idealized strong
consensus sites. This reporter is not activated as far into
the posterior region of the embryo (Figure 6B) as reporters
that carry either the nativekni64 element (Figure 6A) or
an idealizedkni64 element called pseudo-knirps (Ψkni)
in which all the Bicoid sites are consensus sites and are
oriented in opposed pairs as inkni64 (Figure 6C). In the
extreme case in which all six Bicoid sites are oriented in
the same direction (head-to-tail), no activation is detected
(Haneset al., 1994). These experiments demonstrate that
the orientation of sites is critical for Bicoid-dependent
gene activation in embryos, and suggests the possibility
that the nativekni64 element is organized so as to promote
high affinity, cooperative DNA binding and/or cooperative
gene activation (synergy) by Bicoid.

Analysis of the kni64 element in yeast and in vitro
Based on the results inDrosophila embryos, we tested
the ability ofkni64 and its derivatives to drive transcription
of lacZ reporter genes in yeast and to bind Bicoidin vitro.
In contrast to the embryo results, the orientation of
individual sites was not critical; there was no significant
difference betweenlacZ activation driven bykni64, 2Rkni
or the Ψkni element (Table II). At very low Bicoid
concentrations, the idealized elementΨkni was slightly
more effective thankni64, as expected, because all the
Bicoid sites are strong consensus sites; whereas at higher
Bicoid concentrations, activation bykni64 was indistin-
guishable from that of the idealized elementΨkni, which
suggests that cooperative coupling between strong and
weak sites inkni64 overcomes any differences in their
intrinsic affinities.

The inability to detect differences between the various
kni64 derivatives in the yeast assay prompted us to
compare their binding affinities for Bicoidin vitro. Using
gel-shift assays we determined the overall affinity of
Bcd89–154for each element and found no significant differ-
ences (Table III). Qualitatively similar results were
obtained using full-length Bicoid (data not shown). There-
fore, the differences in the posterior border of expression
observed in embryos carryingkni64, 2Rkni and Ψkni
reporters must be due to something other than differences
in DNA binding affinity. For example, it is possible that
the interaction of DNA-bound Bicoid with the transcription
machinery in embryos is sensitive to the orientation of
Bicoid monomers on the DNA.

Test of the gradient-affinity model for Bicoid-
dependent gene activation
According to the gradient-affinity model for Bicoid action,
a posteriorly expressed gene should have a higher affinity
for Bicoid than an anteriorly expressed gene (Driever
et al., 1989). Thus, thekni64 element fromknirps should
have a higher affinity for Bicoid than the enhancer element
from the anterior gene,hunchback. We tested this directly
by comparing the ability ofkni64 and the 230 bphunch-
back element (Driever and Nu¨sslein-Volhard, 1989) to
drive expression in our yeast assay, and by comparing
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Fig. 7. The affinity of Bicoid for a posterior gene is comparable to
that of an anterior gene. The upper two panels are representative gel-
shifts of Bicoid89–154binding tokni64 and the 230 bphb enhancer.
The isotherms in the lower panel show that theKds for Bicoid binding
to kni64 and the 230 bphb enhancer are almost identical. However,
the loading ofkni64 occurs at a slightly lower Bicoid concentration
and the isotherm for thehunchbackelement is steeper, implying a
higher degree of cooperativity. Bicoid concentration ranges for both
gels are ~10–11 M–10–8 M, with six steps per log unit. Free DNA and
the maximally bound complexes are indicated.

their affinities for Bicoidin vitro. In yeast, thekni64 and
the hb element were virtually indistinguishable at all
Bicoid concentrations tested, and, if anything, thehb
element was more active (Table II). Gel-shift assays
showed that the overall affinity of Bicoid forkni64 was
less than 2-fold greater than that of thehb element (Figure
7; Table III). Furthermore, while the Hill coefficient for
each showed cooperative binding, thehb element (nH 5
3.0; nine sites) appears to be slightly more cooperative
than kni64 (nH 5 1.4; six sites). These affinity measure-
ments argue against the simple interpretation of the gradi-
ent-affinity model for Bicoid action.

