Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells

MPG-Autoren
/persons/resource/persons15340

Klingauf,  J.
Research Group of Microscopy of Synaptic Transmission, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15570

Neher,  E.
Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Klingauf, J., & Neher, E. (1997). Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophysical Journal, 72(2), 674-690. doi:10.1016/S0006-3495(97)78704-6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-0038-D
Zusammenfassung
Secretion of catecholamines from neuroendocrine cells is relatively slow and it is likely that redistribution and buffering of Ca2+ is a major factor for delaying the response after a stimulus. In fact, in a recent study (Chow, R. H., J. Klingauf, and E. Neher. 1994. Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proc. Natl. Acad. Sci. U.S.A. 91:12765–12769) Chow et al. concluded that the concentration of free calcium ([Ca2+]i) at a release site peaks at <10 μM during short-step depolarizations, and then decays to baseline over tens of milliseconds. To check whether such a time course is consistent with diffusion theory, we modeled buffered diffusion in the vicinity of a Ca2+ channel pore. Peak [Ca2+]i and the slow decay were well simulated when release-ready granules were randomly distributed within a regular grid of Ca2+ channels with mean interchannel distances of 300–600 nm. For such large spacings, however, the initial rise in [Ca2+]i was underestimated, suggesting that a small fraction of the release-ready pool (∼10%) experiences much higher [Ca2+]i, and thus might be collocalized with Ca2+ channels. A model that accommodates these findings then correctly predicts many recent observations, including the result that single action potentials evoke near-synchronous transmitter release with low quantal yield, whereas trains of action potentials lead to desynchronized release, but with severalfold increased quantal yield. The simulations emphasize the role of Ca2+ not only in triggering, but also in modulating the secretory response: buffers are locally depleted by residual Ca2+ of a preceding stimulus, so that a second pulse leads to a larger peak [Ca2+]i at the fusion sites.