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Abstract. Heat conduction after the application of a short
laser pulse on opaque matter is calculated assuming simpli-
fying conditions. The effect of the simplifications on real
systems is discussed. It is found that Fourier’s law may rea-
sonably be applied considerably above the temperature of
vaporization of the substrate. Calculated and experimental ab-
lation at nickel surfaces using fluences below threshold are
compared.

PACS: 65; 81.60

In laser processing technology the problem of energy dissipa-
tion is of paramount importance [1–3]. When working with
short laser pulses on matter with high extinction coefficients
and high thermal diffusivity (metals and semiconductors) heat
conduction cannot be neglected even when the picosecond
laser pulse has not yet decayed to zero. In the next section
a simplified model for heat conduction under these conditions
will be derived. A closed solution of Fourier’s differential
equation will be presented. The simplifying assumptions are:
1. Heat flow will be understood to be restricted to one dimen-
sion.
2. The physical parameters (thermal diffusivity, density, ab-
sorption coefficient, specific heat, reflectivity) will be as-
sumed to be independent of temperature.
3. The form of the laser pulse is given by (1b) below.
4. The effect of the enthalpy of phase changes is neglected.
5. Only heat conduction is assumed to be effective in energy
transport. Stefan–Boltzmann radiation is neglected
6. Also ablation of matter at very high temperatures is not
considered.

Section 2 will discuss the effect of these simplifications
when applying the solution of the model to real systems.

1 Fourier’s equation

For an irradiated substrate with an optical extinction coeffi-
cientα Fourier’s equation in one dimension reads:

∂θ

∂t
= κ

∂2θ

∂x2 + F(t) exp(−αx) (1)

whereθ(x, t) = T(x, t)− T(x, 0) and F(t) is the pulse form
of the laser flash.κ is the thermal diffusivity. The initial and
boundary conditions are:

θ(x, 0) = 0 and θ(∞, t) = 0 . (1a)

The problem, that according to (1) with large negative values
of x the energy input diverges, will be solved below by using
appropriate integration constants.

For short picosecond pulses a pulse formF(t) is assumed:

F(t) = A

(
t

τ

)
exp

(−t

τ

)
. (1b)

(The half-width of this pulse amounts to 2.795· τ.) Then dif-
ferential equation (1) reads:

∂θ

∂t
= κ

∂2θ

∂x2 + A

(
t

τ

)
exp

(−t

τ

)
exp(−αx) . (1c)

Applying a Laplace transformation on the partial differential
equation (1c) leads to the ordinary differential equation:

d2Θ

dx2 −k2Θ = − Aτ exp(−αx)

κ(1+ τs)2 (2)

with

k2 = s

κ
. (2a)

ForΘ(x, s), the Laplace transform ofθ(x, t), the solution is:

Θ = C1 exp(−kx)+C2 exp(kx)+Θp (3)

where the first two terms are the general and the last term is
the particular integral.s is the Laplace parameter andCi are
the integration constants to be determined using the boundary
and initial conditions. Since for large values ofx, θ(x, t) = 0
(and thereforeΘ(x, s) = 0), C2 must be zero.C1 is only
a constant with respect tox but may depend on the parameter
s. C1 will be determined after the particular integralΘp has
been calculated. With:

B = −Aτ

κ(1+ τs)2 (4)
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the solution forΘp is:

Θp = B exp(−kx)
∫

exp(2kx)

[∫
exp(−kx)

exp(−αx) dx

]
dx

= B exp(−αx)

k2−α2 = B exp(−αx)

(k−α)(k+α)
(5)

and

Θ = C1(s) exp(−kx)+ B exp(−αx)

(k−α)(k+α)
. (6)

After back transformation the second term on the right-hand
side of (6) diverges for larget [see Table 1:f0(s)]. The physi-
cal reason is the heat flow from the infinite heat reservoir with
x < 0. By a suitable choice ofC1(s) the heat flow fromx < 0
can be made to vanish and the divergence of (6) at larget
disappears. This is achieved by:

C1(s) = Bα

(k+α)k2 . (7)

Resubstitution ofC1(s) from (7) as well asB andk from (4)
and (2a) into (6) result in:

Θ = −aA

(s+a)2

[
bexp

(−c
√

s
)

s
(√

s+b
) + exp

(−αx
)(√

s−b
) (√

s+b
)]

