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Abstract. Heat conduction after the application of a shortwhered(x, t) = T(x, t) — T(x, 0) and F(t) is the pulse form
laser pulse on opaque matter is calculated assuming simplof the laser flashe is the thermal diffusivity. The initial and
fying conditions. The effect of the simplifications on real boundary conditions are:

systems is discussed. It is found that Fourier’s law may rea-

sonably be applied considerably above the temperature ¢fX.0)=0 and 6(co,t)=0. (1a)

vaporization of the substrate. Calculated and experimental a a bl h di 1) with | : |
lation at nickel surfaces using fluences below threshold ar&!€ Problem, that according to (1) with large negative values
of x the energy input diverges, will be solved below by using

compared. S :
appropriate integration constants.
PACS: 65: 81.60 For short picosecond pulses a pulse fd¥(t) is assumed:
—t
Ft)=A (—) exp<—> . (1b)
In laser processing technology the problem of energy dissipa- T T

tion is of paramount importance [1-3]. When working with

short laser pulses on matter with high extinction coefficient

and high thermal diffusivity (metals and semiconductors) hea
conduction cannot be neglected even when the picosecong 920 t —t
laser pulse has not yet decayed to zero. In the next sectiog =k +A (;) exp(—) exp(—aX) .
a simplified model for heat conduction under these condition

will be derived. A closed solution of Fourier's differential Applying a Laplace transformation on the partial differential

equation will be presented. The simplifying assumptions aregquation (1c) leads to the ordinary differential equation:
1. Heat flow will be understood to be restricted to one dimen-

The half-width of this pulse amounts to7/®5- z.) Then dif-
terential equation (1) reads:

(1c)

sion. d?e 2 At exp(—ax) )
2. The physical parameters (thermal diffusivity, density, ab-qx2 7= K(1+19)2 )
sorption coefficient, specific heat, reflectivity) will be as-

sumed to be independent of temperature. with

3. The form of the laser pulse is given by (1b) below. 2 S

4. The effect of the enthalpy of phase changes is neglected.k T (2a)
5. Only heat conduction is assumed to be effective in energa_g o
transport. Stefan—Boltzmann radiation is neglected or&(x, s), the Laplace transform f(x, t), the solution is:
6. Also ablation of matter at very high temperatures is not

considered. y hg P © = Cp exp(—kx) + Coexp(kx) + Op 3)

Section 2 will discuss the effect of these simplification

, . Swhere the first two terms are the general and the last term is
when applying the solution of the model to real systems.

the particular integrak is the Laplace parameter ay are

the integration constants to be determined using the boundary

and initial conditions. Since for large valuesxfo(x, t) = 0

(and therefore®(x, s) = 0), C; must be zeroC; is only

a constant with respect tobut may depend on the parameter

's. Cy will be determined after the particular integ@p has

been calculated. With:
30 —Art

ik + F(t) exp(—aX) 1y B= (1t 19?2

1 Fourier’'s equation

For an irradiated substrate with an optical extinction coeffi
cienta Fourier’'s equation in one dimension reads:

(4)
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the solution for®y is: becomes zero.)
(d_@) _ —aA -
Op = Bexp(—kx)/exp(ka) [/ exp(—kx) ax ) o (sta)? ﬁ(ﬁ+b)
exp(—ax) dx:| dx — « =0. 10
(V5-b) <¢§+b>] w0

Bexp( ax)  Bexp(—ax)

k—a2 = (k—a)(k+a) ®) With (10) the factor responsible for the divergence is elimi-
nated:
and 1 1
B exp—ax) b s ()
exp(—ax -
® =C1(s) exp(—kx) + ———. 6
1o e (k=a)(k+a) ©
After back transformation the second term on the right-hand Aa exp(—ax) bexp(—cﬁ) 12)
side of (6) diverges for large[see Table 1fyo(s)]. The physi- = 5 - 12
cal reason is the heat flow from the infinite heat reservoir with (s+a)? | Vs(vs+b) s(v5+b)

X < 0. By a suitable choice dZ;(s) the heat flow fromx < 0
can be made to vanish and the divergence of (6) at large
disappears. This is achieved by:

For these function$(s) the Laplace retransformations are not
available from the tables. However, convolution allows us to
retransform a product, provided the retransforms of the fac-

By tors Fj (t) are known. The convolution theorem reads:

C19 = T

()

Resubstitution o1 (s) from (7) as well asB andk from (4)

t
L~1f, (s) fk(s) = / Fit—2F(2) dz=F * Fx (13)
and (2a) into (6) result in: 0

whereL~1 is the inverse Laplace operator. The result is then:

o— —aA | bexp(—cys) N exp(—ax) @®
= (5+a)2 S(\/§+ b) (\/é— b) (\/§+ b) o, x)=A [Fl* Fzexp(—ax) —bFyo* F4] . (14)
) Table 1 contains the relevant transform pairs.
with The convolutionF; * F3 may be executed by partial inte-
gration of the convolution integral and using a series develop-
a= 1 ., b=ayk, and c= X (9) mentthatis more precise and faster than an integration using
T N Simpson’s method. We thus obtain, after resubstituéinig,

andc [see (9)]:

To avoid heat flow from the region witk < O the gradient 5

of ® atx =0 is set equal to zero. (If at= 0 no heat flows _ T 2
from x < 0 but does so in the positivedirection, the gradient FixFs = (1+a2m)2 exp(a Kt) erfe (a\//&)
Texp(—t/7) [ o i 2(t/7)!
Table 1. Laplace transform pairs 1+e%kt | A+« K‘L’)f 2 +1)
(s F( T atf Z 4(t/7)
1 1+o2kt Jr i2i+D@+3) |
— _ 2.
fo(® = = Fo(t) = exp(b®t) (15)
f1(5) s+1a2 F1(t) = texp(—at) The convolutionFyz x F4 will be performed using Simpson’s
rule:

1

fa(s) = S Fah=1 t
_ _ 2 (t—2
29 = OB  Fab=FosFo=— PR FroxF=t / { [ } p[— . } }
1 0

fa® = ———=—=  Fab =exp(b’)erfc(bVi) exp(—x2/4kz

Va(v5+b) x { exp(-X/4z) a/i exp(ax) exp(a?kz)

exp(—c./s) Tz

1 3
fa(9) = W Fa(t) = «/_t exp X

X
erfcl an/kz+—— |} dz
—bexp(bo) exp(b?t) erfc(bﬁ+ 2—;) |:a N +2«/K2i|}

(16)
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0.9 c?s~1 t00.145 cnfs~! and remains at this value at high-

4000
T (K) @, (GW/em?) er temperatures. The temperature coefficient of the density
has been taken from [5]. The influence of these dependencies
¢ on heat conduction will be discussed in Sect. 2.2. See Fig. 2.
3000
BP | "
2 Real and idealized heat conduction systems
M;m_ L2 In this section the consequences of the simplifications listed
7 before Sect. 1 for the evaluation 6ft, x) for real physical
1 systems will be estimated at least approximately.
1000 A B
2.1 Heat flow in one dimension
-0

3 J N : . A A focused laser beam entering the substrate irxthigection
——t(ps) will not be homogeneous in the andz directions. The en-

Fig.1. Temperature against time after applying a laser pulse to si- €9y ﬂux_ente”ng the substrateyat= 0 can be described by

icon. Temperature independent parameters: applied energy per aré@aGaussian curve:

(1-R¢:10 mJ’cmz; timen%onstant of the laser pulse:=1ps ther- ( 2 2)

mal diffusivity « = 0.145cnf/s, specific heatC = 0.71 JgK; density ye+z

0 = 2.32 g/cm; extinction coefficientr = 106 cm™L. Curve 1:x =0, curve ~ F(Y, 2) = F(0,0) exp| —2—5—| . (19)

2: x=05, curve 3:x=10nm curve 4: power of the laser pulse; right o

ordinate. MP: melting point90 K), BP: boiling point of silicon 2628 Since we are dealing with opaque materials with the thickness

of the heated material/& on the order ofLlO nmand since
o will be at least on the order gfm, the temperature gradi-

(F12+ F4 decays to zero with time much faster than does, \ - they andz directions are considerably smaller than

F1+ F3 and the error arising by using Simpson’s method Sthe gradient in the direction. Under these conditions we can

