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The role of local density in the collisional deactivation of vibrationally
highly excited azulene in supercritical fluids
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Max-Planck-Institut fu¨r biophysikalische Chemie, Am Faßberg, D-37077 Go¨ttingen, Germany

~Received 15 July 1997; accepted 19 August 1997!

The collisional deactivation of vibrationally highly excited azulene was studied from gas into
compressed liquid phase by pump-and-probe picosecond laser spectroscopy. Collisional
deactivation rates were compared with solvatochromic shiftsDn of the azuleneS3←S0 absorption
band under identical conditions. Employing supercritical fluids at pressures between 0.03 and 4000
bars and temperatures between 298 and 640 K, measurements covering the complete gas–liquid
transition were performed. For the energy transfer experiments, azulene with an energy of
;20000 cm21 was generated by laser excitation into theS1- and internal conversion to the
S0

* -ground state. The subsequent loss of vibrational energy was monitored by following the transient
absorption at the red wing of theS3←S0 absorption band near 290 nm. Transient signals were
converted into energy-time profiles using hot band absorption coefficients from shock wave
experiments for calibration and accounting for solvent shifts of the spectra. Under all conditions, the
energy decays were found to be exponential with phenomenological deactivation rate constantskc .
kc and spectral shiftsDn showed quite similar density dependences: the low pressure linear increase
of both quantities with densityr at higher densities starts to level off, before it finally becomes
stronger again. The parallel behavior of energy transfer rate constants and solvent shifts becomes
particularly apparent near to the critical point: measurements in propane at 3 K above the critical
temperature showed thatkc andDn are essentially constant over a broad density interval near to the
critical density. These observations suggest that both quantities are determined by the same local
bath gas density around the azulene molecule. By Monte Carlo simulations it is shown thatkc(r)
follows an isolated binary collision~IBC! model, if the collision frequencyZ is related to the radial
distribution functiong(r ) of an attractive hard-sphere particle in a Lennard-Jones fluid. Within this
model, average energies^DE& transferred per ethane–azulene collision are temperature independent
between 298 and 640 K and pressure independent between 0.03 and 4000 bars. By means of radial
distribution functions the density dependence ofDn can be represented as well. ©1997 American
Institute of Physics.@S0021-9606~97!01344-5#

I. INTRODUCTION

Collisional energy transfer of vibrationally highly ex-
cited molecules is of great importance for understanding
many gas phase reactions. Therefore, considerable effort has
been expended over the last decade to obtain detailed infor-
mation about this process. In particular, direct time-resolved
experiments have been performed employing spectroscopic
techniques.1,2 Activated molecules often were prepared by
light absorption into electronically excited states undergoing
fast internal conversion to the electronic ground state. The
subsequent decay of vibrational energy was monitored by
time resolved UV absorption,3–6 IR emission,7,8 energy-
selective photoionization,9 or by other techniques. By means
of calibrated UV absorption coefficients, IR emission inten-
sities, or ionization quantum yields, the transient signals led
to the average energŷDE& transferred per collision and its
energy dependence.10 Though not all details of the observed
vibrational energy transfer in the gas phase are understood,
considerable progress towards its quantitative characteriza-
tion could be achieved.11–14

Collisional energy transfer of vibrationally highly ex-
cited polyatomic molecules in the liquid phase was studied
far less extensively15–22 with less clear results. For this rea-

son, we recently studied the collisional deactivation of azu-
lene with an initial internal energy of 19 000 cm21 from the
gas to the compressed liquid phase in a variety of supercriti-
cal solvents.23 It was shown that collisional deactivation rate
constantskc in helium linearly depend on density up to at
least 16 mol/l . For other collider gases like xenon, CO2, and
ethane, this linearity was only found up to densities of about
1 mol/l . At higher densities the increase of the energy trans-
fer rate slows down. These observations appear to be of more
general significance because recent studies with excited
cycloheptatriene24 led to quite similar results.

For xenon, CO2, and ethane, deviations ofkc from lin-
early extrapolated gas phase values were observed to occur
at collision frequencies near toZ50.3 ps21.23 Since 1/Z is of
the same order of magnitude as the lifetime of collision com-
plexes, it was suggested23 that a reduction of the effective
collision frequency by shielding of the excited molecule
through collision partners might be the reason for the com-
parably low deactivation rate constants at high densities. The
assumption that no energy transfer occurs in a collision of a
bath gas molecule with excited azulene at a site which is
occupied by another collider, and estimation of the fractional
coverage of azulene with a simple Langmuir adsorption iso-
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therm model, led to a surprisingly successful description of
the collisional deactivation up to liquid densities correspond-
ing to Z.10 ps21. Collisional energy transfer experiments
of azulene in binary supercritical xenon/ethane gas
mixtures,25 which at high densities suggest a preferential sol-
vation of azulene with xenon, strongly supported these ideas.