(8)

with

a = 1

τ
, b = α

√
κ , and c = x√

κ
. (9)

To avoid heat flow from the region withx < 0 the gradient
of Θ at x = 0 is set equal to zero. (If atx = 0 no heat flows
from x < 0 but does so in the positivex direction, the gradient

Table 1. Laplace transform pairs

f(s) F(t)

f0(s) = 1

s−b2
F0(t) = exp

(
b2t

)
f1(s) = 1

s+a2
F1(t) = t exp(−at)

f2(s) = 1

s
F2(t) = 1

f12(s) = f1(s) f2(s) F12(t) = F1(t)∗ F2(t) = 1− (at+1) exp(−at)

a2

f3(s) = 1√
s
(√

s+b
) F3(t) = exp

(
b2t

)
erfc

(
b
√

t
)

f4(s) = exp
(−c

√
s
)

√
s+b

F4(t) = 1√
πt

exp

(
−c2

4t

)
−bexp(bc) exp

(
b2t

)
erfc

(
b
√

t + c

2
√

t

)

becomes zero.)(
dΘ

dx

)
x=0

= −aA

(s+a)2

[
−α√

s
(√

s+b
)

− α(√
s−b

) (√
s+b

)]
= 0 . (10)

With (10) the factor responsible for the divergence is elimi-
nated:

1√
s−b

= − 1√
s

(11)

and

Θ = Aa

(s+a)2

[
exp(−αx)√
s
(√

s+b
) − bexp

(−c
√

s
)

s
(√

s+b
) ]

. (12)

For these functionsf(s) the Laplace retransformations are not
available from the tables. However, convolution allows us to
retransform a product, provided the retransforms of the fac-
tors Fi (t) are known. The convolution theorem reads:

L−1 fi (s) fk(s) =
t∫

0

Fi (t − z)Fk(z) dz≡ Fi ∗ Fk (13)

whereL−1 is the inverse Laplace operator. The result is then:

θ(t, x) = A
[
F1 ∗ F3 exp(−αx)−bF12∗ F4

]
. (14)

Table 1 contains the relevant transform pairs.
The convolutionF1 ∗ F3 may be executed by partial inte-

gration of the convolution integral and using a series develop-
ment that is more precise and faster than an integration using
Simpson’s method. We thus obtain, after resubstitutinga, b,
andc [see (9)]:

F1 ∗ F3 = τ2(
1+α2κτ

)2 exp
(
α2κt

)
erfc

(
α
√

κt
)

+ τ exp(−t/τ)

1+α2κτ

[
τα

√
κt

(1+α2κτ)
√

π

∞∑
i=0

2 (t/τ)i

i !(2i +1)

− τ

1+α2κτ
− t + αt

√
κt√

π

∞∑
i=0

4 (t/τ)i

i !(2i +1)(2i +3)

]
.

(15)

The convolutionF12∗ F4 will be performed using Simpson’s
rule:

F12∗ F4 = τ2

t∫
0

{
1−

[
(t − z)

τ
+1

]
exp

[
− (t − z)

τ

]}

×
{

exp
(−x2/4κz

)
√

πz
−α

√
κ exp

(
αx

)
exp

(
α2κz

)
erfc

[
α
√

κz+ x

2
√

κz

]}
dz .

(16)
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Fig. 1. Temperature against timet after applying a laser pulse to sil-
icon. Temperature independent parameters: applied energy per area
(1− R) φ : 10 mJ/cm2; time constant of the laser pulse:τ = 1 ps; ther-
mal diffusivity κ = 0.145 cm2/s; specific heatC = 0.71 J/gK; density
% = 2.32 g/cm3; extinction coefficientα = 106 cm−1. Curve 1:x = 0, curve
2: x = 5, curve 3: x = 10 nm, curve 4: power of the laser pulse; right
ordinate. MP: melting point (1690 K), BP: boiling point of silicon (2628 K)

(F12∗ F4 decays to zero with time much faster than does
F1 ∗ F3 and the error arising by using Simpson’s method is
less serious.)