Iess,:isne;;f)utshé dependence of the constantn (14) on the neglect the heat flow in both theand thez directions. Then
y P gFt X, Y, Z) can be written:

physical parameters of the system must be calculated. F
t > 7 the integral ob overx is constant, since no further en- (yz+ 22)
ergy is supplied or lost according to the assumptions listedt, x, y, z) = (t, X, 0, 0) exp|:—2 5 ]
above before Sect. 1. The input fluence (= energy input per

area)(1— R)¢, calculated for the case of vanishing thermal
diffusivity (« — 0) is given by:

(20)

2.2 Temperature dependence of the parameters

[eeiyee)
_ t —t Let Px be any relevant parameter such as reflectivity, ab-
(1=R¢= CQ[/ A(z’) exp< T )exp(—ax) dtelx sorption coefficient, specific heat, or density. (For thermal
00

diffusivity see below.) AllPx have been assumed to be in-
(17) dependent of temperature in the treatment of Sect. 1. Unfor-
tunately, not many data are reported fa(T) but the few
known data do not indicate a dramatic variance ofRh&vith
temperature. Due to the high temperatures involved, however,

where R is the reflectivity,o is the density ¢/cm®), « the
absorption coefficientnm™1), t is the time constant of the
laser pulseffs), andC is the specific heatl(gK). (Under the ieB.cire i )
conditions at issue the specific h&ats neither at constant Lhrglenfgetcr;cz;l}‘;ir;ﬁ;emperature dependenci reingen
pressure nor at constant volume. However, the difference IS ¢ -2 ple data forP(T) are available, a good approxi-

only ma_rginal and may safely be neglected.) Sinc_e the tOt%ate calculation ofi(t, x) is not difficult. The computer pro-
energy input does not depenrgzon the value of17) is also o0 calculates for equidistant timgsand also equidistant
val'|d forx # 0. If ¢ is in mJ/cm* from (17) with the chosen valuesxm the temperaturedi m = 6(tn, Xm) + To, With To
units Ais given by: the ambient temperature. Starting with= 1 andm =1 and

10%a(1— R)¢ To.m = To one setsP(Th,m) = Pk(Th—1.m) into the program
A=——" "7 (18) and calculatedy m and this for all values oh andm. This

Cot requires only a trivial modification of the computer program.
.- : sing large numbens, the approximation will be good.
Combining (14), (15), (16) and (18) supplies the dependenclé . ! . ;
; This procedure will not work that simply with a thermal

of the temperature as a function bfand x under the re- ... .~ .
stricting conditions listed above. Figure 1 show x) as diffusivity « depending on temperature (and thereforexon

afunction oft (with x as a parameter). The data are calculate&mdt)' Then (1c) must be replaced by:

for silicon as the substrate under the conditions listed beforgg 320 dic(t, X) 90
Sect. 1. o =k(t, X)ﬁ + % i
The dependence of the thermal diffusivity and of the spe- Zt
cific heat of silicon on temperature has been obtained by +A<—) exp(—) exp(—ax) . (1d)
Shanks et al. [4]« decreases fron200K to 800 K from T
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T(K) 2.3 The form of the laser pulse

_CDL (MW/cm?)
The special pulse form

F 300
500 A

Fit)=A (%) exp<_7t> for t>0 (1b)
I 200

is a reasonable choice for picosecond laser pulses. The ab-
sorbed light energy at first excites electrons into higher energy
- 100 states that relax exponentially in time dissipating their excita-
tion energy into heat [6, 7]. Thus the effective time constant
7 in (1b) will be larger than the proper time constanptof
r o the laser pulse, if the energy relaxation times comparable
: : or even longer tham_ (e &~ 0.5 ps[7]). The heat inflow will
0 2 4 6 8 10 then follow a time law similar to (1b).

— s For laser pulses in the nanosecond range, (1b) might be

Fig. 2. Temperature against timeafter applying a laser pulse to silicon. g less useful approximation. The envelope of the series of

Applied energy per areal mycn; fime constantT of the laser pulse: ghort pulses constituting the ns-pulse in general has a form
1ps Curve 1, 2, and 3: average values in the temperature interval foaif‘ferent from (1b)' see [l]

the parameters have been used. Thermal diffusivity 0.4 cn?/s; spe-
cific heat C = 0.82 JgK; density o = 2.31 g/cm3; extinction coefficient

a=10x10%cm™ 1. Curve 4, 5, 6 dashed lines temperature depen- .
dence of« [4], and oC [4,5]: « = 3.1931 exp—0.004872 T+ 0.145; 2.4 The effect of phase changes on heat conduction

0oC =2174—1059/T — 1499(7T2. Other parameters as in curves 1 to 3.

