
ELSEVIER Surface Science 359 (1996) 291-305 

surface science 

Background correction in scanning probe microscope recordings 
of macromolecules 

J.P. Pascua l  S ta r ink  a, T h o m a s  M. Jovin b., 

a AmCell Corporation, 1190 Bordeaux Drive, Sunnyvale, CA 94089, USA 
b Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, PO Box 2841, D-37018 G6ttingen, Germany 

Received 16 June 1995; accepted for publication 25 January 1996 

Abstract 

In scanning probe microscopy of macromolecules, the specimen to be scanned is deposited on a flat surface such as mica or 
glass. Unfortunately, there is no guarantee that the orientation of this surface is normal to the scanning directions, or that it is 
atomically fiat. Phenomena such as capillary forces and noise can cause the surface to appear curved in the recording. Compensation 
for these background components are necessary before meaningful, quantitative measurements can be performed on the images. We 
describe a procedure to correct for both the shape of the recorded surface and the influence of noise on the background. The 
surface is modeled with a low-order polynomial, and the noise by a constant line off-set for each scan line. These parameters are 
initially estimated using all recorded samples, and the result is subtracted from the recording. Then, in an iterative loop, the 
background is refined by first segmenting the image in back- and foreground pixels, followed by re-estimating the parameters using 
only the background pixels. For recordings of macromolecules, this procedure performs up to 70% better than the flattening 
procedure included in the microscope software, in terms of standard deviation of the background pixels as depicted by the final 
segmentation. 

Keywords: Amorphous surfaces; Atomic force microscopy (AFM); Computer simulations; Glass surfaces; Physical adsorption; 
Scanning force microscopy (SFM); Scanning tunneling microscopy (STM); Surface structure, morphology, roughness, and topography; 

1. Introduction 

Scanning probe microscopes (SPM) have 
become an important tool  for the inves t igat ion of 
macromolecules in the A-nm range [1,2]. The 
molecules are deposited on a fiat surface such as 
glass or mica and scanned by the instrument, 
thereby revealing topographic details of their struc- 
ture with high spatial resolution. 

Since the inception of SPM, it has been recog- 
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nized tha t  the recordings  suffer from pe r tu rba t ions  
that  l imit  resolut ion.  These include b lur r ing  of 
detai ls  due to the t ip geometry ,  noise cor rup t ion ,  
geometr ic  d i s tor t ions  caused by  the non l inear  
behav io r  of the piezo ac tuators ,  and  occas ional  
determinist ic  dis tor t ions such as external  vibra-  
tions, thermal  drift, piezo creep, "double - t ip"  con- 
tact, and  pe r tu rba t ions  by mobi le  adsorbates .  
The m a j o r  con t r ibu t ions  are from the noise and  
the finite size of the scanning tip. These topics 
have been addressed  extensively. At  first, l inear  
noise filters were devised to reduce the noise in 
S T M  record ing  [ 3 - 7 ] .  Later ,  non- l inear  filters 
were p roposed ,  par t i cu la r ly  for recordings  of  large 
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or rough areas [8-10]. The effects of finite tip size 
can be regarded in terms of a linear operation 
when scanning very small areas Ell] .  However, 
for large or rough areas this operation is also non- 
linear [12]. 

In order to reconstruct a recording objectively 
and accurately, a model for the tip shape, (or a 
determination thereof) must be available. Attempts 
to characterize the tip shape have included scan- 
ning one tip with another tip [13], scanning 
known, incompressible objects such as colloidal 
gold particles [14] or polystyrene latex micro- 
spheres [15], characterization by adhesion meas- 
urements [16], imaging by scanning and electron 
microscopy [17,18], and direct imaging using 
sharp structures [19]. Reconstruction procedures 
employing the tip shape have been suggested by 
various authors [12,14,20,21]. Recently, it was 
demonstrated that the scanning process can be 
viewed as a gray-value morphological dilation, and 
that reconstruction can be achieved by its inverse 
operation, i.e. erosion [10,22-24]. It should be 
noted that reconstruction is necessarily incomplete; 
the area under the tip between multiple contact 
points can never be recovered. 

One important source of perturbation in SPM 
recordings to which little attention has been 
directed is the background [25,26]. Usually, the 
software provided with commercial microscopes 
includes some sort of flattening or background 
subtraction, and this generally suffices for most 
applications. However, for structural measure- 
ments on recordings of shallow objects like macro- 
molecules, one needs to compensate accurately for 
the background. 

In this paper, we model the background in SPM 
images by two components. The first is the back- 
plane, i.e. the representation of the surface support- 
ing the specimen. This surface is likely to be tilted 
with respect to the orthogonal scanning directions. 
Furthermore, the surface will almost certainly 
appear curved in the scanned image, even if it is 
physically flat. The apparent curvature is caused 
by superposition of physical phenomena such as 
van der Waals forces, elastic deformation of the 
supporting cantilever and sample, and capillary 
forces [27]. It is assumed that a polynomial fit of 

some appropriate order through the data is suffi- 
cient to account for this effect. 

The second background component is observed 
in the slow scan direction as stripes that are higher 
or lower in intensity than surrounding regions, but 
without an apparent correlation with the imaged 
structure. These offsets are caused by a type of 
noise characteristic for scanning probe micro- 
scopes, known as 1If or "flicker noise" [7,28,29]. 
This noise has a power spectrum given by 

A 
P(f)  - f a ,  (1) 

where f is frequency, A is the amplitude, and fl 
determines the spectral distribution and thus the 
appearance of the noise [30]. For example, for 
fl = 0 the noise is white, whereas fl = 2 corresponds 
to Brownian motion. Stoll and Baratoff [4] 
claimed that 1/f noise in SPM is due to random 
movements of the tip perpendicular to the scan 
direction, and to the electronics of the feedback 
system. Measurements of the noise in the different 
parts of the STM have revealed that tunnel current 
noise also contributes to the 1/f component [29]. 

