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Abstract. Ultrasonic resonators—consisting of the liquid sample, enclosed by two
planar piezoelectric transducer plates—permit a direct and accurate determination
of liquid sound velocities cL at kilohertz and megahertz frequencies. Such
plate–liquid–plate (PLP) resonators offer a resolution 1cL/cL < 10−3, which is
important for analytical work in chemistry, bio- and physico-chemistry and for some
technical applications.

A simple one-dimensional resonator model is derived which permits calculation
of the spectrum of the longitudinal (nonharmonic) eigenfrequencies fn
(n = 1, 2, 3, 4 . . .) as a function of liquid and resonator parameters. This model
obtains the peak fn shift by variation of liquid velocity cL and density ρL as well for
plane wave propagation; the effect from variations in ρL has been neglected in
most ultrasonic studies so far.

Caused by a frequency-dependent phase shift for sound reflection at both
liquid/transducer interfaces, the differential quotients dfn/dcL and dfn/dρL of the
‘real’ resonator deviate from those of an ‘ideal’ PLP resonator with perfect, ‘hard’
reflection (reflection factor ≡1) and harmonic overtones nfL (fL is the liquid
fundamental frequeny; one half liquid wavelength λL/2 equals transducer
separation x).

The figures show typical acoustic impedance and admittance spectra, which
are calculated for a model configuration; they illustrate features of the harmonic
numbers in the liquid cavity and longitudinal mode counting. Equations are given
for the dimensionless, normalized differential quotients dfn/dcL · cL/fn and
dfn/dρL · ρL/fn . Plots demonstrate systematic aberrations from ‘ideal’ resonator
behaviour, which can affect high-precision sound velocity measurements.

1. Introduction

Ultrasonic PLP resonators, consisting of two air-backed,
planar piezoelectric transducers and the enclosed liquid
sample (volume∼0.1–10 ml), are a valuable tool for the
determination of liquid sound absorption and velocity in the
0.1 to 100 MHz range (Eggers 1967/68, 1992, 1994, Eg-
gers and Funck 1973, Eggerset al 1994, Eggers and Kaatze
1996, Kaatzeet al 1987, Labhardt and Schwarz 1976, Sar-
vazyan 1982, Sarvazyan and Chalikian 1991). Resonator
eigenfrequenciesfn can be obtained with high resolution,
particularly in low-loss liquids, by means of amplitude,
phase, phase slope or group delay timetg = −dϕ/dω (ϕ is
the phase,ω the angular frequency) measurements. From a
series offn values the liquid column fundamental frequency
fL = cL/2x and—with the liquid pathlength or transducer
separationx known—the sound velocitycL can be deter-

mined by nonlinear regression, which also yields the spe-
cific acoustic impedance ratiozL/zT = (ρLcL)/(ρT cT ) (ρ
is the density) for longitudinal, plane wave propagation in
the liquid (L) and the transducer medium (T;X-cut quartz
or Y -cut lithium niobate in most devices).

If the sound beam diameterD exceeds the wavelength
λL (D > 50λL), one-dimensional, plane waveequations
describe the performance of such PLP resonators to a
very good approximation (Eggers 1992). Piezoelectric
coupling in the transducer material, given by the
electromechanical coupling coefficientkT (Kino 1987),
affects the eigenfrequencies, including the overtones, of
the transducer plates (Onoeet al 1963). The piezoelectric
effect can be taken into account by introducingeffective
eigenfrequenciesfTm, but it causes loading of the cavity
due to electromechanical energy coupling, particularly at
the transducer fundamental and overtones.
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For applications in ultrasonicvelocimetry (Sarvazyan
1982, 1991) it is desirable to know the influence of liquid
velocity cL and densityρL and of their changes on the
eigenfrequenciesfn (n = 1, 2, 3, . . .) quantitatively. This
dependence can be obtained from the derivatives dfn/dcL
and dfn/dρL of a characteristic trigonometric equation
F(fn, fT , x, cL, ρL, cT , ρT ) = 0, which permits
determination of the fundamental frequency of the liquid
columnfL and of thefn spectrum (Eggers 1967/68, 1992,
Eggers and Richmann 1993).