Curves 1 and 4x =0, curves 2 and 5x =5, curves 3 and 6x=10nm  One might assume at first sight that the equations derived

curve 7: power of the laser pulse; right ordinate above would be applicable only up to the boiling point of
the material at issue. This, however, must not be true in the
picosecond time range. If the kinetics of evaporation and of

With silicon as substrate; does not vary with temperature melting is slow compared with the heating and heat flow pro-

above abouBOOK [4]. However, at lower laser power the cess, the system will behave like a superheated solid. The heat

temperature remains bel®@0 K, and the variation of with  conduction equation may then be applied to higher tempera-

temperature must be taken into account. An approximate estires than the boiling point.

mation is obtained as follows. As a rather good approximation  According to Knudsen [8] the rate of evaporation at tem-

400

300 -

the dependence 6ft, x) with x is given by: peratureT must be equal to the rate of deposition of atoms
from the gas at equilibrium vapour pressyp&T). The lat-
o(t, X) ~ 0(t, 0) exp(—aX) . (21)  ter rate can be calculated as the product of the concentration
o of the atoms in the gas phase and their mean velocity in the
Under these conditions: positivex direction. This together with the ideal gas law leads
0 to:
— = —0(t, Q) exp(—ax) and
gX oy = aev(Ps— P) (24)
0 ev— T —
52 =0 0)a? exp(—a) (22) V2rMRT
_ whereuey < 1 is the evaporation coefficientd, = 0.8 for sil-
Thus (1d) may be written: icon), R is the gas constant and the molecular (atomic)
) weight of the gas particlegs is the saturation pressure of the

90 9% t —t gas at the temperatuf® and p the actual pressure (that in
— =k—+ A - )exp| — ) exp(—ax) (1e) o ; ;
at X2 T T case of evaporation into vacuum is zerf), the flux of evap-

) oration, is given inmol/crés by (24). The heat flux due to
with evaporation (inV/cm?) is then:

I ,

%= K(T [1+ aé%@(t, 0) exg—ax)} ) (23) —Pev= jedlO(t, O)MC + AHe\] . (25)

. ) , . AHey is the molar enthalpy of evaporatio@;is the specif-
In Fig. 2,T(t, X) is shown for a low laser intensitd Myc?) ic heat, andi(t, 0) = T — To is the temperature increase on
with constant parameters averaged for the temperature int&fye syrface of the substrate (wilhthe ambient temperature).
val, and T(t, x) calculated using fitted experimental valuesThjs heat flux will now be compared with the flux due to heat

for the specific heat [4], the density [5], and the thermal dif-conquction. A reasonable estimate for this flux is given by
fusivity [4] as a function of temperature. The temperatureirst law of Fourier):

dependence of the absorption coefficiens not known and
« has been taken as a constant. —®HE = koC - gradT ~ koC(T — To)cx . (26)

It should be realized that (1e) and (23) are only approx-
imate. However, it is unlikely that the error thus introducedPressures at temperatures above the boiling point of the sub-
will be larger than that due to the uncertainty of experimentastrate may be calculated using the Clausius—Clapeyron equa-
data. tion. (The temperature dependenceddfley [3] is neglected.
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Table 2. Heat conduction and evaporation kinetics at silicon surfacesabove the boiling temperature of silicon fast melting is ob-

g?_ljl(ésel:‘? _eilaé)orat_ion c;ggicieﬁ%v = t0_.8;t_ therm;! _diftflusivlitg(i k= served within about ps
5 ) nsi =c. , extinction Iclentr = m - r ili H H
specifii: hZa(f =e0.s7;y§/g K; am%?ent té;pefatgr%cfzg;& [6(0) =9I'7 Y Wlth silicon the fluences(1 — R)émax ConSIStem Wl.th
298): AHey = 420 kJ mot 1 a maximum surface temperature 8500K are listed in
Table 3 as a function af. The data are calculated taking into
T p Jev Pey PuF Pev/PHE account the temperature dependence of the parameters (ther-
(K)  (atm) (mol/ecmPs) (Wj/em?)  (W/cm?) mal diffusivity, specific heat, and density: see Sect. 2.2). At

higher energy inputs withdrawal of energy by evaporation

2628  1.0000 013  61x10* 57x10° 11x107* cannot be neglected (see Table 4).
3000 10.8 1.32 63x10° 66x108 95x10°4