Discussion

In this study we have shown that Bicoid binds DNA
cooperativelyin vivoandin vitro, and that this cooperativ-
ity results in the occupancy of sites that would otherwise
not be recognized by Bicoid. Cooperative DNA binding
lowers the concentration of Bicoid required to drive high
levels of gene activation in yeast, and presumably in
Drosophila. Our results help explain how, inDrosophila
embryos, genes likehunchbackare activated by Bicoid in
a highly concerted manner, thus allowing the Bicoid
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gradient to activate its target genes in a step-function-like
pattern. This on/off conversion helps establish precise
domains of gene expression critical for proper segmenta-
tion. Our results also suggest that Bicoid cooperativity is
likely to be important for activation of posterior genes
such asknirpsandhairy stripe 7 in the posterior region of
the embryo, where the Bicoid concentrations are extremely
low. However, in contrast to the gradient-affinity model
for Bicoid action, much of this cooperativity might be
contributed by a process other than DNA binding, for
example, by transcriptional synergy. A model for how
Bicoid activates genes throughout the entire embryo is
discussed.

A yeast assay for studying cooperativity in vivo
We have developed a sensitive assay to study cooperative
DNA binding by heterologous proteins in yeast. This
assay should be broadly applicable to other DNA binding
proteins. By generating a wide range of Bicoid concentra-
tions and using reporter genes with appropriate combina-
tions of strong and weak binding sites, we were able to
infer the occupancy of these sitesin vivo. A similar
approach has been used in classic studies of bacteriophage
λ repressor (Ptashneet al., 1980) and in binding studies
involving LacI (Lehming et al., 1987), TrpR (Staacke
et al., 1990) and Gal4 (Xuet al., 1995; Tanaka, 1996).
Since binding takes place within an intracellular environ-
ment (physiological pH, ionic strength, etc.), the assay
revealed features of Bicoid DNA binding that were not
possible to detectin vitro. For example, this sensitivity
allowed us to resolve easily the different affinities of the
X1 and A1 sites of thehunchbackupstream element for
Bicoid. In this assay, full-length soluble protein is pro-
duced, rather than truncated proteins typically used for
in vitro experiments; this leaves intact the domains that
may be important for the subtle effects on binding-site
recognition, cooperative DNA binding and protein–protein
interactions. Finally, although both cooperative DNA bind-
ing and transcriptional synergy contribute to gene activa-
tion by Bicoid, a major accomplishment of this assay was
the experimental uncoupling of these events to demonstrate
cooperative DNA bindingin vivo.

Cooperative gene activation Bicoid
As with many transcription activators, Bicoid-dependent
gene activation increases in a more-than-additive fashion
with increasing numbers of binding sites (Drieveret al.,
1989; Hanes and Brent, 1989; Struhlet al., 1989; this
study, Figure 2). However, this fact alone does not
necessarily indicate cooperative DNA binding, since non-
additivity can arise from at least three different phenomena.
The first is transcriptional synergy in which multiple DNA-
bound proteins interact with members of the transcription
machinery, either basal components or transcription co-
activators (reviewed in Verrijzer and Tjian, 1996). Indeed,
Bicoid has been shown to activate synergistically transcrip-
tion in vitro (Saueret al., 1995) and possiblyin vivo
(Sauer et al., 1996), by interacting with TAFII60 and
TAFII110, and our yeast data (Figure 2) suggest that
synergy is an important component of the high-level
activation by reporters that carry more than one Bicoid
site. The second is a statistical effect that results from the
simultaneous loading of multiple binding sites of similar
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affinities even in the absence of cooperative interactions
(Cantor and Schimmel, 1980a). This effect results in a
high degree of site occupancy and a steep threshold
response that appears as non-additivity. However, the
statistical effect does not change the overall binding
affinity from that of the individual sites. The third isbona
fide cooperative DNA binding as occurs, for instance,
between lambdoid (cI or HK022) repressor dimers (Ackers
et al., 1982; Ptashne, 1986; Carlson and Little, 1993).
This effect does increase the overall binding affinity,
resulting in concerted loading of sites at a lower overall
concentration of protein and a sharp transition response
to a relatively small increase in activator concentration.
For Bicoid, this was best demonstrated using strong-site/
weak-site combinations.