2. Acoustic resonator
eigenfrequencies—one-dimensional model

The characteristic acousticalimpedanceequations for PLP
resonators relatefn to the sample parameterscL, ρL, fL
and to the corresponding piezotransducer parameterscT ,
ρT andfT (fundamental frequency; plate thickness equals
λT /2). Usually the compressional waves in the liquid
cavity undergo nearly ‘hard’ reflection due to the higher
specific impedancezT > zL of the transducers, except
at the fundamentalfT and the overtonesfTm, where the
wave ‘sees’ the low backing (air!) impedance. Usually the
region nearfT is not employed for velocity and absorption
measurements, because enhanced electromechanical energy
coupling in the transducers—stronger in LiNbO3 than
in quartz—decreases the cavityQ, in addition to liquid
absorption. It is advisable to refer the nonharmonicfn
series of the PLP resonator and its harmonic numbers
n to the harmonic spectrumnfL of an ‘ideal’ resonator
with perfect reflection (r ≡ 1). The harmonic number
n = 1, 2, 3, 4 . . . of such resonators is approximately the
number of half-wavelengthsλL/2 in the liquid standing
wave field: n ≈ 2x/λL. The impulse balance of the total
vibrating system is established by the mass of the cavity
vessel and frame plus the affixed transducers, this being
large compared to the liquid mass.

In consequence of resonator symmetry, oscillational
modes of the compound PLP system have either a particle
velocity extremum and a pressure node (n odd) or a
particle velocity node and a pressure extremum (n even)
in the centre plane of the resonator. Therefore it is
sufficient to consider one half of the resonator, consisting
of one transducer andhalf of the liquid column (assumed
to be lossless), terminated in the centre plane either by
impedance zero (n odd) or by infinite impedance (n even).
The acoustic impedanceZ (per unit area) is the complex
ratio of sound pressure to particle velocity at a point (or
plane) in the sound field (Gooberman 1968). Resonance
occurs for reactance compensation at the liquid–transducer
interface or the equality and opposite sign for the imaginary
parts of transducer impedanceZT and liquid impedance
ZL (pathlengthx/2), i.e. Im(ZT ) = −Im(ZL) (Eggers
1967/68). For a plane wave field:

ZT = izT tan

(
π
fn

fT

)
(1)

ZL =
〈+
−
〉

izL

〈
tan
cot

〉 (
π

2

fn

fL

) 〈
n odd
n even

〉
.

(2a)
(2b)

It should be noted that the assignment of odd and evenn

in equations (2a) and (2b) is different from that in some
earlier publications, apparently erroneous. Both equations
can be combined in one equation, valid for odd and even
n as well

ZL = −izL cot

[
π

2

(
fn

fL
− n

)]
. (2c)

Equations (1) and (2c) lead to a characteristic equation
ZT = −ZL, which determines the series offn for a one-
dimensional plane wave PLP resonator

zT tan

(
π
fn

fT

)
= zL cot

[
π

2

(
fn

fL
− n

)]
. (3)

For certain applications peak frequencies close tofT /2,
3fT /2, 5fT /2 etc, with the transducer thickness being an
odd multiple ofλT /4, are of particular interest, because the
low air backing impedance of the transducer is inverted by a
‘quarter-wavelength-transformation’, resulting in ‘infinite’
impedance behaviour and hard reflection between liquid and
transducers.

Equations (1) and (2c) yield the corresponding acoustic
admittances

AT = − i

zT
cot

(
π
fn

fT

)
(4)

AL = i

zL
tan

[
π

2

(
fn

fL
− n

)]
(5)

resulting in a characteristic equation, which is equivalent
to equation (3)

1

zT
cot

(
π
fn

fT

)
= 1

zL
tan

[
π

2

(
fn

fL
− n

)]
. (6)

Here the casesn = 1 and n = 2 cover all odd and
even longitudinal modes. The anharmonicity of thefn
spectrum in the frequency range 2–10 MHz is illustrated
in figure 1 for impedanceand in figure 2 foradmittance,
depicting the terms of equations (1) and (2c) and (4) and
(5) respectively. The intersections of−ZL (conjugate
complex) withZT and−AL (conjugate complex) withAT
determine thefn spectrum. It is obvious thatimpedance
relations are preferable at and near the odd transducer
harmonicsfT , 3fT , 5fT etc—the even harmonics offT are
sonically inactive—whileadmittanceis advantageous near
fT /2, 3fT /2, 5fT /2, etc. In figure 2 the intersections of
−AL with the abscissa define the harmonics offL, i.e. the
spectrum of an ‘ideal’ resonator with infinitely hard (zT =
∞) reflectors. It appears reasonable to refer the resonances
of a ‘real’ resonator to the nearby harmonicsnfn. In order
to illustrate mode numbering aroundfT , figure 3 shows an
expanded plot of−AL andAT between 4 and 6 MHz for
water and quartz transducers, now withfT = 5100 kHz
assumed for clarity. It reveals, that the−AL branch
(n = 10) hastwo intersections withAT ; the same is true
for the neighbouring branch (n = 11). In this case four
subsequent peaksf10−(∼4793 kHz), f11−(∼5001 kHz),
f10+(∼5208 kHz) andf11+(∼5582 kHz) are observed.
Peak f11− originates from a ‘soft’ reflection with low
ZT at transducerλT /2 resonance. On the other hand, if
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Figure 1. Calculated acoustic impedance Z (per unit area;
imaginary part) versus frequency f : ZT for X -cut quartz
(—— z quartz

