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Abstract. Ultrasonic resonators—consisting of the liquid sample, enclosed by two
planar piezoelectric transducer plates—permit a direct and accurate determination
of liquid sound velocities ¢, at kilohertz and megahertz frequencies. Such
plate—liquid—plate (PLP) resonators offer a resolution Ac, /¢, < 10~2, which is
important for analytical work in chemistry, bio- and physico-chemistry and for some
technical applications.

A simple one-dimensional resonator model is derived which permits calculation
of the spectrum of the longitudinal (nonharmonic) eigenfrequencies f,
(n=1,2,3,4...) as a function of liquid and resonator parameters. This model
obtains the peak f, shift by variation of liquid velocity ¢, and density p, as well for
plane wave propagation; the effect from variations in p, has been neglected in
most ultrasonic studies so far.

Caused by a frequency-dependent phase shift for sound reflection at both
liquid/transducer interfaces, the differential quotients df,/dc, and df,/dp, of the
‘real’ resonator deviate from those of an ‘ideal’ PLP resonator with perfect, ‘hard’
reflection (reflection factor =1) and harmonic overtones nf, (f, is the liquid
fundamental frequeny; one half liquid wavelength A, /2 equals transducer
separation x).

The figures show typical acoustic impedance and admittance spectra, which
are calculated for a model configuration; they illustrate features of the harmonic
numbers in the liquid cavity and longitudinal mode counting. Equations are given
for the dimensionless, normalized differential quotients df,/dc, - ¢, /f, and
df,/dp. - p./f,. Plots demonstrate systematic aberrations from ‘ideal’ resonator
behaviour, which can affect high-precision sound velocity measurements.

1. Introduction mined by nonlinear regression, which also yields the spe-
cific acoustic impedance ratigy /zr = (prc)/(prer) (o
Ultrasonic PLP resonators, consisting of two air-backed, is the density) for longitudinal, plane wave propagation in
planar piezoelectric transducers and the enclosed liquidthe liquid (L) and the transducer medium (X:cut quartz
sample (volume~0.1-10 ml), are a valuable tool for the or Y-cut lithium niobate in most devices).
determination of liquid sound absorption and velocity in the If the sound beam diametdy exceeds the wavelength
0.1 to 100 MHz range (Eggers 1967/68, 1992, 1994, Eg- A, (D > 501.), one-dimensional, plane wavequations
gers and Funck 1973, Eggessal 1994, Eggers and Kaatze describe the performance of such PLP resonators to a
1996, Kaatzeet al 1987, Labhardt and Schwarz 1976, Sar- very good approximation (Eggers 1992). Piezoelectric
vazyan 1982, Sarvazyan and Chalikian 1991). Resonatorcoupling in the transducer material, given by the
eigenfrequenciey, can be obtained with high resolution, electromechanical coupling coefficieit (Kino 1987),
particularly in low-loss liquids, by means of amplitude, affects the eigenfrequencies, including the overtones, of
phase, phase slope or group delay time- —dg/dw (¢ is the transducer plates (One¢al 1963). The piezoelectric
the phasey the angular frequency) measurements. From a effect can be taken into account by introducieffective
series off, values the liquid column fundamental frequency eigenfrequenciesr,,, but it causes loading of the cavity
fL = c/2x and—with the liquid pathlength or transducer due to electromechanical energy coupling, particularly at
separationt known—the sound velocity; can be deter-  the transducer fundamental and overtones.
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For applications in ultrasonigelocimetry (Sarvazyan
1982, 1991) it is desirable to know the influence of liquid
velocity ¢; and densityp;, and of their changes on the
eigenfrequenciey, (n = 1,2, 3,...) quantitatively. This
dependence can be obtained from the derivativggadt;
and df,/dpr of a characteristic trigonometric equation
F(fu, fr, x, cL, pL, ¢, pr) = 0, which permits
determination of the fundamental frequency of the liquid
column f;, and of thef, spectrum (Eggers 1967/68, 1992,
Eggers and Richmann 1993).