The simple collision model implies that the energy trans-
fer rate constantkc in a dense environment is directly pro-
portional to the ‘‘coverage’’ of the excited molecule by col-
lision partners. If one relates this quantity to the local
density, one may in turn try to relatekc to other observables
which also probe the immediate surrounding of the solute.
An observable of this kind, e.g., can be the solvatochromic
shift of the solute absorption spectrum. Shifts of the azulene
S3←S0 absorption band as a function of the solvent density
have been reported already in Ref. 23. As local density varia-
tions become even more pronounced in the vicinity of the
critical point, we have extended our measurements both ofkc

andDn into the near-critical range. Propane was used as the
solvent for these studies. In this region, the strong density
changes related to enhanced cluster formation markedly in-
crease the local density of the solvent around the solute with
respect to the bulk, such that parallel effects on energy trans-
fer rates and solvent shift might be expected. Cluster forma-
tion leads to large negative solute partial molar volumes of
dilute organic solutes in supercritical solvents,26 and quite
generally manifests itself in enhanced solvatochromic shifts
of absorption27 and fluorescence28 bands of dissolved organic
probe molecules. Theoretically it was treated using fluctua-
tion theory.29 Molecular dynamics simulations30 with
Lennard-Jones fluids under near-critical conditions con-
firmed that the solute environment is changed with respect to
the bulk, but the identity of the solvent molecules in the
cluster changes frequently. Recently, the vibrational relax-
ation time of a single excited carbonyl mode in W~CO!6 was
found to be anomalously short in supercritical CO2 near to
the critical point.31 This observation was interpreted in terms
of enhanced cluster formation and related to local density
effects as they are manifest also in spectral properties.

In the present work we extended our earlier experiments
to broader pressure ranges and to temperatures closer to and
more distant from the critical temperature. We show thatkc

indeed is closely related to the local solvent density such as
expressed by solvatochromic shiftsDn of the azuleneS3←S0

absorption band. The observed density dependence of the
collisional energy transfer process suggests that isolated bi-
nary collision~IBC! models can be used, if one expresses the
collision frequencyZ in terms of the radial distribution func-
tion g(r ) around the solute. Simulating solute–solvent inter-
actions by an attractive hard-sphere potential, we determined
g(r ) in Monte Carlo simulations and were able to reproduce
the entire density and temperature dependence ofkc in the
framework of the IBC model. This implies that onlyZ is
influenced by density but not the average energy transferred
per collision^DE&, which would be the same in the gas as in
the liquid phase. Expressing the solvent shift of electronic
levels by means ofg(r ), the density dependence ofDn can
also be described in detail.

II. EXPERIMENTAL TECHNIQUE

In our experiments azulene with a vibrational energy be-
tween 19 000 and 20 500 cm21 was generated by laser exci-
tation into theS1 state and subsequent internal conversion to
the S0 electronic ground state; the preparation of theS0

*

states is achieved within 1 ps.32 The loss of vibrational en-
ergy was monitored on the red wing of theS3←S0 transition
by probe pulses at a wavelength of 290 nm. The energy
dependence of absorption coefficientse in this part of the
azulene spectrum is well characterized~see below!, allowing
for a conversion of transient absorption signals into energy
decay curves.

For experiments at high bath gas densities~.0.5 mol/l !,
the required pump and probe pulses were generated with a
colliding pulse mode-locked dye laser. Its output pulses at a
wavelength of 620 nm were amplified in a three stage
Nd:YAG laser pumped dye amplifier33 to energies of;140
mJ. After recompression and focusing part of the energy into
a 1 cm water cell generating a white light continuum, an
interference filter was used to select the desired pump light at
580 nm which was amplified in two subsequent Rhodamine
6G dye cells. The probe wavelength of 290 nm was gener-
ated by frequency doubling part of the light in a potassium
dihydrogen phosphate~KDP! crystal. Excitation and probe
energies were;60 and 2mJ, respectively. Both laser pulses
were fed into a standard pump-and-probe interferometer, re-
combined, and collinearly focused into the sample cell. The
relative plane of polarization was adjusted to 54.7°. Probe
energies were determined in front of and behind the sample
cell by means of photodiodes. Behind the sample, an inter-
ference filter for the probe wavelength was used to block
transmitted excitation light. The width of the cross correla-
tion of pump and probe laser pulses wasDt50.65 ps~full
width at half maximum!, i.e., adequate to monitor all pro-
cesses following the 1 ps preparation of excited states.

Experiments at high densities with bath gas pressures up
to 1000 bars and temperatures between 298 and 640 K were
performed in a heatable high pressure cell with an optical
path length of 20 mm. Sapphire windows with a thickness of
10 mm and an aperture of 7 mm were used. Temperatures
were determined with an accuracy of 0.2 K. The precision in
determining pressures below 100 bars was 0.1 bar; at higher
pressures, it was 1%. Azulene concentrations were adjusted
to an optical density of 1.0–1.5 at 290 nm~corresponding to
231024 mol/l ! which was sufficient to avoid azulene–
azulene collisions during the collisional deactivation process.