It is clear that the line offsets cannot be removed 
by applying a global backplane correction and, 
conversely, that the accuracy of the estimated 
backplane is diminished by these offsets. In this 
paper we suggest a procedure for estimating the 
backplane and the offsets in SPM recordings of 
shallow objects such as macromolecules deposited 
on a surface assumed to be flat. 

2. Method 

2.1. Background estimation 

As discussed in Section 1 the background in 
SPM recordings is modeled as two independent, 
additive components - the global backplane, and 
stripes in the slow scan direction which are uni- 
formly shifted in height (gray-value intensity). 
Subtle interactions between sample and specimen 
during scanning result in a curved backplane. 
Furthermore, the surface may not be physically 
flat, and its orientation may not be normal to the 
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scan directions. The backplane is modeled with a 
polynomial of power n in the slow scan direction 
x, and m in the fast scan direction y 

= ak l x iY j ,  (2) 
/ = 0  k = 0  

where akl are the polynomial coefficients, and f~ is 
the image value at position (i,j). Note that we use 
a right-handed coordinate system, where the upper 
left pixel is at (1,1). The image size is N (rows) x M 
(columns). To consider the noise, an offset c~ is 
added to each scan line i. As a consequence, the 
term aoox°y ° must be explicitly omitted from the 
model. As it is incorporated in the offsets, it is 
redundant. The general expression for the back- 
ground becomes: 

i °+ 
k = l  / = 1  k = O  

This model is linear in its parameters, and is solved 
by least-squares error minimization. For that pur- 
pose, the equations for f~j are collected in the 
design matrix A of the problem (see Appendix). 
The coefficients air are  stored in vector a =  
[alo.. .a,oaol. . .a,r,  Cl...CN] ~, where each c~ is 
repeated M times. The gray value intensities f~s are 
put in v e c t o r  b=[ fa l f 12 . . . f l u f21 . . . fNM]  t. In 
matrix notation, the problem is to determine a 
such that [ A . a - b [  2 is minimized. The normal 
equations of the least-squares problem are written 
a s  

A " A ' a = A  t 'b .  (4) 

This system is studied in more detail in the 
Appendix. The model for the backplane has 
(n + 1) x (m + 1) parameters. Extension of this 
model with the line offsets augments the number 
of parameters by the number of scan lines N in 
the recording. As an example, a second-order plane 
is described by nine parameters, and a typical 
recording from a NanoScope III SPM contains 
512 lines, leading to 520 parameters to be fit. The 
additional parameters often cause the system of 
normal equations to be (very close to) singular. 
That is, different sets of parameter combinations 
would then fit the data equally well, such that 
matrix A T . A  is ill-conditioned. A solution for 
dealing with this problem is to apply singular value 

decomposition (SVD) to solve the system A" a = 
b. This, however, is hard to execute since the 
number of rows in the matrix equals the number 
of samples in the recording, while the number of 
columns is (n + 1) x (m + 1) - 1 + N. For a second- 
order backplane and a 512 × 512 recording, the 
size of the design matrix is 5122 × 520. 
Alternatively, one can apply SVD to solve Eq. (4). 
Any N × M matrix R, N > M, can be decomposed 
into U ' W ' V  t, where U is an N x M  column- 
orthogonal matrix, W is an M x M diagonal 
matrix, and V t is the transpose of an M x M 
orthogonal matrix. Since A t. A is square, the solu- 
tion to the normal equations in terms of SVD can 
be written as 

a = V .  W -1" U t . b .  (5)  

The inversion of W is achieved by replacing the 
diagonal elements wi by their reciprocals. Elements 
that are very close to zero (i.e. approaching the 
computer floating-point precision) indicate singu- 
larity, and their reciprocals are set exactly to zero 
so as to obtain the solution vector of smallest 
length. The number of wi's close to zero (smaller 
than the square root of the machine precision) 
denotes the nullity of the system, thus diagnosing 
the severity of the singularity. 

Even if we choose to solve Eq. (4) by SVD, 
we have to deal with a system of ( n + l ) ×  
(m + 1) - 1 + N equations. Solving directly is still 
very time-consuming and rather inefficient, since 
the major part of the matrix, namely the lower 
right N × N submatrix, is diagonal (see Appendix). 
This feature can be exploited for the efficient 
inversion of matrix A"  A by partitioning into four 
submatrices: 

where P and S are square matrices of size 
(n + 1) x (m + 1) - 1 and M, respectively. The par- 
titioned representation of the inverse is similar: 

where 15, (),/~, and ~ have the same size as P, Q, 
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R, and S, respectively, and are given by 

P = (P - QS-1R) -a, 

Q= - (P-QS-aR)- I (QS- ' ) ,  

~= - (S -~R)(P-QS- 'R)  -1, 

S = S - '  +(S-1R)(P-QS 'R)-~(QS-~). (8) 

These equations are rapidly solved since the largest 
inversion required involves S, which is an N x N 
diagonal matrix. Inversion of (P-QS-1R) -1 is 
accomplished by SVD, as described before. 
Simplified expressions are used in the evaluation 
of Eq. (8). The initial correction now consists of 
subtracting the resulting background from the 
original recording. 

2.2. Background refinement 

Although the initial correction flattens the sur- 
face reasonably well, the estimation procedure is 
affected by the presence of object pixels. In order 
to improve the estimation, the procedure should 
be restricted to the background pixels. The pro- 
cedure to segment the pixels into fore- and back- 
ground should be conservative, i.e. the foreground 
should not only include true object pixels, but also 
pixels that are in questionable regions, or "dirt" 
spots. We describe a conservative segmentation 
procedure suited to our recordings of macro- 
molecules. Obviously, recordings of different 
objects may require another segmentation strategy. 