2. Acoustic resonator
eigenfrequencies—one-dimensional model

The characteristic acousticehpedanceequations for PLP
resonators relatg;, to the sample parametets, o., fi
and to the corresponding piezotransducer parameters
or and fr (fundamental frequency; plate thickness equals
Ar/2). Usually the compressional waves in the liquid
cavity undergo nearly ‘hard’ reflection due to the higher
specific impedance; > z; of the transducers, except
at the fundamenta)f; and the overtonegr,,, where the
wave ‘sees’ the low backing (air!) impedance. Usually the
region nearfr is not employed for velocity and absorption

measurements, because enhanced electromechanical energy

coupling in the transducers—stronger in LiNpGhan
in quartz—decreases the cavity, in addition to liquid
absorption. It is advisable to refer the nonharmorjc

It should be noted that the assignment of odd and even

in equations (2) and (&) is different from that in some

earlier publications, apparently erroneous. Both equations

can be combined in one equation, valid for odd and even
Jn

n as well
Z; = —iz; cot (I
=— —n)|.
t o 2\ fL

Equations (1) and (& lead to a characteristic equation
Zr = —Z;, which determines the series ¢f for a one-
dimensional plane wave PLP resonator

ﬁ) =2ZzL Cot[z (ﬁ —
Jr 2\ fL
For certain applications peak frequencies closefg2,
3fr/2, 5fr/2 etc, with the transducer thickness being an
odd multiple ofAr /4, are of particular interest, because the
low air backing impedance of the transducer is inverted by a
‘guarter-wavelength-transformation’, resulting in ‘infinite’
impedance behaviour and hard reflection between liquid and
transducers.

Equations (1) and (@ yield the corresponding acoustic

admittances )
i
AT = —— Cot(ﬂﬁ)
T Jr

E

(2¢)

zr tan (n (3

(4)

®)

series of the PLP resonator and its harmonic numbersyegyiting in a characteristic equation, which is equivalent

n to the harmonic spectrumf; of an ‘ideal’ resonator
with perfect reflection { = 1). The harmonic number
n =1,234... of such resonators is approximately the
number of half-wavelengthg; /2 in the liquid standing
wave field: n ~ 2x/A,. The impulse balance of the total

vibrating system is established by the mass of the cavity Here the cases

to equation (3)

ceo(n ) =53 (5 )]

—cot|n~ )= —tan| - [ = — . 6

ir <fT ZL 2\ fL " ©)
= 1 andn = 2 cover all odd and

vessel and frame plus the affixed transducers, this being€ven longitudinal modes. The anharmonicity of tffie

large compared to the liquid mass.
In consequence of resonator symmetry, oscillational

spectrum in the frequency range 2-10 MHz is illustrated
in figure 1 forimpedanceand in figure 2 foradmittance

modes of the compound PLP system have either a particledepicting the terms of equations (1) and{2nd (4) and

velocity extremum and a pressure node ¢dd) or a
particle velocity node and a pressure extremumeyen)

in the centre planeof the resonator. Therefore it is
sufficient to consider one half of the resonator, consisting
of onetransducer andhalf of the liquid column (assumed

(5) respectively. The intersections efZ; (conjugate
complex) withZ; and—A (conjugate complex) wittd 7
determine thef, spectrum. It is obvious thampedance
relations are preferable at and near the odd transducer
harmonicsfr, 3fr, 5fr etc—the even harmonics g} are

impedance zeran(odd) or by infinite impedance:(even).
The acoustic impedancg (per unit area) is the complex
ratio of sound pressure to particle velocity at a point (or

fr/2, 3fr/2, 5fr/2, etc. In figure 2 the intersections of
—A; with the abscissa define the harmonicsfpf i.e. the
spectrum of an ‘ideal’ resonator with infinitely hargy(=

plane) in the sound field (Gooberman 1968). Resonance®®) reflectors. It appears reasonable to refer the resonances
occurs for reactance compensation at the liquid—transducerof @ ‘real’ resonator to the nearby harmonigg. In order
interface or the equality and opposite sign for the imaginary t0 illustrate mode numbering aroun, figure 3 shows an

parts of transducer impedanég: and liquid impedance
Z; (pathlengthx/2), i.e. ImZ7y) = —Im(Z.) (Eggers
1967/68). For a plane wave field:

ZT = iZT tan (ﬂ%) (1)
7 [\, [tan\ (= I n odd (2a)
L=\ =\ eot/\ 2 7, n even/  (2b)
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expanded plot of-A; and Ar between 4 and 6 MHz for
water and quartz transducers, now wifh = 5100 kHz
assumed for clarity. It reveals, that theA; branch
(n = 10) hastwo intersections withA7; the same is true
for the neighbouring branchi (= 11). In this case four
subsequent peakgio (~4793 kHz), f11-(~5001 kHz),
f10+(~5208 kHz) and f11,(~5582 kHz) are observed.
Peak f1;_ originates from a ‘soft’ reflection with low
Zr at transducei.; /2 resonance. On the other hand, if
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Figure 1. Calculated acoustic impedance Z (per unit area,;

imaginary part) versus frequency f: Zr for X-cut quartz

Figure 3. Calculated acoustic admittance (per unit area
( Uz = 15 » 10 kg m=2 s-1) and for Y-cut lithium imaginary part). Ar (quartz; fr = 5100 kHz) and —A, for
mobate - ,,,oba[e =34 x 10° kg m-2 s~1) transducers: odd and even longitudinal modes in water. Curve types
fr = 5000 kHz —Z, forodd (- - - -) and even (— — —)

and other parameters as in figure 1. Harmonic numbers n

modes in water at pathlength x/2; ¢, = 1.5 km s72, shown at the top of the plot.