For low pressure experiments, pulses from a frequency
doubled Nd:YAG laser at a wavelength of 532 nm were used
for excitation. The 290 nm probe wavelength was obtained
by second harmonic generation of the output of a Rhodamine
6G dye laser operating at 580 nm, which was pumped by a
second frequency doubled Nd:YAG laser. The delay be-
tween pump-and-probe pulses was adjusted by an electronic
delay generator~DG 535, Stanford Research Systems!. The
pump pulses had energies of about 25 mJ. The pulses in a
collimated beam of 7 mm width entered a heatable sample
cell having an optical path length of 20 cm. The probe beam
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of 3 mm width passed the cell in opposite direction. Pulse
energies~near 5mJ! were detected in front of and behind the
sample cell. The low pressure cell was filled with 80–100
mbars of azulene and, depending on the energy transfer effi-
ciency, 30–100 mbars of collider gas. Pressures were deter-
mined with an accuracy of 0.5%. The time resolution in
these experiments was 8 ns.

Solvent shifts of the azuleneS3←S0 absorption band
were determined in a Varian Cary 5E spectrometer under the
same conditions as in the time resolved experiments. Azu-
lene ~Merck .98% pure! and high purity gases~Messer–
Griesheim! and liquids~Barker! were used without further
purification.

III. RESULTS

A. Low pressure experiments

In agreement with our earlier work,23 transient signals of
azulene recorded at 290 nm at densities below 1 mol/l were
found to decay exponentially. A typical signal from our low
pressure experiments is shown in Fig. 1~bath gas propane at
39.5 mbars and 391.2 K!. Decreasing the excitation intensity
lowers the amplitude of the signals but has no influence on
the decay rate of the signals, indicating that possible two-
photon effects can be neglected. Since the energy depen-
dence of the absorption coefficiente at 290 nm is linear~see
Fig. 2!, energy-loss profiles of the form

^E~ t !&5^E0&exp~2t/tc!5^E0&exp~2kct !, ~1!

convoluted with a Gaussian instrument response function of
8 ns width, were fitted to the data~solid line in Fig. 1!; ^E0&
denotes the photon energy of the excitation pulse andtc is a
phenomenological relaxation time constant. It was shown10

that the slope of the energy decay curves gives direct access
to average energieŝDE& transferred per coillision through

d^E&/dt5Z^DE&, ~2!

as long as the energy dependence of^DE& is not too strong,
and the distribution of excited molecules is sufficiently far
from the final thermal equilibrium. Combination of Eqs.~1!
and ~2! gives

^DE&52^E&/~Ztc!; ~3!

i.e., for an exponentially decayinĝE(t)& curve, ^DE& de-
pends linearly on̂E& with the slope

m^DE&5^DE&/^E&521/~Ztc!52kc /Z. ~4!

Identifying Z with the Lennard-Jones collision frequencyZLJ

and using Lennard-Jones parameterss56.61 Å ande/kB

5523 K for azulene and values for the collision partners
such as tabulated in Ref. 35, one obtainsm^DE& in the tem-
perature range 373–391 K such as summarized in Table I. In
comparison to extrapolated data from experiments at 385 K
and high densities~.0.2 mol/l !23 these values are larger by
10–25%. Apparently the extrapolation in Ref. 23 slightly
underestimated the limiting low pressure values. Earlier di-
lute gas phase experiments performed at 298 K gave slightly
larger ^DE& than the present results: for propane, e.g.,
the m^DE& value of Table I corresponds to
^DE(15 000 cm21!&52530 cm21 while the value reported
by Hippleret al.6 is ^DE(15 000 cm21!&52640 cm21 at 298

FIG. 1. Absorption time profile recorded during the collisional deactivation
of azulene in propane at 391.2 K, 39.5 mbars~full line: simulation assuming
an exponential energy decay!.

FIG. 2. Energy dependence of azulene absorption coefficients in the gas
phase at selected wavelengths. Filled symbols: from static gas cell~Ref. 23!;
open symbols: from shock wave experiments~Ref. 34!; ~* ! from laser ex-
citation experiments~Ref. 34!.

TABLE I. Average energieŝDE& of excited azulene transferred per colli-
sion. @m^DE&5^DE&^E&, see Eq.~4!#, and critical parameters for a series of
bath gases.

gas
rc

(mol l 21)
Tc

~K!
T

~K! 2100m^DE&

xenon 8.454a 289.74
a

375 0.73
CO2 10.59 304.21 373 1.89
ethane 6.784 305.33 376 2.83
propane 4.966 369.80 391 3.54
n-pentane 3.216b 470.60b ••• •••
n-octane 2.136 568.6 373 8.7

aReference 36.
bReference 43.

8382 Schwarzer et al.: Collisional deactivation in fluids

J. Chem. Phys., Vol. 107, No. 20, 22 November 1997
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.76.223.157 On: Tue, 06 Oct 2015 14:04:16



K. This difference probably reflects an apparent temperature
dependence of̂DE&, if Z is expressed by the Lennard-Jones
collision frequency~see below!.