Cooperative coupling between weak and strong

sites in embryos

We have shown in yeast andin vitro that Bicoid bound
to a strong site promotes occupancy of a nearby weak site
(Figure 3A, Figure 4). Coupling between strong and weak
sites is therefore likely to be important for regulation
of Bicoid-dependent genes inDrosophila embryos. For
example, the three so-called weak sites, X1, X2 and
X3, within the 230 bphunchbackupstream element are
predicted to be weaker than neighbouring A sites. Our
results predict that the X1–X3 sites are important for
Bicoid-dependent expression due to coupling with A sites,
and are likely to be occupied even at moderate Bicoid
concentrations. This cooperative coupling would enhance
the sharp threshold reponse observed for Bicoid-dependent
hunchbackexpression in embryos. The fact that the weak
sites are conserved in the upstream region ofhunchback
from Drosophila virilis (Treier et al., 1989) suggests that
they are functionally important. Moreover, two of the six
Bicoid sites in thekni64 element are predicted to be of
low affinity, yet this element is extremely sensitive to
Bicoid-dependent regulation (Rivera-Pomaret al., 1995).
This suggests that thekni64 element is optimally con-
figured to respond to very low Bicoid concentrations
through cooperative coupling between strong and weak
sites.

The weak site used in our experiments contains a C:G
to T:A base pair change that disrupts a critical contact
between Lys50 of the Bicoid homeodomain and position
7 of the consensus Bicoid site. The T:A base pair at this
position (TCTAATTCC) is characteristic of the binding
consensus for homeodomain proteins of the Antennapedia
class (Laughon, 1991). Cooperative coupling between
Bicoid monomers is strong enough to compensate for the
disruption of the Lys50-C:G contact so that Bicoid now
binds an Antennapedia-like site. On their own, sites that
contain a T:A at this position are not recognized well by
Bicoid in yeast or inDrosophila embryos even at high
Bicoid concentrations (Hanes and Brent, 1991; Hanes
et al., 1994). This finding has far-reaching implications
regarding the combinatorial nature of gene regulation by
homeodomain proteins, suggesting that they may use
cooperative coupling to bind sub-optimal sites and/or
to recruit other homeodomain proteins that would not
ordinarily bind.
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Pairwise cooperativity by Bicoid

Cooperative binding by Bicoid monomers appears to be
pairwise (Figure 3B). Pairwise cooperativity has been
shown to occur between DNA-bound dimers of cI repressor
from bacteriophageλ and HK022 (Ackerset al., 1982;
Brenowitzet al., 1986; Carlson and Little, 1993), both of
which bind to three-site operators. In the case ofλ cI
repressor, pairwise interactions occur to either side of
DNA-bound dimers, and differ in strength by only ~1 kcal
(Burz and Ackers, 1994). This implies considerable flexib-
ility in the DNA-bound protein and that different surfaces
may mediate cooperative protein–protein contacts. We
propose that Bicoid, likeλ repressor dimers, is flexible
when bound to the DNA, and can interact with an adjacent
monomer on either side (as in WSW), but that these
interactions differ in strength. This would explain Bicoid’s
apparent directional preference, i.e. why WS reporters are
more active in yeast than SW reporters (Table II) and are
bound betterin vitro (data not shown). These observations
underscore the idea that the arrangement of sites in an
upstream regulatory element is critical for dictating the
transcriptional response of that element to an activator
protein.

Other homeodomain proteins are likely to bind DNA
in a pairwise cooperative manner. For example, the
DrosophilaPaired homeodomain binds cooperatively to a
dimeric site (Wilsonet al., 1993), suggesting that these
interactions might be pairwise. Cooperative interactions
also occur between heterologous homeodomain proteins
a1 andα2 from yeast (Mak and Johnson, 1993; Phillips
et al., 1994), Extradenticle and HomC proteins from
Drosophila (Lu and Kamps, 1996; reviewed in Mann,
1995; Wilson and Desplan, 1995) and between Pbx and
Hox proteins from human (van Dijket al., 1995; Chang
et al., 1996; Peltenburg and Murre, 1997). It is possible
that, like Bicoid, these proteins will show strong-site/
weak-site cooperative coupling, and that these interactions
will depend on the precise configuration (spacing, orienta-
tion) of their binding sites.