T = 15× 106 kg m−2 s−1) and for Y -cut lithium
niobate (· · · z niobate

T = 34× 106 kg m−2 s−1) transducers;
fT = 5000 kHz. −ZL for odd (- - - -) and even (— — —)
modes in water at pathlength x/2; cL = 1.5 km s−1,
ρL = 103 kg m−3, x = 1.5 mm, fL = 500 kHz. Intersections
between ZT and −ZL branches determine the resonant
frequencies fn .

Figure 2. Calculated acoustic admittance A (per unit area,
imaginary part): AT (quartz and lithium niobate) and −AL
for odd and even modes in water. Curve types and
parameters as in figure 1. Intersections of AT and −AL,n
branches determine fn values. Harmonic numbers n, given
at the top of the plot are characterized by abscissa crossing
points AL,n = 0 and refer fn series to harmonic spectrum nfL
of an ‘ideal’ resonator with ‘hard’ reflection (zT =∞).

fT < 10fL is assumed, the sequence aroundfT changes
to f9−, f10−, f9+, f10+. Model parameters used are listed
in the captions. Liquid loss is always neglected and one-
dimensional, plane wave propagation is assumed.

From the implicit admittance equation

F = 1

ρT cT
cot

(
π
fn

fT

)
− 1

ρLcL
tan

[
π

2

(
fn

cL/2x
− n

)]
= 0

(7)
the differential quotients dfn/dρL and dfn/dcL are
obtained, using common mathematical rules for the
differentiation of implicit functions (e.g. Korn and Korn
1968)

dfn
dcL
= − ∂F

∂cL

/
∂F

∂fn

dfn
dρL
= − ∂F

∂ρL

/
∂F

∂fn
(8), (9)

Figure 3. Calculated acoustic admittance (per unit area,
imaginary part): AT (quartz; fT = 5100 kHz) and −AL for
odd and even longitudinal modes in water. Curve types
and other parameters as in figure 1. Harmonic numbers n
shown at the top of the plot.

leading—after some manipulation—to

dfn
dcL
= fn

cL

{
1+ 1

π

fL

fn
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π
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)]}
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π

2
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[
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(10)

the second factor being dimensionless, and to

dfn
dρL
= fn

ρL
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1
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fn

fL
+ 2
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2

(
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{

sin

[
π
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fT

]}−2]]−1

. (11)

For an ‘ideal’ resonator (r ≡ 1) the spectrumf idealn =
nfL = ncL/2x is harmonic; in this case is df idealn /dcL =
n/2x = fn/cL, a commonly used approximation for
equation (10); on the other hand df idealn /dρL ≡ 0 is in
clear contrast to equation (11).

For a plot of equations (10) and (11) numericalfn
values (n = 4 . . .20) have been calculated directly from
equation (7). Another proven way to obtain numerical
values of thefn series is by iteration, starting fromf 〈0〉n =
nfL and using the relation, which results from equation (7)

f 〈m+1〉
n = fL

{
n+ 2

π
tan−1

[
zL

zT
cot

(
π
f
〈m〉
n

fT

)]}
. (12)

However, in pursuing this way convergence might fail near
fT and its harmonics.

Figure 4 shows a plot of the dimensionless(dfn/dcL)×
(cL/fn), equivalent to d(ln fn)/d(ln cL), for the calculated
fn values between 2 and 10 MHz. Thefn points (n =
4 . . .20) represent even and odd acoustic modes in the
water-filled cavity (fL = 500 kHz), enclosed by transducers
from X-cut quartz (specific impedance valuezX−quartz ≈
15 × 106 kg m−2 s−1) and Y -cut LiNbO3 (zLiNbO3 ≈
34× 106 kg m−2 s−1). In a similar way the differential
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Figure 4. Calculated normalized differential quotient
(dfn/dcL)× (cL/fn) = d ln fn/d ln cL for odd and even mode
resonant frequencies fn . Transducers fT = 5001 kHz:◦, quartz; M, lithium niobate. Other parameters as in
figure 1.

Figure 5. Calculated normalized differential quotient
(dfn/dρL)× (ρL/fn) = d ln fn/d ln ρL for odd and even mode
resonant frequencies fn . Transducers fT = 5001 kHz:◦, quartz; M, lithium niobate. Other parameters as in
figure 1.

quotient dfn/dρL× ρL/fn = d(ln fn)/d(ln ρL) versusfn is
displayed in figure 5 for quartz and for LiNbO3 transducers.
Peak fn shifts from density variation increase nearfT ,
pointing at the possibility for liquid density measurements
with ultrasonic resonators. Equivalents of equations (10)
and (11) could also be derived fromimpedancerelations,
particularly nearfT and its overtones, but are not given
here because of space limitations.