B. High pressure experiments

At high densities, the azuleneS3 absorption band in-
creasingly shifts to the red byDl such as discussed in Sec.
III C. As a consequence a high density probe wavelength of
290 nm corresponds to a low pressure gas phase probe wave-
length ofleff5290 nm2Dl. Since the energy dependence of
the azulene absorption coefficient critically depends on the
wavelength~see Fig. 2!, the absorption coefficient as a func-
tion of the excitation energye(^E&) was evaluated forleff by
interpolation between 280 and 290 nm calibration curves.
Assuming that Eq.~1! is also valid at higher densities and
considering the finite time resolution~due to the internal con-
version process and the laser pulse cross correlation width of
0.65 ps!, an evaluation function@see Eq.~10! in Ref. 23# was
determined and fitted to the data. Even for signals recorded
close to the propane critical point~see Fig. 3!, where the
optical quality of the sample was decreased due to density
fluctuations, the agreement between this evaluation function
and the signals was excellent, yielding reliable values fortc .
The derived values fortc are summarized in Tables II–IV.
Laser intensities used in our picosecond experiments were
much higher than in the low pressure experiments. However,
possible two-photon excitation leads to azulene in theS2

state, which at high densities decays much slower than the
energy of singly excited molecules in the ground state and,
therefore, does not contribute to the signal.

In Fig. 4~a! collisional deactivation rate constantskc

5tc
21 are plotted versus propane reduced densitiesr r

5r/rc , whererc is the critical density of propane~critical
parameters are given in Table I!. For comparison the ex-
trapolated density dependence ofkc from our low pressure
experiments is shown as a solid line. Even at densities as low
as r r50.17, our high density data are notably below the
extrapolated gas phase behavior. Atr r.0.5 the initial in-
crease ofkc with density at 396 and 415 K at first becomes

slower and atr r.1.5 becomes stronger again. Our new re-
sults for propane at 396 and 415 K are consistent with earlier
results from Ref. 23 for the bath gases CO2, Xe, and ethane.
These results are shown for comparison in Figs. 5~a!, 6~a!,

FIG. 3. As Fig. 1, in propane at 372.5 K, 43.6 bars.

TABLE II. Vibrational deactivation timestc of azulene in propane at 372.5
K.

p
~bars!

r
(mol l 21)a

Dl
~nm!

tc

~ps!

31.5 1.50 1.8 54
36.3 1.94 2.3 41
36.3 1.94 2.0 42
40.3 2.51 3.5 34
41.5 2.79 4.0 29
42.5 3.11 4.4 25.0
43.2 3.38 4.7 22.0
43.5 3.57 4.8 21.1
43.7 3.73 4.9 20.1
43.9 3.93 5.0 19.9
44.2 4.38 5.1 19.6
46.0 6.44 5.1 17.8
48.2 7.01 5.1 17.6
52.9 7.51 5.2 17.3
60.3 7.97 5.4 16.5
75.5 8.51 5.5 15.6
98.4 9.0 5.8 15.5

135 9.5 6.0 14.8
183 10.0 6.4 14.7
260 10.5 6.7 13.2
357 11.0 6.9 12.8
701 12.1 7.5 11.5

aReference 37.

TABLE III. Vibrational deactivation timestc of azulene in propane at 396.5
K.

p
~bars!

r
(mol l 21)a

Dl
~nm!

tc

~ps!

22.8 0.825 1.0 96
37.0 1.57 1.9 59
51.0 2.79 3.1 32
53.0 3.05 3.4 31
55.0 3.35 3.6 28.5
57.0 3.70 3.8 27.2
58.8 4.04 4.0 25.1
61.1 4.50 4.3 24.5
63 4.87 4.5 23.6
65 5.23 4.6 22.5
70 6.0 4.9 21.3
75 6.5 5.0 21.2
81 6.9 5.1 21.0
87 7.3 5.2 20.0

108 8.0 5.4 18.9
130 8.5 5.5 16.8
152 8.8 5.7 16.6
208 9.5 6.0 14.6
275 10.0 6.4 14.0
360 10.5 6.7 13.5
480 11.0 6.9 12.7
618 11.5 7.2 12.2
892 12.2 7.5 11.0

aReference 37.
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and 7~a!, respectively. These earlier experiments corre-
sponded to situations far above the critical temperaturesTc .

The comparison of measurements in propane at 396 and
414 K with the results at 372.5 K shows large changes at
temperatures close toTc @see Fig. 4~a!#. Contrary to tempera-
tures far aboveTc , in propane at 372.5 K~which is 3.4 K
aboveTc! the increase ofkc with density between 0.5,r
,1.5 first becomes stronger and then levels off, reaching a
plateau located aroundrc where the collisional deactivation
rate constants become nearly independent of propane den-
sity. The near-criticalkc values atrc are larger by 25% than
the 396 and 415 K values. Forr r.1.5, the density depen-
dences ofkc at 372.5 K coincide with those at 396 and 415
K.