Finally the dependence of the constantA in (14) on the
physical parameters of the system must be calculated. For
t � τ the integral ofθ overx is constant, since no further en-
ergy is supplied or lost according to the assumptions listed
above before Sect. 1. The input fluence (= energy input per
area)(1− R)φ, calculated for the case of vanishing thermal
diffusivity (κ → 0) is given by:

(1− R)φ = C%

∞∫
0

∞∫
0

A

(
t

τ

)
exp

(−t

τ

)
exp(−αx)dt dx

(17)

where R is the reflectivity,% is the density (g/cm3), α the
absorption coefficient (nm−1), τ is the time constant of the
laser pulse (ps), andC is the specific heat (J/gK). (Under the
conditions at issue the specific heatC is neither at constant
pressure nor at constant volume. However, the difference is
only marginal and may safely be neglected.) Since the total
energy input does not depend on the value ofκ, (17) is also
valid for κ 6= 0. If φ is in mJ/cm2 from (17) with the chosen
units A is given by:

A = 104α(1− R)φ

C%τ
. (18)

Combining (14), (15), (16) and (18) supplies the dependence
of the temperature as a function oft and x under the re-
stricting conditions listed above. Figure 1 showsθ(t, x) as
a function oft (with x as a parameter). The data are calculated
for silicon as the substrate under the conditions listed before
Sect. 1.

The dependence of the thermal diffusivity and of the spe-
cific heat of silicon on temperature has been obtained by
Shanks et al. [4].κ decreases from200 K to 800 K from

0.9 cm2s−1 to 0.145 cm2s−1 and remains at this value at high-
er temperatures. The temperature coefficient of the density
has been taken from [5]. The influence of these dependencies
on heat conduction will be discussed in Sect. 2.2. See Fig. 2.

2 Real and idealized heat conduction systems

In this section the consequences of the simplifications listed
before Sect. 1 for the evaluation ofθ(t, x) for real physical
systems will be estimated at least approximately.

2.1 Heat flow in one dimension

A focused laser beam entering the substrate in thex direction
will not be homogeneous in they andz directions. The en-
ergy flux entering the substrate atx = 0 can be described by
a Gaussian curve:

F(y, z) = F(0, 0) exp

[
−2

(
y2 + z2

)
σ2

]
. (19)

Since we are dealing with opaque materials with the thickness
of the heated material 1/α on the order of10 nmand since
σ will be at least on the order ofµm, the temperature gradi-
ents in they andz directions are considerably smaller than
the gradient in thex direction. Under these conditions we can
neglect the heat flow in both they and thez directions. Then
θ(t, x, y, z) can be written:

θ(t, x, y, z) = θ(t, x, 0, 0) exp

[
−2

(
y2 + z2

)
σ2

]
. (20)

2.2 Temperature dependence of the parameters

Let Pk be any relevant parameter such as reflectivity, ab-
sorption coefficient, specific heat, or density. (For thermal
diffusivity see below.) All Pk have been assumed to be in-
dependent of temperature in the treatment of Sect. 1. Unfor-
tunately, not many data are reported forPk(T) but the few
known data do not indicate a dramatic variance of thePk with
temperature. Due to the high temperatures involved, however,
the effects of the temperature dependencies ofPk are in gen-
eral not negligible.

If reliable data forPk(T) are available, a good approxi-
mate calculation ofθ(t, x) is not difficult. The computer pro-
gram calculates for equidistant timestn and also equidistant
valuesxm the temperaturesTn,m = θ(tn, xm)+ T0, with T0
the ambient temperature. Starting withn = 1 andm = 1 and
T0,m = T0 one setsPk(Tn,m) = Pk(Tn−1,m) into the program
and calculatesTn,m and this for all values ofn andm. This
requires only a trivial modification of the computer program.
Using large numbersn, the approximation will be good.

This procedure will not work that simply with a thermal
diffusivity κ depending on temperature (and therefore onx
andt). Then (1c) must be replaced by:

∂θ

∂t
=κ(t, x)

∂2θ

∂x2 + ∂κ(t, x)