pL=10% kg m=3, x =1.5 mm, f, = 500 kHz. Intersections
between Z; and —Z; branches determine the resonant

leading—after some manipulation—to
frequencies f,.

dfs Ja fr I
i =l o5 )]
i8
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Figure 2. Calculated acoustic admittance A (per unit area,
imaginary part): Ar (quartz and lithium niobate) and —A,
for odd and even modes in water. Curve types and
parameters as in figure 1. Intersections of Ar and —A, ,
branches determine f, values. Harmonic numbers n, given
at the top of the plot are characterized by abscissa crossing
points A, , = 0 and refer f, series to harmonic spectrum nf;
of an ‘ideal’ resonator with ‘hard’ reflection (zr = o0)

o £ T

For an ‘ideal’ resonatorr(= 1) the spectrumfid« =
nfy = ncr/2x is harmonic; in this case isf#“* /dc; =
n/2x = f,/c., a commonly used approximation for
equation (10); on the other handfd* /dp;
clear contrast to equation (11).

For a plot of equations (10) and (11) numericgl
values ¢ = 4...20) have been calculated directly from
equation (7). Another proven way to obtain numerlcal

values of thef, series is by iteration, starting from
to fo_, fio-, for, fio+. Model parameters used are listed nf; and using the relation, which results from equatlon @)

in the captions. Liquid loss is always neglected and one -

. 2 nm
£l = fy in + “tan?! [ZL C0t<n' f )]} . (12)

b4 zr Sr

dimensional, plane wave propagation is assumed.
From the implicit admittance equation
0 However, in pursuing this way convergence might fail near
= fr and its harmonics.
7)

! cot( f") ! tan[z< f
prer fr) pLer 2 \cp/2x k . .
Figure 4 shows a plot of the dimensionl€dg;, /dc.) x

(
the differential i (cL/fw), equivalent to dn f,,)/d(In¢.), for the calculated

= 0isin

fr < 10f, is assumed, the sequence aroyfidchanges

F =

quotients fj,/dp; and df,/dc; are
obtained,

using common mathematical rules for the f. values between 2 and 10 MHz. Thg points @
differentiation of implicit functions (e.g. Korn and Korn 4

..20) represent even and odd acoustic modes in the
1968) water-filled cavity (f;, = 500 kHz), enclosed by transducers
from X-cut quartz (specific impedance valug_,uq; ~
df, ~ dF [dF df, _ aF [oF @®. 9) 15 x 10° kg m2 s71) and Y-cut LiNDOs (zrinpo, ~
de, e/ df, dor 9oL/ 3fn ’

34 x 10° kg m2 s1). In a similar way the differential
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1.00 first sight it might be surprising, that even at transducer
‘g\'A"'An_A PN ‘Ar/4 frequencies’fr /2, 3fr/2, 5fr/2. .., the maximum
Smo Ty, N of df,/dc. x c./f, is slightly below 1. This is quantified
G\K / O\(\ by an approximation of equation (10) at those frequencies
0.95 : -
diy o ﬁ\ Looa ? N et g _pi i (13)
dey o & \ i der fa zr Jr
| v H
0.90 \‘\ } o - yielding 0.98 at 7.5 MHz for a water-filled quartz resonator
\ % (zr/zr = 0.1; fr = 05 MHz; fr = 5 MHz). This
| f, [MHz] ¢ is reasonable because the liquid veloaity affects both
0.85 Lt . e ! | ! ! . fir and Z,, shifting nf, and the reflection phase in an
2 3 4 5 6 7 8 9 10 opposing way. On the other hand the maximum value
Figure 4. Calculated normalized differential quotient of df,/dc. x c./f, becomes closer to 1 for resonators
(df,/dcy) x (¢ /f,) =dInf,/dIn ¢, for odd and even mode with increased pathlength and in consequence lowgfi,
resonant frequencies f,. Transducers fr = 5001 kHz: because fewer reflections will then occur in the cavity.
]%u(?galrtz; A, lithium niobate. Other parameters as in Please note that negf and 2fr the values g, /de; xc1/f,
' fall below 0.6 and are not shown in figure 4 with its
0.02 expanded ordinate scale.