Figure 8~a! demonstrates the density dependence ofkc

for n-pentane andn-octane atr r.2.5 ~data from Ref. 23!. Clearly, thekc increase is stronger than proportional to den-
sity. This high density behavior is typical and also visible in
Fig. 7~a! for ethane. For the bath gas ethane, collisional de-
activation rate constants of azulene were determined in the

FIG. 6. As Fig. 4, bath gas xenon.

TABLE IV. Vibrational deactivation timestc of azulene in propane at 415
K.

p
~bars!

r
(mol l 21)a

Dl
~nm!

tc

~ps!

72 4.29 4.1 24.5
82 5.37 4.6 22.2
92 6.15 4.9 20.9

120 7.39 5.2 19.5
200 8.85 5.7 16.7

aReference 37.

FIG. 4. ~a! Density dependence of collisional deactivation rate constants of
azulene in propane at various temperatures~full line: extrapolation from
dilute gas phase experiments!. ~b! Density dependence of the shift of the
azuleneS3←S0 absorption band in propane at various temperatures.

FIG. 5. As Fig. 4, bath gas CO2.
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temperature range 340–640 K at constant densities 2.0 and
11.5 mol/l . The results are summarized in Table V. Figure 9
shows plots ofkc /r r versus temperature for both densities.
Whereas at 2 mol/l kc strongly decreases with temperature,
at 11.5 mol/l it nearly remains constant.

C. Comparison of energy transfer and spectral shift
data

A comparison of our energy transfer results with mea-
surements of the solvent shifts of theS3←S0-absorption
band under equal temperature and pressure conditions is
most illuminating. Figure 4~b! displays shiftsDn of the azu-
lene S3←S0-absorption band as a function of the reduced
density of propane. The same characteristic features are
present as in the energy transfer observations of Fig. 4~a!: the
372.2 K curve shows an increase of the low pressure slope at
r r50.5 and then a leveling-off just before the critical den-
sity. Around rc essentially no further density shift of the
absorption band is observable. Atr r.1.5, a slower increase
of Dn with density follows. At higher temperatures~393.2
and 413.2 K!, shifts aroundrc are smaller and the plateau is
absent. It should be mentioned that vibrational relaxation
from low vibrational states and spectral shifts for

the CO stretch mode of W~CO!6 in near-critical CO2 showed
behavior analogous31 to the present experiments in near-
critical propane.

It is important to notice that the density dependences of
the energy transfer rate constantskc and the spectral shifts
Dn are closely related at temperatures very near toTc as well
as more than 40 K away. It is equally important to observe
that the behavior is quite general. Figures 5–7 comparekc

andDn for the bath gases CO2, Xe, and ethane at tempera-
tures markedly aboveTc where the relation is still observ-
able. Qualitative differences in the density dependence ofkc

and Dn occur only in the compressed liquid. As demon-

FIG. 7. ~a! Density dependence of collisional deactivation rate constants of
azulene in ethane~dashed line: extrapolation from dilute gas phase experi-
ments; full lines: attractive hard sphere collision model at 385 and 298 K,
respectively; dotted line: extrapolation of the low density limit of the attrac-
tive hard sphere collision model, see text!. ~b! Density dependence of shifts
of the azuleneS3←S0 absorption band in ethane. Full lines: simulations at
385 and 298 K, respectively, using Eq.~14!; dotted line: reaction-field result
with a5su/2 @Eq. ~12!#; dashed line: Abe’s result@Eq. ~13!, see text#.

FIG. 8. As Fig. 4, forn-pentane andn-octane~dotted lines clarify devia-
tions from linear density dependences of the data points!.

TABLE V. Temperature dependence of vibrational deactivation timestc of
azulene in ethane at densities of 2 and 11.5 mol/l .

p
~bars!

T
~K!

r
(mol l 21)a

Dl
~nm!

tc

~ps!

43.0 344 1.97 1 50
45.0 353 1.97 50
53.5 385 2.08 55
90 576 1.96 71

102 645 1.99 75

42.5 294 11.5 5 18.0
125 323 17.5
272 373 18.3
418 423 17.7
563 473 16.4
705 523 16.5
846 573 16.5

aReference 38.
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strated in Fig. 7 for ethane and Fig. 8 forn-pentane and
n-octane, atr r.2.5 kc increases much stronger with density
thanDn.

Before interpreting the density dependences ofkc and
Dn, we illustrate the relation betweenkc andDn, in an alter-
native way. Figures 10 and 11 showkc as a function of the
solvent shiftDn ~Dn curves were interpolated between the
measured points!. It is striking that the curves for propane,
close to the critical temperatureTc and 40 K above, nearly
coincide in Fig. 10. Also, the curves for the other gases in
Fig. 11, at temperatures markedly distant fromTc , up to
liquid densities are practically linear, however with different
slopes. Deviations from linearity occur only at liquid densi-
ties, which in Figs. 10 and 11 correspond to solvent shifts of
Dn.800 cm21. This behavior strongly suggests thatkc and
Dn are governed by the same property of the system. Since
Dn is determined by short-range interactions between solute

and bath gas molecules, it seems reasonable to attribute the
density dependences both ofkc and Dn to the local solvent
density in the immediate surrounding of the considered sol-
ute.