3500 120 135  66x10°  7.8x10° 85x1073 . o
4000 729 76.9  38x10" 9.0x10° 42x107* 2.5 Heat conduction and Stefan-Boltzmann radiation
The heat flux of a black body of temperatdreés given by:
The critical temperature and pressure for silicon have beepgg = 5.6 x 1071274 W/cn? (28)

estimated to b8 = 4920 Kand P = 1450 atm[9, 10].) In

Table 2 calculated energy fluxes due to evaporatiegg)(and ~ This heat flux (in the negativedirection) competes with the

those due to heat conductiofr) are compared. flux due to heat conduction (in the positixedirection) as
Table 2 demonstrates that for silicon up to ab8b00 K given by (26). WithTp <« Tsg=nF both heat fluxes are equal

evaporation may be neglected with respect to heat conduber:

tion. 5

A more difficult problem is posed for the melting pro- Tse=HF=5630y/koaC. (29)

cess. Here no direct calculation of the kinetics of melting is

available. Experimentally at temperatures considerably abo . o

3500K the timg.constant of melting has been found to b%570>(<)1K dlfs'B'SE QZSVC)EPYEStTﬁ?;TSIS(S]EE tneerglii)giﬁteu?o:m-

about1 psfor silicon [7]. However, at temperatures below pared with the heat fluxpye = 9.7 x 10EW/cr?. We can

the boiling point 2628 K) melting is probably a slow pro- S
cess compared with the rate of heat conduction. If that i§hUS safely neglect Stefan—Boltzmann radiation.

correct, then transfer from the condensed phase into the gas _ _
phase turns out to be sublimation of a strongly superhea®.6 Heat conduction and ablation of matter
ed solid. AHey in (25) must be replaced by the enthalpy of

plying (29) to silicon as the substrate we obt@ig-pr =

sublimationA Hsyps If energies higher than those indicated in Table 3 are irradiat-
ed ablation of silicon can no longer be neglected. To estimate
AHsub= AHey+ AHm, (27)  the amount of matter removed from a silicon surface by evap-

oration the fluxjey defined in (24) is integrated over time.
whereA Hp, is the enthalpy of melting4 Hm = 50 kymolfor ~ Thus the number of moles evaporated from a surfadsonf?
silicon). Taking this into accoumbe,/PHr is calculated to be  areais obtained. The thicknesgin nm) of silicon ablated by
0.013 at3500 Kand 0082 at4000 K evaporation is then calculated as:

In the case of high-energy nanosecond pulses, a term for .
the kinetics of the melting and evaporation processes hastobe 10'M [ .
added to (1). d= / ev dt

With ultrashort pulses~ 100 fg and with fluences above 0
a critical threshold of about00 mJcn? [11] it was found
that the diamond lattice of silicon becomes unstable; th
atoms are displaced by more thad from their equilibri-
um positions within less thaB00 fs A dense electron—hole

WhereM is the atomic weight and the density of the sub-
Strate. The amount of energyp lost by the probe due to
ablation is given by:

plasma is formed [7,11,12] and silicon assumes a metallic ) o0

character. The equilibration with the lattice occurs with atime, : .

constant of abous00 fs Then at very high temperatures far Pabl = M? f C(T = To) jevdt+ AHe"f Jevdt. (31)
0 0

Table 3. Fluencespmax leading toTmax= 3500 K as a function ofc. Sub-

strate: silicon
Table 4. Thicknessd of ablated silicon and energy lost by ablatipgy, with

T Half line width (1—R) ¢max Tmax = 4920 K
9 9 mJ/cn?
P9 P9 (my/enr) T Half line width  (1— R)¢ d babl
0.01 0.03 9.7 (P9 (P9 (my/cm?) (nm) (mycn?)
0.03 0.08 11
0.1 0.28 13 0.1 0.28 18 0.027 0.104
0.3 0.84 16 0.30 0.84 22 0.061 0.25
1 2.80 20 1 2.80 28 0.16 0.63