A median filter is first applied to smooth the 
data and reduce the noise. For our applications, 
the size of the filter was chosen to cover approxi- 
mately 8 x 8 nm. This size depends on the sampling 
resolution, which varied in our studies from 0.5 
(15 x 15 mask) to 2 (5 x 5 mask) nm per pixel. 
Classification of the pixels is performed on a line- 
by-line basis using the isodata thresholding 
method. According to this method, the gray value 
histogram of the line is divided into two parts by 
a threshold value, initially the mean value of the 
line pixel values. This threshold is repeatedly 
replaced by the average of the mean gray values 
of the two histogram parts, until the threshold 
value remains constant. Next, the mean/ti and the 
standard deviation ai of the background pixels of 

line i are determined. After processing all lines, the 
global standard deviation a is calculated from the 
individual ais. The final segmentation of line i is 
obtained by classifying those pixels with values 
smaller than/~i + a as background. 

Next, the background is re-estimated using only 
the background pixels. If required, the order of the 
polynomial can be set higher since the foreground 
pixels are excluded. One approach is to fit Eq. (3) 
to the background pixels only. Since in this 
approach the sums do not run continuously over 
all the coordinates, Eq. (4) is constructed by updat- 
ing the matrix and vector elements in a loop over 
all background pixels. This is described in more 
detail in the Appendix. 

Another strategy to update the background is 
to perform fitting on a line-by-line basis. This 
approach may be justified since the scanning pro- 
cess in the microscope is actually one-dimensional. 
Since the difference in collection time between two 
adjacent samples on neighboring scan lines is twice 
the time required to scan a line, the image data 
between two adjacent scan lines are fairly indepen- 
dent. In this approach, the background pixels of 
the line are collected, and a simple polynomial of 
order m is fitted to these data (see Appendix). 

Subtracting the refinement from the original 
recording results in a flatter background than after 
the initial correction. Consequently, the segmenta- 
tion of this image will be better, and the refinement 
procedure can be applied again using the new 
segmentation. The scheme to correct for the back- 
ground components is outlined in Fig. 1. The stop 
criterion is defined as follows: let (i be the standard 
deviation of the background pixels after the ith 
iteration, as masked by the segmentation. When 
the change in ~ between two successive iterations 
is less than a certain threshold (e.g. 1%), the 
iteration is stopped. For our recordings of macro- 
molecules, we usually need about three iterations 
to reach convergence. 

3. Discussion 

In this section, we discuss our methods and 
approaches. The validity of the assumption that 
noise can be modeled by constant line offsets is 
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(global background estimation) 

(segmentation -~ ~ )  

masked background estimation) 

( segmenta~on ~ ~i ) 
T 

( ~-~i-1)/~H ~ 1./0 ) 

~ yes 

DONE 

Fig. 1. General steps in the background estimation procedure. 
The iteration stops when the change in the standard deviation 

of the image background pixels between the two most recent 
iterations is less than 1%. 

investigated. The stability and time requirements 
of the methods of solving the normal equations 
are compared. We define ~ to be the standard 
deviation of the background pixels, as masked by 
the (final) segmentation. Background correction 
by the microscope software will be referred to as 
flattening. 

The experiments were implemented in standard 
C and linked as a library to the commercial image 
processing package SCIL-Image version 1.3 (TNO 
Institute of Applied Physics, Delft, The 
Netherlands) on a Silicon Graphics INDY 
workstation. 

3.1. Validation of  noise model 

The nature of 1/f noise is such that the vertical 
displacements of the stripes become more pro- 
nounced for larger fl, while at the same time the 
correlation between neighboring noise samples 
increases. These features lend support to the 
assumption that these stripes can be modeled by 
constant line offsets. We expect that compensation 
of the noise by constant offsets will be increasingly 
effective for higher ft. Several approaches to charac- 
terize the noise of the tunneling current in STM 
have been reported. Tiedje et al. [31] found a 
perfect fl = 1.0 fit to scans of graphite with tungsten, 
platinum, and platinum-iridium tips. From meas- 
urements in air of graphite with a tungsten tip, 

Abraham et al. [32] found fl = 0.94. M611er et al. 
[29] concluded from a search for the cause of 1/f 
noise that the tunneling phenomenon is mainly 
responsible, and found fl = 1.08. From visual com- 
parison of stationary tip recordings with simulated 
1/f noise images, Stoll and Marti [28] arrived at 
fl = 1.4 + 0.2. Moreover, Aguilar et al. [7] experi- 
mentally found fl = 1.17 and from an average over 
30 recordings, the estimated r =  1.0___0.1 also 
demonstrated a dramatic dependency on the 
acquisition mode and on the STM head used. It is 
important to stress the relevance of the fast scan 
velocity with respect to the slow scan direction. 

To determine the noise parameters of our 
NanoScope III microscope configuration under 
regular conditions, we investigated stationary tip 
recordings [ 10]. All average line power spectra of 
the recordings showed an offset from the baseline, 
indicating an additional white noise component. 
Eq. (1) was therefore augmented with constant C 
to obtain 

A 
P ( f )  = ~ + C. (9) j~  

Fitting this model to the power spectra led to an 
error typically ~300 times smaller than that 
achieved with Eq. (1). From over 30 recordings, 
we found a mean value offl = 1.99 _+ 0.21. The next 
experiment shows that at this value, the power in 
the slow scan direction is ~ 200 times higher than 
in the fast scan direction. 