Equations have been solved numerically with the
software MATHCADr 6.0 SE from MathSoft (command
‘root’) or with MAPLEr V3 (‘fsolve’). For initial plotting
and for symbolic differentiation of functions MATHCADr

6.0 SE and its incorporated MAPLEr components have
been used; controls have been made with the numerical
differentiation algorithm in MATHCADr 6.0 SE, yielding
identical results. All figures have been obtained with
AXUMr (version 4.1) from MathSoft.

3. Discussion and conclusions

The plots demonstrate that liquid density as well as velocity
shifts cause typical resonant peak shifts in ultrasonic PLP
resonators, differing from ‘ideal’ resonator behaviour and
depending on frequency and on transducer parameters. At

first sight it might be surprising, that even at transducer
‘λT /4 frequencies’fT /2, 3fT /2, 5fT /2 . . ., the maximum
of dfn/dcL × cL/fn is slightly below 1. This is quantified
by an approximation of equation (10) at those frequencies

dfn
dcL

cL

fn
≈ 1− 2

zL

zT

fL

fT
(13)

yielding 0.98 at 7.5 MHz for a water-filled quartz resonator
(zL/zT = 0.1; fL = 0.5 MHz; fT = 5 MHz). This
is reasonable because the liquid velocitycL affects both
fL and ZL, shifting nfL and the reflection phase in an
opposing way. On the other hand the maximum value
of dfn/dcL × cL/fn becomes closer to 1 for resonators
with increased pathlengthx and in consequence lowerfL,
because fewer reflections will then occur in the cavity.
Please note that nearfT and 2fT the values dfn/dcL×cL/fn
fall below 0.6 and are not shown in figure 4 with its
expanded ordinate scale.

The effect from density variations is minimized near
the ‘λT /4 frequencies’fT /2, 3fT /2, 5fT /2, etc, but is
zero only exactlyat those. Figure 5 shows that the density
influence increases in regions below and abovefT and its
overtones; here liquid density can be determined by ultra-
sonic measurements via the specific impedance ratiozL/zT .
High-resolution measurements of velocity (|δfn|/f <

10−6), aiming at adiabatic compressibility values (Sar-
vazyan 1991), have to take density into account, sinceboth
liquid velocity and density affect thefn spectrum.

A reliable, proven way for velocity evaluation,
including density effects, is to measure a series of 3 to 11
(and possibly more) subsequentfn values around the ‘λT /4
frequencies’fT /2, 3fT /2, or 5fT /2. Nonlinear regression,
applying equation (6) and a LEVENBERG–MARQUARDT
algorithm (command ‘minerr’ in MATHCADr), helps to
identify the harmonic numbersn and obtains bothfL and
zL/zT . Assuming plane wave propagation at sufficiently
high frequencies, an extra check of measuredfn values
andn is to apply equation (6) again and calculate a series
of individual liquid fundamentalfL,n values:

fL,n = fn
{
n+ 2

π
tan−1

[
zL

zT
cot

(
π
fn

fT

)]}−1

(14)

which should be constant and close (within a few Hz and
less for 3 to 5 peaks) to thefL value obtained by regression.
This has been verified in many experiments near 7.5 and
12.5 MHz. For the evaluation of resonant peaks with
accompanying spurious ‘satellites’ further precautions are
advisable: a regression procedure should be preceeded by
an algebraic separation of superposing acoustic modes and
of eventual electromagnetic crosstalk (Eggers 1992). Peak
frequencies can be ‘pinned’ by means of the: (a) amplitude
maximum; (b) algebraic fit of sampled amplitude values
of a total peak; (c) algebraic fit of sampled phase values
of a total peak; (d) maximum of group delay time (phase
slope); (e) algebraic fit of sampled group delay time values
of a total peak. The method to be preferred depends on
the available equipment. The evaluation of a total peak
as in (b) or in (c) appears to be more accurate than the
search for a rather ‘flat’ amplitude top. Methods (d) and (e)
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gain from the elimination of a base line phase shift caused
by electrical connections, but require more sophisticated
electronic equipment.

In general ultrasonic resonator measurements are
affected by several sources of error. One has to realize
the practical limits of accuracy, which are given primarily
by sound field diffraction, by liquid absorption and, last but
not least, by temperature fluctuations in the liquid cavity.
For practical applications these model calculations should
be seen in the frame of the total accuracy obtainable today
for high-precision acoustic measurements in liquids.
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