3 8.39 26 3 8.39 36 0.41 1.6
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4000 after the application of 1000 pulses to the same location of

the nickel probe no change of the surface was detectable [13].
+——BP This is in accordance with (30): fgr= 30 mJcn? and 1000
pulses the depth of ablated nickel is calculated to be only
0.03nm
2000 Increasing fluences above a second threshold fluence
(¢ = 85 mJcn? for Ni [14]) leads to temperatures above the
critical temperaturel; = 5700 Kfor nickel [10]) and the rate
of ablation will drastically increase. At these high tempera-
tures the change of liquid nickel towards supercritical nickel
0 gas will be very fast and heat conduction cannot remove the
energy fast enough. Due to thermal expansion and the finite
fluence [mJ/em?] velocity of sound the probe is under high pressure. So we ex-
Fig. 3. Ablation of nickel with pulse fluences below the threshold fluence PECt €xpulsion of that part of nickel that is heated above the
¢7. Measured ablation of nickel in relative unitsg(iare} [13]. Calculated  critical temperature. Under these conditions a reliable calcu-
ablation (rawn out curvi o =890g/cm’, C= O-j‘r‘ll Jgk R=0475,  |ation ofA(x, t) is no longer possible.
’élzsgé“Dc”g/ s, AHy =63kJg, «=125x10° cm™*, boiling point = At the lower thresholdZ0 mJcn?) evaporation from the
ashed curve Tmax= maximum temperature of surface as func- X . .
tion of fluence surface, and at the higher threshoBb(nJcnv) ejection
from the bulk of nickel, begins to be observable.

«— MP

In Table 4 the amount of evaporated silicon in termsdof Acknowledgement&he author wishes to thank Prof G. Marowsky for use-
andgap are listed as a function of the half line width of the ful discussions.

laser pulse under conditions that the maximum temperature is

4920 K (the critical temperature of silicon [9]). As in Table 3

the data are calculated taking into account the temperature dg€ferences

pendence of the parameters. (The influence of the temperatur

dependence of the parameters on calculated valudsaafi T. 2 Ready: J. Appl. PhyS6 462 (1965)

2. J.F. ReadyEffects of High-Power Laser Radiatig@\cademic Press,

¢aplis rather strong. Calculatirdjandgap assuming constant New York 1971)
values ofi, ¢, andC leads to values smaller than the data of 3. D. Bauerle:Laser Processing and Chemistry 2.E8pringer, Heidel-
Table 4 by about a factor of 10.) berg 1996)

Using a laser ionization time-of-flight mass spectrometer * Téquls%Z%nl((lsée%)D' Maycack, P.M. Sidles, G.C. Danielson: Phys. Rev.

P_reuss et al. [13] observed after irradiation of a nickel probe 5. International Critical Tables Vol.1; page 104, (McGraw-Hill, New

with 0.5 pslaser pulsesX(= 248 nn) that ablation already York 1933)

occurs atp = 20 mJcn? considerably below the threshold 6. K. Mitra, S. Kumar, A. Vedavarz: J. Appl. Phy80, 675 (1996)

fluencegpt =85 m\ycmZ [14]. In Fig. 3 calculated values for 7. I£|4\é\é}<(lgggw) G.D. Aumiller, C.H. Brito-Cruz: Phys. Rev. Let0,

ak_)latlon in terms 0bapl Using (31) are shown and comp_ared 8. H. Hertz: Ann. Physik (Leipzigl7, 177 (1882):

with experimental values [13]. The latter are only available ~ \ nudsen: Ann. Physik (Leipzig)2, 697 (1915)

on a relative scale. Therefore the experimental data have been. Gmelins Handbuch der Anorganischen Chemie; Silicium Teil B, Sys-

scaled to match the calculated ones. tem 15, page 62 (Verlag Chemie, Weinheim 1959)
Notwithstanding this scaling, both calculated and experi-19- E-\F/“fstﬂ;skfog 52?’1- %Ocmﬁﬁﬁa%%%“? Rev. L1 900 (1983)

mental data demonstrate the existence of a lower thresholtl,” & Stampfli, K.H. Bennemann: Appl. ghys_eg' 191 (1995)

of 20 mJcn for measurable evaporation of nickel according 13 s, Preuss, E. Matthias, M. Stuke: Appl. Phys5@\ 79 (1994)

to (31). The amount of evaporated nickel is very small. Eveni4. S. Preuss, A. Demchuk, M. Stuke: Appl. Phys6% 33 (1995)