Generation of 1/f noise with a certain fl and 
(spectral) power A was performed according to a 
method we have reported elsewhere [103. A one- 
dimensional, complex signal v containing twice the 
number of samples in the recording is filled with a 
random phase, and multiplied with an f -  p/2 ampli- 
tude function. This signal is transformed back to 
the time domain and added to the temporal signal 
f containing the (test) image 

f ( i , j )  ~ f ( i , j )  + v(2M + i), (10) 

where M is the number of samples per line, i and 
j the spatial position, and the factor 2 accounts for 
the trace and retrace paths of the tip, one of which 
is not recorded. This approach to noise simulation 
closely represents the actual scanning process 
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Fig. 2. Generated 1/f noise images for fl ranging from 0 to 2.5. 
For fl = 0, the noise is white, as shown by the overlaid gray- 
value histogram. As fl increases, the stripes become more 
distinct. 

which, apart from the tip-sample interaction, is in 
fact one-dimensional. 

The six generated noise images in Fig. 2 show 
that the stripes become more distinct as fl increases. 
The power of the signal is concentrated in the 
lower frequencies, leading to a higher correlation 
between neighboring noise samples. This suggests 
that the power of the noise is dominated mainly 
by the differences between these offsets, and not 
by correlations between neighboring noise samples 
in the fast scan direction. To verify this interpreta- 
tion, the following experiment was performed. For 
fl varying from 0 to 2.4 with a step size of 0.2, 50 
noise images were generated with a global power 
of 105 . The power was determined in the fast and 
slow scan directions, and the respective average 
values are plotted in Fig. 3. As expected, the power 
in the slow scan direction, perpendicular to the 
height changes of the stripes, was about 105 for all 
fls, whereas the power in the fast scan direction 
decreased as fl increased. 

Thus, we can assume that the noise remains 
constant for high values of r,  but that for low fls 
the noise exhibits a more random character. To 
examine the validity of this assumption, a random 
second-order backplane and a 1If noise image were 
generated and added. The background was esti- 
mated and subtracted from the image. Since the 
image contained only a background, the resulting 
signal should have been zero. However it was not, 
suggesting that the noise in the fast scan direction 

120 

100 
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x ,_~ 60 

~4o 

20 

0 0.4 0.8 1.2 1.6 2 2.4 

Fig. 3. Average line power in the fast and slow scan directions, 
measured in generated noise images of size 512 x 512 pixels 
with fl running from 0 to 2.4. Each graph point represents the 
mean of 25 images, all scaled to a global power of 105. 

cannot be resolved by such a low-order backplane, 
or by the offsets. Therefore, as a measure of perfor- 
mance, we adopted the ratio of the power in the 
fast scan direction of the noise image to the global 
power of the result. This amplifies errors in the 
estimated offsets, while suppressing the offsets in 
the original noise image. The analysis was per- 
formed for randomly generated, second-order 
backplanes, and for fl ranging from 0.5 to 2.5. The 
noise was scaled such that the signal-to-noise ratio, 
defined as the variance of the backplane divided 
by the variance of the noise, was 5, 10, and 15, 
respectively. The performance at each parameter 
combination was averaged for five noise images. 

The results in Table 1 demonstrate that perfor- 
mance was maintained as fl decreased. This could 
have been caused by the fact that for low fls, the 
samples were independently arranged around the 
background line. For large fls, the correlations 
between neighboring samples were higher, but the 
occasional high frequencies caused vertical jumps 
that could not be compensated for by the offsets. 

3.2. Solving the normal equations 

After adding the line offsets to the model for the 
backplane, the normal equations are often close 
to singular. They can usually be solved directly 
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Table 1 
Performance of the background estimation procedure as a function of fl for different signal-to-noise ratios (SNR); a second order 
background with 1If noise was generated and processed; the performance was determined by dividing the global power of the 
corrected image by the average line power of the noise image; each value represents the average of five experiments 

SNR fl 

0.50 1.00 1.50 2.00 2.50 

5 0.99 ± 0.11 1.10 + 0.32 0.8 + 0.34 1.2 + 0.35 0.92 _+ 0.48 
10 0.93 ± 0.093 0.96 + 0.16 1.1 ± 0.59 0.77 + 0.38 1.30 +_ 0.42 
15 0.94 +__ 0.13 0.85 + 0.14 1.3 ___ 0.53 0.97 ± 0.27 0.78 ± 0.36 

by G a u s s - J o r d a n  el imination or singular value 
decompos i t ion  (SVD). The  results, however,  may  
not  be entirely what  one expects due to the (close 
to) singular state. This can be seen when the 
backplane  and the offsets are inspected separately. 
For  example,  consider an S P M  recording of a 
D N A  strand (Fig. 4a). The  results of fitting a 
second-order  backplane  and the offsets are shown 
in Figs. 4b and 4c (Gauss - Jo rdan) ,  4d and 4e 
(SVD), and 4f and 4g (parti t ioning).  The results 
show clear differences for the different background  
and offset estimates. 

Table 2 lists the gray-value ranges, the s tandard  
deviat ions ¢ of the original image and the est imated 
background  components .  Al though they were 
equal  for all approaches  (4 = 109, Fig. 4h), only the 
par t i t ioning result remained within the gray-value 

range of the original image. Results of the two 
other  methods  exceeded this range considerably,  
indicating instability. Thus,  solving the normal  
equat ions by part i t ioning is preferred to the other  
methods  in terms of t ime requirements  and numeri-  
cal stability. 