Bicoid binds DNA as a monomer

Bicoid appears to bind DNA as a monomer, engaging
in cooperative protein–protein interactions only in the
presence of DNA. In this model, Bicoid–Bicoid inter-
actions occur only when at least one monomer is bound
to DNA. This is similar to the model proposed for the
prokaryotic repressors LexA (Kim and Little, 1992) and
a mutant cI repressor (PT158) from bacteriophageλ (Burz
and Ackers, 1996), both of which dimerize on sequence-
specific DNA. The idea that Bicoid binds DNA as a
monomer is supported by several lines of evidence: first,
Bicoid binds to a single non-palindromic (S) site with a
Kd of 0.24 nM. Secondly, Bicoid does not dimerize or
oligomerize in sedimentation equilibrium experiments, up
to a total protein concentration of ~1µM (R.Rivera-Pomar
and H.Ja¨ckle, unpublished), nor does full-length Bicoid
interact with full-length Bicoid in a two-hybrid assay
(R.Hackett and S.D.Hanes, unpublished). Finally, when a
single site is present, Bicoid activates gene expression
weakly in yeast (this study) and in embryos (Driever
et al., 1989), suggesting that a monomer can bindin vivo.
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Activation of hunchback might not require synergy
with Hbmat

Previous work of Simpson-Broseet al. (1994) reported
that activation of zygotichunchbackrequired synergistic
interaction between Bicoid and maternal Hunchback
protein (Hbmat) and suggested that the sharp posterior
border ofhunchbackexpression was due to this synergy.
Their experiments relied on reporter genes that carried
both Bicoid and Hunchback binding sites. In contrast, our
work (Haneset al., 1994) shows that reporter genes that
carried Bicoid-binding sites but lacked Hunchback-binding
sites were strongly activated in embryos, and that the
expression domain had a sharp posterior border. Thus,
synergy with Hbmat apparently is not required for strong
Bicoid-dependent gene expression. Bicoid cooperativity
as demonstrated in the present study provides a mechanism
by which a sharp threshold response can be generated by
Bicoid without invoking synergy with Hbmat.

Bicoid activation throughout the embryo
The anterior morphogen model of Bicoid action (reviewed
in Driever, 1993) posits that (i) the intensity of gene
transcription and sharpness of the posterior border of
anteriorly expressed genes depends on the number of
Bicoid binding sites and (ii) that the extent to which
Bicoid-regulated genes are expressed along the A–P axis
depends on the affinity of their binding sites.

Our results provide a mechanism to explain hypothesis
(i) above. Cooperative coupling between strong and weak
sites promotes the occupancy of intrinsically weak sites,
increasing the probability that more Bicoid sites will be
occupied in a given enhancer. This coupling would increase
the intensity of gene expression, as observed for the
hunchbackgene. Cooperative DNA binding also results
in concerted loading of Bicoid sites, and thus steepens the
transition between the on and off states for gene activation,
sharpening the borders of the expression domains as
observed for bothhunchbackandevestripe 2.

Our results are not consistent with hypothesis (ii) above.
In contrast to the simple prediction based on the Bicoid
gradient-affinity model, theknirps enhancer element
(kni64) did not show a significantly higher affinity for
Bicoid than did the 230 bphunchbackenhancer element.
Thus, while cooperative DNA binding will increase
Bicoid’s overall affinity for target genes likeknirps and
hairy stripe 7, it does not explain why they are expressed
further down the Bicoid gradient than genes likehunch-
back. We suggest that for some genes, a mechanism other
than DNA binding affinity can dictate the extent of their
expression along the A–P axis. For example, it is possible
that the tight clustering and unique arrangement of Bicoid
sites within thekni64 element promotes highly cooperative
interactions with the transcription machinery. If these
interactions were more favorable than those occuring at
the hb enhancer element, then this would explain how
knirps is expressed more posteriorly than ishunchback.