The effect from density variations is minimized near
the ‘Ar/4 frequencies’ fr/2, 3fr/2, 5fr/2, etc, but is
zeroonly exactly at those. Figure 5 shows that the density
influence increases in regions below and abgyeand its
overtones; here liquid density can be determined by ultra-
sonic measurements via the specific impedance ratior.
High-resolution measurements of velocitysf,|/f <
107-%), aiming at adiabatic compressibility values (Sar-
vazyan 1991), have to take density into account, sbath
liquid velocity and density affect thg, spectrum.

A reliable, proven way for velocity evaluation,
including density effects, is to measure a series of 3 to 11

0.01

0.00

-0.01

-0.02

Figure 5. Calculated normalized differential quotient ; ‘
Ghan o) i orodd e mode {0 PSSl o) stbsedittues mound 4
resonant frequencies f,. Transducers fr = 5001 kHz: - T/&r Q)T r/e- g '
O, quartz; A, lithium niobate. Other parameters as in applying equation (6) and a LEVENBERG-MARQUARDT
figure 1. algorithm (command ‘minerr’ in MATHCAI®), helps to
identify the harmonic numberns and obtains bothy; and
quotient df,, /dor x pr/f, = d(n f,)/d(n p.) versusf, is z1/zr- Assuming plane wave propagation at sufficiently
displayed in figure 5 for quartz and for LiNB@ansducers.  high frequencies, an extra check of measupgdvalues
Peak f, shifts from density variation increase neafr, andn is to apply equation (6) again and calculate a series

pointing at the possibility for liquid density measurements of individual liquid fundamentalf, , values:
with ultrasonic resonators. Equivalents of equations (10) L

. . . 2 " -
and.(ll) could also be Qerlved frorrnpedancerelatmn;s, fon=filn+ Stant L oot ni (14)
particularly nearfr and its overtones, but are not given ' big r fr

here because of space limitations. . -
Equations have been solved numerically with the which should be constant and close (within a few Hz and

software MATHCAD® 6.0 SE from MathSoft (command less for 3 to 5 peaks) to thg value obtained by regression.
‘root) or with MAPLE® V3 (fsolve’). For initial plotting This has been verified in many experiments near 7.5 and

and for symbolic differentiation of functions MATHCAD 12.5 MHZ'_ For th? evc";\luatpn ?f resonant pea_ks with
6.0 SE and its incorporated MAPIEE components have accompanying spurious satellites’ further precautions are
been used: controls have been made with the numericaladwsable: a regression procedure should be preceeded by
differentiation algorithm in MATHCAL® 6.0 SE, yielding an algebraic separation of_superposing acoustic modes and
identical results. Al figures have been obtained with of eventual electromagnetic crosstalk (Eggers 1992). Peak

AXUM® (version 4.1) from MathSoft frequencies can be ‘pinned’ by means of the: (a) amplitude
' ' maximum; (b) algebraic fit of sampled amplitude values

of a total peak; (c) algebraic fit of sampled phase values
3. Discussion and conclusions of a total peak; (d) maximum of group delay time (phase

slope); (e) algebraic fit of sampled group delay time values
The plots demonstrate that liquid density as well as velocity of a total peak. The method to be preferred depends on
shifts cause typical resonant peak shifts in ultrasonic PLP the available equipment. The evaluation of a total peak
resonators, differing from ‘ideal’ resonator behaviour and as in (b) or in (c) appears to be more accurate than the
depending on frequency and on transducer parameters. Atsearch for a rather ‘flat’ amplitude top. Methods (d) and (e)

646



Model calculations for ultrasonic resonators

gain from the elimination of a base line phase shift caused Eggers F and Kaatze U 1996 Broad-band ultrasonic measurement

by electrical connections, but require more sophisticated

electronic equipment.

In general ultrasonic resonator measurements are
One has to realize

affected by several sources of error.
the practical limits of accuracy, which are given primarily
by sound field diffraction, by liquid absorption and, last but
not least, by temperature fluctuations in the liquid cavity.

techniques for liquiddeas. Sci. Technoll 1-19

Eggers F, Kaatze U, Richmann K-H and Telgmann T 1994 New
plano-concave ultrasonic resonator cells for absorption and
velocity measurements in liquids below 1 MiNfeas. Sci.
Technol.6 1131-8

Eggers F and Richmann K-H 1993 Ultrasonic absorption
measurements in liquids above 100 MHz with continuous
waves, employing algebraic crosstalk eliminatidcustica
78 27-35

For practical applications these model calculations should 5,oherma G L 1968Ultrasonics(London: English University

be seen in the frame of the total accuracy obtainable today

for high-precision acoustic measurements in liquids.
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