The t ime requirements  of the three different 
background  es t imat ion approaches  were deter- 
mined for a 512 × 512 recording for backplane  
orders 2, 3, and 4 (Table 3). As expected, inversion 
by part i t ioning required less t ime than  a solution 
by G a u s s - J o r d a n  el imination or full SVD. The 
initial correct ion required less t ime than the 
masked  refinement, mainly because in the latter 
the matr ix  At .A  needed to be set up iteratively, 
wi thout  recourse to the convenient  assumpt ion  
that  all rows and columns contain the same coordi-  

original backplane estimates 

Gauss-Jordan SVD partitioning 

offset estimates background 

Fig. 4. (a) Estimating the background components of a scanning force microscopy (SFM) recording of plasmid DNA. (b, c) The 
backplane and offsets estimated by Gauss-Jordan elimination, (d, e) full singular value decomposition, and (f, g) inversion by 
partitioning all result (h) in the same background. However, only the components resulting from partitioning remain within the 
gray-value range of the original recording (see Table 2), indicating the better stability and sensitivity of this approach. All images are 
displayed with fully stretched contrast. 
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Table 2 
Gray value statistics of the backplane and offsets of recording Fig. 4a, as obtained by three different approaches to solving the 
normal equations; parameter ~ represents the standard deviation of the background pixels 

Original Gauss-Jordan SVD Partitioning 

Backplane Offsets Backplane Offsets Backplane Offsets 

Minimum 0 9 -5061 -4481 -520 -19 91 
Maximum 3133 5232 1405 1313 6410 77 2399 

630 1448 1710 1590 2038 25 628 

Table 3 
CPU time (in s) required by the three matrix solution approaches to estimate the initial global background, and the masked, global 
and line-by-line refinement, for a second, third, and fourth order backplane 

Gauss-Jordan SVD Partitioning 

Order 2 3 4 2 3 4 2 3 4 
Initial 53 56 59 136 146 156 2.2 3.1 4.2 
Masked 64 92 142 148 176 240 16 40 88 
Line-by-line 0.7 1.0 1.4 

nate indices. The mask used in all experiments 
covered the entire recording. Solving the normal 
equations in the line-by-line update was performed 
using Gauss-Jordan  elimination, since there was 
no danger of singularity. The time requirements 
were therefore very small compared to the global 
refinement. 

An additional remark concerning the solution 
of the normal equations refers to the actual num- 
bers that are substituted for the coordinates x and 
y. The choice of step size would appear to be 
arbitrary, and it seems plausible to choose unity. 
However, due to the high powers involved, the 
sums in the matrices become very large with respect 
to the range of the backplane parameters. This 
causes round-off errors and reduces the sensitivity 
of the system. The problem can be overcome by 
scaling the coordinates, e.g. such that they run 
from 0 to 1. To generate a unity step background 
concordant with the original recording, the back- 
plane parameters ak~ are multiplied by s k+~, where 
s is the scaling factor. 

3.3. Order o f  backplane 

The polynomial power of the backplane should 
not be too high, since the object pixels which are 

part  of the foreground are also included in the 
initial estimation. Higher-order polynomials tend 
to adapt  more to the object, thereby disturbing the 
procedure, especially when the object covers a 
large part  of the recording. For example, a high 
resolution recording (512 × 512 pixels at 0.12 nm 
per pixel lateral resolution) of a DNA strand 
(Fig. 5a) was corrected using a fourth-order back- 
plane. The procedure clearly tried to correct for 
the strand (Fig. 5b), leaving it in some sort of 
channel after correction (Fig. 5c). It is therefore 
suggested that the backplane is estimated by a 
low-order polynomial and, if required, the result is 
updated with a higher-order backplane. In general, 
a first- or second-order backplane in the initial 
correction, and a second-order backplane in the 

© 

//  
Fig. 5. Fitting a fourth order background to a high resolution 
SFM recording (0.12 nm per pixel) of DNA (a). The resulting 
backplane (b) tries to follow the height changes of the strand. 
In the corrected image (c), the strand appears to lie in a channel. 
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refinement, seems satisfactory for studies of 
macromolecules. 

3:4. Background refinement 

The accuracy of the procedure depends on the 
ability of the segmentation method to discriminate 
between background and foreground pixels. The 
method described here is based on a line-by-line 
segmentation using the isodata threshold method. 
When sparsely distributed macromolecules are 
studied, the background is dominant and the 
objects are shallow with relatively steep edges. In 
these studies, isodata thresholding provides the 
desired result. However, if the objects cover a large 
part of the image, or if a large gray-value slope 
between the background and the object is present, 
the threshold value will be set somewhere in the 
middle of the gray-value range, resulting in too 
many background pixels. Other segmentation 
methods should then be employed to obtain a 
conservative estimate of the set of background 
pixels. 

Two methods were proposed for updating the 
background using the segmentation result as a 
mask: a global approach and a line-by-line 
approach. The line-by-line update may be justified 
by the fact that scanning is in fact a one-dimen- 
sional process, and that the correlation between 
scan lines is smaller than between samples in a 
scan line. Practical problems arise when a line 
contains no background pixels. This is clear in the 
line-by-line approach. In the absence of any data, 
there is nothing to fit. In the global approach, the 
corresponding element in the diagonal matrix S 
(Eq. (6)) will be zero, and consequently its recipro- 
cal in S -1 does not exist. The SVD will yield a 
result valid only for those lines containing back- 
ground pixels. 