∂x

∂θ

∂x

+ A

(
t

τ

)
exp

(−t

τ

)
exp(−αx) . (1d)
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Fig. 2. Temperature against timet after applying a laser pulse to silicon.
Applied energy per area:1 mJ/cm2; time constantT of the laser pulse:
1 ps. Curve 1, 2, and 3: average values in the temperature interval for
the parameters have been used. Thermal diffusivityκ = 0.4 cm2/s; spe-
cific heat C = 0.82 J/gK; density % = 2.31 g/cm3; extinction coefficient
α = 1.0×106 cm−1. Curve 4, 5, 6 (dashed lines): temperature depen-
dence ofκ [4], and %C [4, 5]: κ = 3.1931·exp(−0.004872· T)+ 0.145;
%C = 2.174−105.9/T −14990/T2. Other parameters as in curves 1 to 3.
Curves 1 and 4:x = 0, curves 2 and 5:x = 5, curves 3 and 6:x = 10 nm;
curve 7: power of the laser pulse; right ordinate

With silicon as substrate,κ does not vary with temperature
above about800 K [4]. However, at lower laser power the
temperature remains below800 K, and the variation ofκ with
temperature must be taken into account. An approximate esti-
mation is obtained as follows. As a rather good approximation
the dependence ofθ(t, x) with x is given by:

θ(t, x) ≈ θ(t, 0) exp(−αx) . (21)

Under these conditions:

∂θ

∂x
= − θ(t, 0)α exp(−αx) and

∂2θ

∂x2 =θ(t, 0)α2 exp(−α) (22)

Thus (1d) may be written:

∂θ

∂t
= κ̃

∂2θ

∂x2 + A

(
t

τ

)
exp

(−t

τ

)
exp(−αx) (1e)

with

κ̃ = κ(T)

[
1+ ∂ ln κ

∂T
θ(t, 0) exp(−αx)

]
. (23)

In Fig. 2,T(t, x) is shown for a low laser intensity (1 mJ/cm2)
with constant parameters averaged for the temperature inter-
val, and T(t, x) calculated using fitted experimental values
for the specific heat [4], the density [5], and the thermal dif-
fusivity [4] as a function of temperature. The temperature
dependence of the absorption coefficientα is not known and
α has been taken as a constant.

It should be realized that (1e) and (23) are only approx-
imate. However, it is unlikely that the error thus introduced
will be larger than that due to the uncertainty of experimental
data.

2.3 The form of the laser pulse

The special pulse form

F(t) = A

(
t

τ

)
exp

(−t

τ

)
for t > 0 (1b)

is a reasonable choice for picosecond laser pulses. The ab-
sorbed light energy at first excites electrons into higher energy
states that relax exponentially in time dissipating their excita-
tion energy into heat [6, 7]. Thus the effective time constant
τ in (1b) will be larger than the proper time constantτL of
the laser pulse, if the energy relaxation timeτe is comparable
or even longer thanτL (τe ≈ 0.5 ps[7]). The heat inflow will
then follow a time law similar to (1b).

For laser pulses in the nanosecond range, (1b) might be
a less useful approximation. The envelope of the series of
short pulses constituting the ns-pulse in general has a form
different from (1b); see [1].

2.4 The effect of phase changes on heat conduction

One might assume at first sight that the equations derived
above would be applicable only up to the boiling point of
the material at issue. This, however, must not be true in the
picosecond time range. If the kinetics of evaporation and of
melting is slow compared with the heating and heat flow pro-
cess, the system will behave like a superheated solid. The heat
conduction equation may then be applied to higher tempera-
tures than the boiling point.

According to Knudsen [8] the rate of evaporation at tem-
peratureT must be equal to the rate of deposition of atoms
from the gas at equilibrium vapour pressureps(T). The lat-
ter rate can be calculated as the product of the concentration
of the atoms in the gas phase and their mean velocity in the
positivex direction. This together with the ideal gas law leads
to:

jev = αev(ps− p)√
2πMRT

(24)

whereαev ≤ 1 is the evaporation coefficient (αev = 0.8 for sil-
icon), R is the gas constant andM the molecular (atomic)
weight of the gas particles,ps is the saturation pressure of the
gas at the temperatureT and p the actual pressure (that in
case of evaporation into vacuum is zero).jev, the flux of evap-
oration, is given inmol/cm2s by (24). The heat flux due to
evaporation (inW/cm2) is then:

−Φev = jev[θ(t, 0)MC+∆Hev] . (25)

∆Hev is the molar enthalpy of evaporation;C is the specif-
ic heat, andθ(t, 0) = T − T0 is the temperature increase on
the surface of the substrate (withT0 the ambient temperature).
This heat flux will now be compared with the flux due to heat
conduction. A reasonable estimate for this flux is given by
(first law of Fourier):