Materials and methods

Yeast expression and reporter constructs
Bicoid was expressed in yeast from plasmid pDB1, which contains a
full-length Bicoid cDNA inserted into theEcoRI site of pBC103 (gift
of Barak Cohen and Roger Brent). Plasmid pDB1 (2µ, LEU2) expresses
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HA-1 epitope-tagged Bicoid from theGAL1 promoter. Expression was
driven using a GAL4–ER–VP16 fusion protein (Louvionet al., 1993),
or a mutated version, GAL4–ER–VP16(mut), which contains a point
mutation (F442P) in the VP16 activation domain (Grace Stafford and
Randy Morse, submitted) that lowers its activation potential (Regier
et al., 1993).

Yeast reporter plasmids were constructed by inserting Bicoid site
oligonucleotides into theXhoI site of pLR1∆1 (Westet al., 1984; Hanes
and Brent, 1989). These plasmids (2µ, URA3) contain aGAL1–lacZ
reporter gene whose expression is Bicoid dependent (the UASG is
deleted). The oligonucleotides were of the general sequence 59-TCG-
AC[(Bicoid site)TA]n-39 and varied only in the number and sequence of
Bicoid binding sites. The sites were spaced 11 bp center-to-center and
oriented head-to-tail (→ →) unless otherwise indicated. The strong
(S) site used in these experiments was the Bicoid consensus site
[TCTAATCCC] derived from thehunchbackupstream element (Driever
and Nüsslein-Volhard, 1989). The weak (W) Antennapedia-like site
[TCTAATTCC] has a C to Tchange at position 7 (Hanes and Brent,
1991). The ‘dead’ (X) site [TCCACAGCC] lacks the consensus for
homeodomain recognition and Bicoid specificity (Haneset al., 1994).
Strong sites (A1) [CGTAATCCC] and weak sites (X1) [GCTAAGCTG]
are as found in thehunchbackupstream element (Drieveret al., 1989).
The kni64 element was as described previously (Rivera-Pomaret al.,
1995). The sequences ofΨkni and 2Rkni are available upon request.
The 230 bphunchbackenhancer (Drieveret al., 1989) was amplified
from DrosophilaDNA by PCR and inserted into theXhoI site of pLR1∆1.

Expression and purification of proteins
To express an epitope-tagged Bicoid inEscherichia colistrain BL21
(DE3) (Studier and Moffatt, 1986) for use as a standard in Western
analyses, we constructed plasmid pDBHABcd-HD, which expresses a
63 His-, HA-tagged fusion protein (Bicoid amino acids 56–170, which
includes the homeodomain), and which carries 40 non-specific vector-
encoded amino acids at its C-terminus, under the control of an inducible
T7 promoter. The protein was purified using Ni21 affinity chromato-
graphy (Novagen). The truncated Bicoid (Bicoid89–154) used in binding
assays, was expressed as described previously (Rivera-Pomaret al.,
1995). The concentration of HABcd-HD was estimated by averaging
the contributions of Phe, Tyr and Trp to the intrinsic absorbance at
280 nm (Cantor and Schimmel, 1980b), while Bicoid89–154was quantit-
ated according to the Trp absorption spectrum of the denatured protein.
Full-length Bicoid was produced using a Baculovirus expression system
(InVitrogen).

Yeast transformations, cell growth and β-galactosidase
assays
Saccharomyces cerevisiaestrain EGY48 (MATα, leu2, ura3, trp1, his3
lexAOp-LEU2) (Gyuris et al., 1993) was used throughout. Transforma-
tions were performed using the LiOAc procedure (Itoet al., 1983).
Transformants were grown in complete synthetic medium lacking uracil,
leucine and histidine, to maintain the three plasmids used in the assay.
Hormone (β-estradiol; Sigma) was added to induce Bicoid synthesis
when the cells reached 0.12–0.15 OD600 (~2–33107 cells/ml). Induced
cultures were grown to mid-log phase (~0.5 OD600; 13108 cells/ml),
and harvested for bothβ-gal assays and Western analyses. (Detailed
procedures for cell growth, collection and assay are available upon
request.)β-galactosidase assays were performed essentially as described
previously (Hanes and Brent, 1989). For each clone, at least five
independent transformants were assayed and values were averaged;
errors were typically,10%.