Another drawback of the line-by-line approach 
is that all lines are treated as if they are completely 
independent. This assumption may lead to capri- 
cious structures in the slow scan direction, which 
may be improbable or even physically unrealizable. 
Consider the high resolution (0.12 nm per pixel) 
recording of plasmid DNA in Fig. 6a. Due to the 
high resolution, the edges of the strand are not 
steep. As a consequence, the segmentation pro- 

Fig. 6. Refinement of the background of a high resolution 
SFM recording (0.12 nm per pixel) of DNA (a). The segmenta- 
tion (b) is used to update the background in the line-by-line 
approach (c) and the global approach (e). The results show 
that the line-by-line approach (d) contains improbable capri- 
cious features, whereas the global approach (f) does not. 

cedure erroneously assigns object pixels to the 
background (Fig. 6b). The line-by-line update 
(Figs. 6c and 6d) suffers more from these errors 
than the global update (Figs. 6e and 6f), for which 
they are averaged out over the whole image. A 
solution to this problem may be to update the 
background of a scan line using a small number 
of neighboring scan lines. In this case, the local 
correlation between scan lines is preserved, while 
the obvious lack of correlation between distant 
ones is ignored. 

4. Experimental results 

The background correction method was applied 
to SFM recordings of different samples, and was 
compared with the outcomes of the microscope 
flattening procedure. The samples were scanned 
with a NanoScope III SPM (Digital Instruments 
(DI), Santa Barbara, CA) in contact mode, and 
were collected as height images of 512 × 512 
samples. The raw recordings were flattened with 
order two. The background was initially estimated 
with order two, and iteratively updated using the 
global approach, also with order two. Iteration 
was stopped when the change in ~ between two 
successive steps was less than 1%. 

In Fig. 7, each row shows the results of an 
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original, raw background segmentation corrected flattening by 
recording estimation background SPM software 

Fig. 7. Processing of SFM recordings of plasmid DNA (a, b), DNA networks (c, d), and rat cells (e). The rows show the various 
results in the process. Printed on the raw recordings are the scan sizes; printed on all results is the standard deviation ~ of the 
background pixels masked by the segmentation. 

experiment. Fig. 7 (left to right) shows the original 
raw recording, our background and segmentation 
estimates, the corrected image and the flattening 
result. The scan sizes are printed on the raw 
recordings, and on the raw image and the corrected 
images the standard deviations ~ of the background 
pixels are shown. 

The rows a and b of Fig. 7 show the processing 
of recordings of relaxed dimeric circular DNA at 
two different resolutions. Details of the experimen- 
tal conditions are given in Ref. [33]. Although 
flattening did a reasonably good job, it was percep- 
tibly distorted in regions where the strand lies 
parallel to the fast scan direction. Especially in the 
low resolution recording (Fig. 7, row a) this led to 
smears of lowered height in the attempt to compen- 

sate for the object. Leaving out the strand from 
the procedure in our approach eliminated this 
effect. 

Rows c and d of Fig. 7 show recordings of 
kinetoplast DNA, the mitochondrial DNA of the 
trypanosomatid Crithidia luciliae (see Ref. [34] for 
experimental details). The DNA consists of several 
thousands of duplex mini-circles and a small 
number of maxi-circles concatenated into a net- 
work structure [35].  The networks were dialyzed 
against distilled water, spread directly on glowed- 
discharge activated mica coated with 1 mM sperm- 
ine, and air dried. Fig. 7c depicts a network after 
extensive proteolysis, resulting in extended net- 
works with relaxed DNA interlocked circles and 
some broken DNA strands. As the recording 



J.P.P. Starink, T.M. Jovin/Surface Science 359 (1996) 291-305 301 

shows, the spermine film contains small holes, 
which potentially interfere with the quantification 
of the molecules and structures. Since our pro- 
cedure attempts to flatten the background to zero 
height, clipping all resulting negative values to zero 
removed the tiny holes. The recording in row d of 
Fig. 7 exhibits a backplane that is very curved in 
the slow scan direction. The microscope software 
did not yield a satisfactory result; ¢ even increased 
by 8%. Thanks to the correct segmentation, our 
method was able to reduce ~ by 31%. 

Row e of Fig. 7 shows subcellular structures of 
rat mammary carcinoma cells, such as the nucleus 
and microvilli extending from the periphery of 
the cells. Experimental details are reported in 
Ref. [36]. The nucleus is very high (~l.2/~m) 
compared to the microvilli (~  100 nm). These large 
differences in height and capillary forces caused 
the (flat) glass substrate to appear curved. The 
microscope flattening procedure was perturbed by 
the extreme height differences, which resulted in 
an erroneous flattening. Our procedure correctly 
discriminated between the glass surface and the 
objects, determined the right curvature of the 
imaged surface (backplane), and consequently 
yielded a nicely flattened background. 

Table 4 lists the background standard deviations 
of the raw recordings, the flattening result, and 

the corrections after applying our initial correction 
and after each iteration. Since the flattening pro- 
cedure is a global approach, it should be comparable 

Fig, 8. Background estimation of an already flattened record- 
ing. A high resolution SFM recording of a DNA strand (a) 
shows clear height smearing near scan lines with many object 
pixels. The second order background (b) and the final 
segmentation (c) lead to an image without smearing (d). 

with our initial correction. The data show that this 
was approximately true, but also that our global 
method performed better in all cases. Furthermore, 
the performance was drastically improved by the 
iterative refinement, leading to up to 70% smaller 
~s compared to the flattening results. 