−ΦHF = κ%C ·gradT ≈ κ%C(T − T0)α . (26)

Pressures at temperatures above the boiling point of the sub-
strate may be calculated using the Clausius–Clapeyron equa-
tion. (The temperature dependence of∆Hev [3] is neglected.
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Table 2. Heat conduction and evaporation kinetics at silicon surfaces:
Knudsen evaporation coefficientαev = 0.8; thermal diffusivity κ =
0.145 cm2s−1; density% = 2.33 g cm−3; extinction coefficientα = 106 cm−1;
specific heatC = 0.72 J/g K; ambient temperatureT0 = 298 K; [θ(0) = T −
298]; ∆Hev = 420 kJ mol−1

T p jev Φev ΦHF Φev/ΦHF

(K) (atm) (mol/cm2s) (W/cm2) (W/cm2)

2628 1.0000 0.13 6.1×104 5.7×108 1.1×10−4

3000 10.8 1.32 6.3×105 6.6×108 9.5×10−4

3500 120 13.5 6.6×106 7.8×108 8.5×10−3

4000 729 76.9 3.8×104 9.0×108 4.2×10−4

The critical temperature and pressure for silicon have been
estimated to beTc = 4920 K and Pc = 1450 atm[9, 10].) In
Table 2 calculated energy fluxes due to evaporation (Φev) and
those due to heat conduction (ΦHF) are compared.

Table 2 demonstrates that for silicon up to about3500 K
evaporation may be neglected with respect to heat conduc-
tion.

A more difficult problem is posed for the melting pro-
cess. Here no direct calculation of the kinetics of melting is
available. Experimentally at temperatures considerably above
3500 K the time constant of melting has been found to be
about1 ps for silicon [7]. However, at temperatures below
the boiling point (2628 K) melting is probably a slow pro-
cess compared with the rate of heat conduction. If that is
correct, then transfer from the condensed phase into the gas
phase turns out to be sublimation of a strongly superheat-
ed solid.∆Hev in (25) must be replaced by the enthalpy of
sublimation∆Hsub:

∆Hsub= ∆Hev+∆Hm , (27)

where∆Hm is the enthalpy of melting (∆Hm = 50 kJ/mol for
silicon). Taking this into accountΦev/ΦHF is calculated to be
0.013 at3500 Kand 0.082 at4000 K.

In the case of high-energy nanosecond pulses, a term for
the kinetics of the melting and evaporation processes has to be
added to (1).

With ultrashort pulses (∼ 100 fs) and with fluences above
a critical threshold of about100 mJ/cm2 [11] it was found
that the diamond lattice of silicon becomes unstable; the
atoms are displaced by more than1 Å from their equilibri-
um positions within less than200 fs. A dense electron–hole
plasma is formed [7, 11, 12] and silicon assumes a metallic
character. The equilibration with the lattice occurs with a time
constant of about500 fs. Then at very high temperatures far

Table 3. Fluencesφmax leading toTmax = 3500 K as a function ofτ . Sub-
strate: silicon

τ Half line width (1− R) φmax

(ps) (ps) (mJ/cm2)

0.01 0.03 9.7
0.03 0.08 11
0.1 0.28 13
0.3 0.84 16

1 2.80 20
3 8.39 26

above the boiling temperature of silicon fast melting is ob-
served within about1 ps.

With silicon the fluences(1− R)φmax consistent with
a maximum surface temperature of3500 K are listed in
Table 3 as a function ofτ. The data are calculated taking into
account the temperature dependence of the parameters (ther-
mal diffusivity, specific heat, and density: see Sect. 2.2). At
higher energy inputs withdrawal of energy by evaporation
cannot be neglected (see Table 4).

2.5 Heat conduction and Stefan-Boltzmann radiation

The heat flux of a black body of temperatureT is given by:

ΦSB = 5.6×10−12T4 W/cm2 (28)

This heat flux (in the negativex direction) competes with the
flux due to heat conduction (in the positivex direction) as
given by (26). WithT0 � TSB=HF both heat fluxes are equal
for:

TSB=HF= 56303
√

κ%αC . (29)

Applying (29) to silicon as the substrate we obtainTSB=HF =
3.7×105 K. At the highest permissible temperatureT =
3500 K, ΦSB = 840 W/cm2. This is quite negligible com-
pared with the heat fluxΦHF = 9.7×108 W/cm2. We can
thus safely neglect Stefan–Boltzmann radiation.