IV. DISCUSSION

In the following we try to relate solvent shifts and colli-
sional deactivation rate constants with local densities such as
derived from radial distribution functions of attractive hard-
sphere particles in Lennard-Jones fluids.

A. Collisional deactivation rate constants k c

Early attempts to calculate collision frequencies in dense
media were made within the framework of IBC models.
Such models were developed to describe the density depen-
dence of vibrational energy relaxation of small molecules,
i.e., deactivation of singly excited vibrational modes~see
Ref. 39!. The basic assumptions of IBC models are that col-
lisional energy relaxation proceeds only via binary interac-
tions and thatP, the relaxation probability per collision, is
the same for both gas and liquid phase. The rate of relaxation
then is given by

k~r,T!5P~T!•Z~r,T!. ~5!

In this model the density dependence ofk is exclusively due
to that of Z, whereas the temperature influences the vibra-
tional relaxation rate throughP and Z. Once P has been
found in the gas phase, the determination ofk in the liquid
reduces to a calculation of the appropriate collision fre-
quency. Defining a collision as an event in which two mol-
ecules approach each other to within a certain distance,

FIG. 9. Temperature dependence of the collisional deactivation rate constant
in ethane at various densities~see text!.

FIG. 10. Relation between the collisional deactivation rate constantkc and
the solvent shift of the spectrum of azulene in propane; see Figs. 4~a! and
4~b!.

FIG. 11. As Fig. 10, bath gases ethane, CO2, and xenon.
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which for a hard-sphere solute of diametersu in a hard-
sphere solvent of diametersv is given bys5(su1sv)/2,
the collision frequency is expressed by40,41

Z5Z0•g~r,T,s!, ~6!

whereg(r,T,s) is the value of the radial distribution func-
tion of the solute at contact with the solvent andZ0 is the
dilute gas collision frequency

Z05rs2A8pkBT

m
. ~7!

Starting from Eq.~6!, Delalande and Gale42 had to add an
attractive Lennard-Jones term to the solute–solvent hard-
sphere potential in order to model experimental observations
on vibrational relaxation rates in liquids.

In the following, we will apply this attractive hard-
sphere~AHS! model to the density dependence of collisional
energy transfer of vibrationally highly excited azulene. Since
the experimental data for the bath gas ethane are most com-
plete, we modeled this system treating ethane–ethane inter-
actions by a Lennard-Jones potential

Vv54ev@~sv /r !122~sv /r !6# ~8!

with ev /kB5220 K.43 Azulene–ethane interactions were
modeled by an AHS potential42 with

Vu5`, r ,su ,

Vu52eu , su<r<21/6su , ~9!

Vu54eu@~su /r !122~su /r !6#, r .21/6su .

For simplicity we used a ratio ofsu /sv51, such that the
well depth eu was the only adjustable parameter for these
calculations.

We determinedg(r,T,r ), and consequentlyg(s) at the
surface of the azulene molecule, using the Monte Carlo
method.44,45 Simulations at low densities were performed in
a canonical ensemble of 107 solvent spheres and 1 solute
sphere in a cubic simulation box with periodic boundary con-
ditions. At high densities, 255 solvent spheres were used.
The minimum image convention was used to calculate po-
tential energies; interactions were truncated at half the box
length. Starting from an initially face centered cubic struc-
ture, after equilibration up to 106 trials for each particle were
taken to sample the configurational phase space.g(r ) around
the solute was determined every five trials.

Results forg(r ) in Fig. 12 are plotted against the re-
duced distancer * 5r /s of an AHS particle atT5385 K and
various Lennard-Jones reduced densitiesr* 5rs3. The
depth of the potential well for solvent–solute interactions in
all calculations presented here was adjusted toeu /kB

5720 K. This value foreu turned out to fit best our colli-
sional energy transfer and solvent shift data of azulene in
ethane. The solid line corresponds to the low density limit of
g(r ), being the analytical solution of the equation

g~r !5expS 2
Vu~r !

kBT D . ~10!