Finally, applying our method to images already 
flattened by the microscope software may lead to 
considerable improvement. Fig. 8a shows an 
already flattened recording of plasmid DNA. The 
background estimated with our procedure (Fig. 8b) 
corrected these mistakes. The resulting image 
(Fig. 8d) exhibited a considerably flatter surface, 
as is quantitatively supported by the background 
standard deviations printed on the images. 
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Appendix 

Practical aspects of implementation 
In this Appendix the normal equations are further developed, and we describe our algorithmic approach 
to solve them. The equations fq (Eq. (3)) are collected in the design matrix 

1 0 n 0 0 m n ra XlYl . . .  X l Y l  . . .  xlYl ... xlYl 1 0 ... 0 
1 0 n 0 0 m n m xlY2 ... xly2 ... xlY2 ... xlY2 1 0 ... 0 

1 0 n 0 0 m n m XlyM ... xlYM ... XlyM ... xlyM 1 0 ... 0 
1 0 n 0 0 m n m 

x Z y  I . . .  x 2 y  I . . .  x 2 y  1 . . .  x 2 y  1 0 1 . . .  0 

1 0 n 0 0 m n m XNyM ... XNyM ... XNYM ... XNYM 0 0 ... 1 

A = (A.1) 

Let .4 = A t. A be the matrix in the normal equations (Eq. (4)). The element A[-k,l], and consequently 
7ill, k], is given by the inner product of the rows k and l of the design matrix A. The matrix .4 is then 
expressed in its full form as 

~ =  

E x~ E yO ... E x~ '+1 E yO ... E x )  E ~ "" E xn+l E Y7 X{ E yO . . .  X 1 E yO 

i j e B  i i j ~ B  i i j e B  i i j e B  i j e B  i j e B  i 

yO v yO ... E E • E E " o o i E ~ ." ~ , E ~ .. , x l E y i  ... x " ~ E y j  
i j ~ B i  i j E B  i i j ~ B  i i j ~ B  i j ~ B  i j ~ B i  

E x l  E ~ "" E ~ ~ Y7 "" E x° E y}m ... E x2" E ~m x o E Y7 "" x° E Y7 
i j f f B  i i j 6 B  i i j e B  i i j ~ B  i j e B  i j ~ B i  

E x,"+' EYJm ... ,.,,rx~ . E  y:, ... E x T E  y~" ... E x T E  y ~  x"~ E y"; ... X"NE Y~, 
i j e B  i i j ~ B  i i j e B  i i j e B  i j e B  i j e B i  

x{ E yO ... x~ E yO ... x° E Y7 "" x7 ~ Y7 N ... 0 
j ~ B  i j e B i  j 6 B i  j ~ B i  

: " . .  

x~ E yO x"s E yO x° E Sin. x"u E Y7 0 N j . . . . . .  j . . . . . .  

j ~ B  i j e B  i j ~ B i  j e B i  

(A.2) 

Similarly, the element/~[k] of the vector/; = A t. b is calculated as the inner product between column k of 
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the design matrix A and vector/~. In its full form, vector/~ is 

Z pl Z POfiJ 
i j 

Z p7 Z pOf,  
i j 

Z pO Z p'j'fij 
i j 

Z 

2 pn 2 Prfij  
i j 

Z f ,  J 
J 

J 

(A.3) 

The sums run over all corresponding coordinates, i = 1...  N, j = 1.. .  M. These normal equations may seem 
complicated to evaluate. We describe an approach to deal with the equations in a simple way. 

First, since sampling is usually isotropic in the x and y directions, it is straightforward to replace the 
coordinates by a common one, Pi. With scaling factor s, this yields pi = s x i. Next, by dividing up the 
matrix in the parts P, Q, R and S, as suggested in Section 2.1 (Eq. (6)), the evaluation becomes more 
structured. The submatrices are treated as separate matrices, so their upper left element is [1,1]. The 
following definitions are made for any (integer) number i 

iM = iMOD(i + 1 ), 

io = iDW(i + 1), (A.4) 

where MOD is the integer modulo operator, and DIV is the integer division. With these definitions, the 
submatrices in Eq. (12) can now be written down in a simplified and structured form in terms of their 
elements [k,l ]: 

~/ kM+/M kD+ID " t Pig, l]= Pi Y',Pi Q[k,I]=pkM~P kD 
J J 

.4 = S . (A.5) 

R[k, 1] - ek ~ t'j "'" 
J N 

The range of the indices in the submatrices are given by 

P[k,l], 

Q[k,l], 

R[k,l], 

S[k,l], 

k= l . . . (n+ l)(m+ l), l= l . . . (n+ l)(m+ l), 

k= l . . . (n+ l)(m+ l), I= I . . .N,  

k= l . . .N ,  l= l . . . (n+ l)(m+ l), 

k = l . . . N ,  l = l . . . N .  (A.6) 
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Similarly, vector/)  is given in terms of its element [k] as 

p~ Y pj f,j 
(A.7) 

where k in the numerator runs from 1 to (n + 1)(m + 1), and in the denominator from 1 to N. 
Since the summations run over the same coordinates for every position, the sums of the different powers 

of pi can be calculated beforehand. The matrix A is then very easy to calculate. Let S k -  k - Zips, then 
P[k,l] = SkM+~ Sko+kM, Q[k,1] = p~MSko, and R[k,l] = P~'~SIo. Unfortunately, the vector cannot be simpli- 
fied to the same extent as the matrix can because of the inclusion of the image values f~j in the innermost 
summations. 

In the masked update, we observe a similar situation. The matrix A and the vector / )  in the normal 
equations are written in the structural form as 

P[k, 13 = E P~ M+lm E P~ D+tD 
i j ~ B  i 

I [ k , l ]=p l  M Z P? 
jEBi 

\ 
Q [k, t] = p~M E p~'\ 

j~ Bi ) 

N1 

s~ / 

{E x, ~n Y Y~°f'Jl 
a = / i j~B~ / ( A . 8 )  

where B is the set of the coordinates of the background pixels, and Bi c B contains the coordinates of the 
background pixels on row i. Ni equals the number of background pixels on row i (Ni = II B~ II). In this 
equation, it is not possible to use the sums of the powers of the coordinates, because each row contains 
(background) pixels at different positions. The elements have to be updated for each background pixel 
separately. Of course, the powers of p~ are calculated beforehand, and the powers at the positions can 
easily be determined as a function of their position. 