2.6 Heat conduction and ablation of matter

If energies higher than those indicated in Table 3 are irradiat-
ed ablation of silicon can no longer be neglected. To estimate
the amount of matter removed from a silicon surface by evap-
oration the flux jev defined in (24) is integrated over time.
Thus the number of moles evaporated from a surface of1 cm2

area is obtained. The thicknessd (in nm) of silicon ablated by
evaporation is then calculated as:

d = 107M

%

∞∫
0

jev dt (30)

whereM is the atomic weight and% the density of the sub-
strate. The amount of energyφabl lost by the probe due to
ablation is given by:

φabl = Mϑ

∞∫
0

C(T − T0) jev dt +∆Hev

∞∫
0

jev dt . (31)

Table 4.Thicknessd of ablated silicon and energy lost by ablationφabl with
Tmax = 4920 K

τ Half line width (1− R)φ d φabl

(ps) (ps) (mJ/cm2) (nm) (mJ/cm2)

0.1 0.28 18 0.027 0.104
0.30 0.84 22 0.061 0.25

1 2.80 28 0.16 0.63
3 8.39 36 0.41 1.6
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Fig. 3. Ablation of nickel with pulse fluences below the threshold fluence
φT. Measured ablation of nickel in relative units (squares) [13]. Calculated
ablation (drawn out curve). % = 8.90 g/cm3, C = 0.44 J/gk, R = 0.475,
κ = 0.24 cm2/s, ∆Hv = 6.3 kJ/g, α = 1.25×106 cm−1, boiling point =
3187 K. Dashed curve: Tmax = maximum temperature of surface as func-
tion of fluence

In Table 4 the amount of evaporated silicon in terms ofd
andφabl are listed as a function of the half line width of the
laser pulse under conditions that the maximum temperature is
4920 K(the critical temperature of silicon [9]). As in Table 3
the data are calculated taking into account the temperature de-
pendence of the parameters. (The influence of the temperature
dependence of the parameters on calculated values ofd and
φabl is rather strong. Calculatingd andφabl assuming constant
values ofκ, %, andC leads to values smaller than the data of
Table 4 by about a factor of 10.)

Using a laser ionization time-of-flight mass spectrometer
Preuss et al. [13] observed after irradiation of a nickel probe
with 0.5 ps laser pulses (λ = 248 nm) that ablation already
occurs atφ = 20 mJ/cm2 considerably below the threshold
fluenceφT = 85 mJ/cm2 [14]. In Fig. 3 calculated values for
ablation in terms ofφabl using (31) are shown and compared
with experimental values [13]. The latter are only available
on a relative scale. Therefore the experimental data have been
scaled to match the calculated ones.

Notwithstanding this scaling, both calculated and experi-
mental data demonstrate the existence of a lower threshold
of 20 mJ/cm2 for measurable evaporation of nickel according
to (31). The amount of evaporated nickel is very small. Even

after the application of 1000 pulses to the same location of
the nickel probe no change of the surface was detectable [13].
This is in accordance with (30): forφ = 30 mJ/cm2 and 1000
pulses the depth of ablated nickel is calculated to be only
0.03 nm.

Increasing fluences above a second threshold fluence
(φT = 85 mJ/cm2 for Ni [14]) leads to temperatures above the
critical temperature (Tc = 5700 Kfor nickel [10]) and the rate
of ablation will drastically increase. At these high tempera-
tures the change of liquid nickel towards supercritical nickel
gas will be very fast and heat conduction cannot remove the
energy fast enough. Due to thermal expansion and the finite
velocity of sound the probe is under high pressure. So we ex-
pect expulsion of that part of nickel that is heated above the
critical temperature. Under these conditions a reliable calcu-
lation ofθ(x, t) is no longer possible.

At the lower threshold (20 mJ/cm2) evaporation from the
surface, and at the higher threshold (85 mJ/cm2) ejection
from the bulk of nickel, begins to be observable.

Acknowledgements.The author wishes to thank Prof G. Marowsky for use-
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