Quantitation of Bicoid concentrations
Yeast cells were thawed in the presence of protease inhibitors and
proteins separated by SDS–PAGE. Samples were diluted prior to loading,
such that the Bicoid concentrations fell into the linear range of detection
by Western analysis. The HA-1 epitope-tagged Bicoid standard (HABcd-
HD) was mixed with control EGY48 cell extracts prior to SDS–PAGE,
which was found to improve the blotting efficiency. Proteins were
transferred to Immobilon P membranes (Millipore), and reacted with
monoclonal antibody 12CA5 (HA-1 epitope; Amersham) and sheep anti-
mouse Ig HRP-linked secondary antibody (Amersham). Chemilumines-
cent signals were generated using ECL reagents (Amersham) and exposed
to X-Omat film (Kodak).

Quantitative densitometry of the luminescent signal was performed
using an ImageMaster DTS (Pharmacia) and the data processed using
ImageMaster software. The response was linear between 0.01 to 2.0 OD
units; the peak ODs of all the data fell within this range. Bicoid
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concentrations were determined by comparing the OD of the full-length
Bicoid to a calibration curve generated using known molar quantities of
HABcd-HD. This internal standard was included on every gel to eliminate
errors due to variation in transfer efficiency, antibody reactivity and
developing conditions.

Reporter constructs and P-mediated transformation
The kni64 element (Rivera-Pomaret al., 1995) and synthetic reporter
genes were subcloned into pBluescript KS(1) (Stratagene) and sub-
sequently inserted into pCaSpeR-hs43 (Thummel and Pirrotta, 1992).
Fragments were ligated into the shuttle vector in their original orientation
with respect to the transcription start site. P element-mediated transforma-
tion was performed using standard procedures (Rubin and Spradling,
1982). The genetic marker,white (w), was used for insertion detection
in either w or yw flies. At least three viable, independent homozygous
lines representing P-insertions were analyzed. Reporter gene (lacZ)
expression was examined byin situ hybridization using anti-sense RNA
probes according to Klingler and Gergen (1993). The mutant stock
used for genetic analysis,bcdE1, is described in Fly Base (http://
cbbridges.harvard.edu:7081/). To assess the correct mutant identity and
avoid spurious phenotypes due to the P-insertion, the stocks of
P-insertions were analyzed for segmentation defects by examination of
cuticle preparations, prior to crossing into the appropriate mutant
background.

In vitro binding assays
DNA-labeling reactions were performed by filling-in the recessed 39 end
using the Klenow fragment of DNA polymerase andα-[32P]labeled
dNTPs (Sambrooket al., 1989). For gel shift assays, reactions were
carried out in 25 mM HEPES K (pH 7.5) containing 0.1 M KCl,
12.5 mM MgCl2, 10 µM ZnCl2, 0.1% NP-40 and 40% glycerol, and
equilibrated at 4°C for 1 h, loaded onto polyacrylamide gels at
18 V/cm and electrophoresed at 12 V/cm. DNA concentrations were
sufficiently low to assume that total protein equals free protein. Saturation
(Ybar) was determined by summing the fraction of each complex formed,
multiplied by its stoichiometry (for a given protein concentration),
and dividing by the total number of sites present. Quantitation of
autoradiographic densities was performed using an ImageMaster DTS
(Pharmacia) and the data were fitted to the equationYbar 5 Kn[X] n/11
Kn[X] n to obtain estimates of the Hill coefficients and binding constants
using the non-linear least-squares program, NONLIN (Johnson and
Frasier, 1985). Footprinting reactions (Tullius and Dombrowski, 1986)
and dimethyl sulfate (DMS) protection experiments (Rhodes, 1989) were
performed as described previously (Rivera-Pomaret al., 1995). Briefly,
1–10 pmol protein (purity.95%, as assessed by SDS–PAGE and silver
staining) were incubated with 1–10 fmol labeled DNA for 5 min on ice
in reaction buffer. After cleavage, the samples were extracted with
phenol, ethanol precipitated and loaded onto a 10% polyacrylamide-8M
urea gel. Quantitation of the extent of protection was performed by
scanning autoradiographs or by using a PhosphorImager (Molecular
Dynamics). Protected regions were identified using a G1 A sequence
ladder (Maxam and Gilbert, 1980).
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