In the line-by-line update approach, we fit the (background) samples in scan line i to a simple polynomial 
of order m. At point (i,j) the value is then given by 

fij = ~ atylj. ( A . 9 )  
l = O  

These equations are collected in the design matrix, yielding the following linear system of m + 1 equations 
to be solved 

E yo E YJ "" E Y'; 
j~Bi  j~Bi  j~Bi  

E yl E y2 E ym+l j ""  j 
j~Bi  j6Bi  j~Bi  

vm + 1 2m E Y7 Y _ j  ... E YJ 
j eB i  j eB i  j eB i  

ao I 

al I 

a, I 

Z yOf" 
j~Bi 

E Y~f~ 
= j eB i  

YTfi 
j s B i  

(A.10) 

If there are at least m + 1 background pixels on scan line i, this system is readily solved using normal 
Gauss-Jordan elimination, and no special precautions need be taken to avoid singularity. 



J.P.P. Starink, T.M. Jovin/Surface Science 359 (1996) 291-305 305 

References 

[1] B.L. Blackford, M.H. Jericho and P.J. Mulhern, Scanning 
Microsc. 5 (1991) 907-918. 

[2] J. Yang, L.K. Tamm, A.P. Somlyo and Z. Shao, J. Microsc. 
171 (1993) 183-198. 

[3] E.P. Stoll, SPIE Opt. Eng. Meas. 599 (1985) 442-450. 
[4] E.P. Stoll and A. Baratoff, Ultramicroscopy 25 (1988) 

149-154. 
[5] M. Pancorbo, E. Anguiano, A. Diaspro and M. Aguilar, 

Part. Recogn. Lett. 11 (1990) 553-556. 
[6] M. Pancorbo, M. Aguilar, E. Anguiano and A. Diaspro, 

Surf. Sci. 251/252 (1991) 418-423. 
[7] M. Aguilar, E. Anguiano, A. Diaspro and M. Pancorbo, 

J. Microsc. 165 (1992) 311-324. 
[8] A.D. Weisman, E.R. Dougherty, H.A. Mizes and 

R.J.D. Miller, J. Appl. Phys. 71 (1992) 1565-1578. 
[9] A. Diaspro, Eur. Microsc+ Anal., September (1994) 21-22. 

[10] J.P.P. Starink and T.M. Jovin, J. Appl. Phys. (1995). 
[11] J. Tersoff and D.R. Hamann, Phys. Rev. B 31 (1985) 

805-813. 
[12] D. Keller, Surf. Sci. 253 (1991) 353-364. 
[13] V.V. Efremov, P.N. Louskinovich and V.I. Nikishin, 

Ultramicroscopy 42-44 (1992) 1459-1463. 
[14] J. Vesenka, R. Miller and W.E. Henderson, Rev. Sci. 

Instrum. 65(7) (1994) 2249-2251. 
[15] C. Odin, J.P. Aime, Z. Elkakour and T. Bouhacina, Surf. 

Sci. 317 (1994) 321-340. 
[16] T. Thundat, X.Y. Zheng, G.Y. Chen, S.L. Sharp, 

R.J. Warmack and L.J. Schowalter, Appl. Phys. Lett. 63 
(1993) 2150-2152. 

[17] D.A. Grigg, P.E. Russell, J.E. Griffith, M.J. Vasile and 

E.A. Fitzgerald, Ultramicroscopy 42-44 (1992) 
1616-1620. 

[18] G. Reiss, F. Schneider, J. Vancea and H. Hoffman, Appl. 
Phys. Lett. 57 (1990) 867-869. 

[19] F. Atamny and A. Baiker, Surf. Sci. Lett. 323 (1995) 
314~318. 

[20] D.J. Keller, Surf. Sci. 294 (1993) 409-419. 
[21] P. Markiewicz and M.C. Goh, Langmuir 10 (1994) 5-7. 
[22] J.S. Villarrubia, Surf. Sci. 321 (1994) 287-300. 
[23] N+ Bonnet, S. Dongmo, P. Vautrot and M. Troyon, 

Microsc. Microanal. Microstruct. 5 (1994)477-487. 
[24] D.L. Wilson, K.S. Kump, S.J. Empell and R.E. Marchant, 

Langmuir 11 (1995) 265-272. 
[25] O. Marti and M. Amrein, STM and AFM in Biology 

(Academic Press, New York, 1993). 
[26] G.S. Pingali and R. Jain, in: IMTC/93, (Irvine, CA, 1993), 

pp. 327-332. 
[27] J.L. Hutter and J. Bechhoefer, Surf. Sci. 73 (1993) 

4123-4129. 
1-28] E.P. Stoll and O. Marti, Surf. Sci. 181 (1987) 222-229. 
[29] R. M/511er, A. Esslinger and B. Koslowski, J. Vac. Sci. 

Technol. A 8 (1990) 590-593. 
[30] M.S. Keshner, Proc. IEEE 70 (1982) 212-218. 
[31] T. Tiedje, J. Varon, H. Deckman and H. Stokes, J. Vac. 

Sci. Technol. A 6 (1988) 372-375. 
1-32] D.W. Abraham, C.C. Williams and H.K. 

Wickramasinghe, Appl. Phys. Lett. 53 (1988) 1503-1505. 
[33] A. Schaper, J.P.P. Starink and T.M. Jovin, FEBS Lett. 

355 (1994) 91-95. 
[34] M. Steinert and S. van Assel, Exp. Cell Res. 96 

(1975) 406-409. 
[35] P.T. Englund, Cell 14 (1978) 157 168. 
[36] L.I. Pietrasanta, A. Schaper and T.M. Jovin, J. Cell Sci. 

107 (1994) 2427-2437. 