At r*50.05, which for supercritical ethane under these con-
ditions corresponds to a pressure of 34 bars, the radial dis-
tribution function from our Monte Carlo simulations is still
close to this limit. However, around this density the peak at
r * 51 begins to decrease. The reason is that the number of
molecules in the first solvation shell due to repulsive inter-
actions cannot increase linearly with bulk density. At the
same time a second peak aroundr * 52 grows in, reflecting
the formation of a liquid structure. Atr*50.6 the peak at
r * 51 reaches its minimum. At higher densities the peak
increases again and becomes narrower as the molecules in
the first shell are forced to stay at the surface of the solute
due to repulsive interactions with the remaining solvent. This
is the usual behavior in compressed liquids and is indepen-
dent of the attractive part of the potential.46 Values ofg(s)
at the surface of the solute were obtained fromg(r ) curves
in Fig. 12 by extrapolation. Following Eqs.~6! and ~7!, the
collision frequencyZ is expected to be proportional to
r* AT* g(r* ,T* ,s) with T* 5kBT/eu . Figure 13 shows
plots of this quantity versus density at 298, 385, and 575 K,
respectively. All features, which we observed in thekc(r)
dependence of azulene in supercritical fluids more than 20 K
above Tc , are present in the 385 K isotherm. The initial

FIG. 12. Radial distribution functions of an attractive hard-sphere particle in
a Lennard-Jones fluid at various densities~su5sv , ev /kB5220 K, eu /kB

5720 K, T5385 K; see text!.

FIG. 13. Density dependence of the reduced collision frequency, Eqs.~6!
and ~7!, at various temperatures~parameters as in Fig. 12!.
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increase ofZ at low densities becomes weaker already at
r*,0.05 ~see also Fig. 12!. At r*'0.5 an inflection point is
reached, followed by a stronger increase ofZ with density. It
is possible to directly project the 298 and 385 K isotherms of
Fig. 13 to thekc(r) data of azulene in ethane such as dem-
onstrated by full lines in Fig. 7~a!. A Lennard-Jones diameter
of s50.41 nm for ethane was used to transformr* into r r

~values reported in the literature are in the range 0.39–0.44
nm; see Ref. 43!. The agreement with the data is excellent;
only the limiting low density slope ofkc is slightly underes-
timated~dotted line!. Figure 13 shows that, for constantr* ,
the collision frequency at low densities strongly decreases
with increasing temperature. Atr*50.5, however, the tem-
perature dependence ofZ is only weak. This behavior agrees
with the temperature dependences ofkc such as presented in
Fig. 9 ~densities of 2.0 and 11.5 mol/l ethane correspond to
r*50.083 and 0.48, respectively!. Plotting kc from Figs. 7
and 9 versusr* AT* g(r* ,T* ,s), all data points fall on one
straight line such as shown in Fig. 14. This indicates that,
within the AHS collision model, deactivation rate constants
of azulene in ethane at 298–640 K are determined only by
Z(r,T), whereaŝ DE& is temperature and density indepen-
dent.

B. Solvent shifts Dn

The solvent shiftsDn are caused by weak interactions
between the solute and surrounding solvent molecules. The
change in energy of the solute due to this interaction will
differ depending on whether the molecule is in its ground or
excited state. Consequently, a change in excitation energy
Dn will be observed experimentally. Most theoretical ap-
proaches to characterize the solvent shift are based on On-
sager’s reaction-field method derived from classical
electrostatics.47–49 These models consider a point dipole in
the center of a spherical cavity~radius a! surrounded by a
homogenous dielectric. Here, we follow the model suggested
by Abe,50 who considered van der Waals interactions be-
tween two molecules averaged over all orientations.51 As-

suming that solute–solvent interactions consist of pairwise
interactions of this type, the stabilization of an electronic
states of the solute is given by52

DEs5 (
p51

N

Rp
26H 2

2

3kBT
~ms

u!2~mv!22as
u~mv!2

2av~ms
u!21duv

s J , ~11!

wherea andm denote polarizabilities and dipole moments of
solute ~index u! and solvent~index v! molecules, respec-
tively. The van der Waals coefficientduv

s is due to dispersion
forces.Rp denotes the distance between the solute and indi-
vidual solvent molecules, which were assumed to be of
spherical symmetry. The reaction-field result is obtained, if a
uniform distribution of solvent molecules outside the cavity
of radiusa5su/2 is considered:

(
n51

`

Rp
265

25

3
p

r

su
3 . ~12!

Abe supposed that the solvent molecules are arranged around
the solute in fixed shells, such that the values ofRp are
(su/21sv/2), (su/213sv/2), (su/215sv/2), etc., and the
number of solvent molecules at these distances are
4p(su/21sv/2)2/sv

2, 4p(su/213sv/2)2/sv
2, etc. If su

5sv his final result is

(
n51

`

Rp
265

1

135
p6

r

su
3 . ~13!

The accurate method to evaluate(Rp
26, of course, applies

the radial distribution function which gives

(
n51

`

Rp
2654prE

0

` g~r !

r 4 dr54p
r

su
3 E

0

` g~r * !

r * 4 dr* .

~14!

For nonpolar solvents only dispersion forces and interactions
between the solute dipole and induced dipole in the solvent
have to be considered. Therefore, the change in energy be-
tween ground~index g! and excited~index e! state is

DEe2g54prE
0

` g~r !

r 4 dr$av@~mg
u!22~me

u!2#

1duv
e 2duv

g %. ~15!

We applied Eq.~15! to our solvent-shift data of azulene in
ethane by taking the expression in brackets as a scaling fac-
tor, because the estimation of dispersion terms is unreliable.
For consistency, the same radial distribution functions as cal-
culated in 4.1 to fit thekc(r) data were used. The agreement
between Eq.~15! and solvent shift is excellent as demon-
strated in Fig. 7~b! ~solid lines!. At high densities the calcu-
lated curves turn over to a linear behavior, such that the main
difference to thekc(r) data is well reproduced. The reason is
that in the range 0.6,r*,0.9, the value of the radial distri-
bution functiong(s) at the surface of the solute increases
with density~see Fig. 12!; the width of the peak ofg(r ) at

FIG. 14. Collisional deactivation rate constant as a function of the reduced
collision frequency, Eqs.~6! and ~7!, at various densities and temperatures.

8388 Schwarzer et al.: Collisional deactivation in fluids

J. Chem. Phys., Vol. 107, No. 20, 22 November 1997
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.76.223.157 On: Tue, 06 Oct 2015 14:04:16



r * 51, however, narrows simultaneously, such that the inte-
gral in expression~14! remains nearly constant. Dotted and
dashed lines in Fig. 7~b! represent reaction-field and Abe’s
result of Eqs.~12! and ~13!, respectively. The dashed line
well reproduces the high density limit of the calculations
using g(r ), since under these conditions the spherical mol-
ecules are nearly arranged as Abe supposed in his model.
The reaction field gives too high stabilization energies if the
cavity radius a is set tosu/2. A value of 1.67•su/2 instead
reproduces the dotted line such as was already noticed in
Ref. 52.

C. Collisional deactivation rate constants and solvent
shifts close to the critical point

So far we have analyzed the density dependence ofkc

and Dn only well above or below the critical point. Figure
4~a! shows that the collisional deactivation rate of azulene in
propane close toTc is nearly constant in a range 0.75,r r

,1.5. From the parallel behavior ofDn~r! under these con-
ditions @see Fig. 4~c!#, one has to conclude that again the
local density determines the anomalouskc(r) dependence,
and that the energy transfer mechanism does not change.
Debenedetti investigated solute–solvent properties at infinite
dilution in the vicinity of the solvent’s critical point by
means of fluctuation analysis.29 Defining a cluster size in
terms of statistical correlations between solute and solvent
concentration fluctuations, he showed that closely aboveTc

the excess number of solvent molecules surrounding a given
attractive solute molecule strongly increases, with respect to
a uniform distribution at the prevailing density. Calculations,
which were based on measured infinite dilution solute partial
molar volume of naphthalene in CO2 at 4 K aboveTc :26c

show an increase of the cluster size in the ranger r

50.7– 0.9 from 20 to 100 solvent molecules~cf. Fig. 1 in
Ref. 29! and a subsequent decay to 10 solvent molecules
when the density is further raised tor r51.2. The density
region where these large clusters exist agrees approximately
with the range of constantDn~r! and kc(r) in Fig. 4. It is
conceivable that, while these clusters exist, the density at the
surface of the solute molecule does not change and, there-
fore, Dn and kc remain constant. Unfortunately, this effect
cannot be reproduced by Monte Carlo simulations of the type
used in the present work, because the limited number of
molecules in a simulation box with periodic boundary con-
ditions prevents the formation of density fluctuations of the
size reported in Ref. 29.

V. CONCLUSIONS

The comparison with shifts of electronic absorption
spectra suggests that collisional energy transfer rates of
highly excited azulene are determined by the local bath gas
densities. Therefore, the density dependence ofkc was de-
scribed within the framework of an IBC model which relates
the collision frequency to the value of the radial distribution
functiong(r ) at the surface of the solute molecule. Applying
simple interaction potentials,g(r,T,r ) was calculated by
Monte Carlo simulations of a canonical ensemble. The same

radial distribution functions were used to describe the stabi-
lization of electronic states of a solute in the presence of
solvent molecules. Both models very successfully describe
kc(r) and Dn~r! if the temperature is not too close to the
solvent’s critical temperatureTc . Close toTc , the ~constant
NVT! Monte Carlo method with a small number of mol-
ecules fails to correctly describe the long range fluctuations
present under near-critical conditions. In order to improve
the simulations ofkc(r) andDn~r! for temperatures near to
Tc , we currently implement the Gibbs Monte Carlo
technique.53 The IBC approach in the applied form is an
extension of the simple adsorption model presented in Ref.
23 because many-body effects present at high densities are
explicitly considered throughg(r ).

Our investigations clearly show that the density and tem-
perature dependences of the collisional deactivation rate con-
stants of highly excited azulene can satisfactorily be ex-
plained by local density influences on binary collision
numbers. As a consequence, average energies^DE& trans-
ferred per collision have to be assumed to be practically in-
dependent of pressure and temperature and, therefore, are
identical for gas and liquid phase conditions. Classical tra-
jectory calculations of̂ DE&, which quantitatively repro-
duced experimental values for low pressure gases,14 hence
should also provide a realistic picture for dense fluids. On the
other hand, the calculation of collision frequencies should
account for local density effects such as demonstrated in the
present work.
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