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As is well known, at least in NMR, the effective spin-
lattice relaxation rates of spin systems undergoing two-site
exchange are dependent on the exchange rates between them,
when these are comparable to the intrinsic spin-lattice re-
laxation rates. Recently, this effect has been exploited to de-
termine the exchange rates of spin-labeled lipids at the in-
tramembranous surface of integral proteins by using CW
saturation EPR (7). The analogous problem of determining
the frequency of Heisenberg exchange between spin-labeled
lipids and spin-labeled proteins, and hence their mutual ac-
cessibilities in membranes, has been treated by similar meth-
ods (2). In these studies, a straightforward two-site exchange
model was used to extract the exchange rates by assuming
that all internal exchange processes (and nuclear relaxation )
within the individual component populations could be ap-
proximated by a single effective spin-lattice relaxation time
for each isolated component (for a review of the methods,
see Ref. 3). This approach has the advantage of both exper-
tmental and theoretical simplicity and is applicable to a wide
range of systems of biological interest. The purpose of the
present paper is to investigate the conditions under which
the simple approximation is valid, in order that the method
may be exploited fully.

The situation considered is illustrated in Fig. 1. The en-
sembiles of spins undergoing two-site exchange are designated
b and f, and the corresponding rates of transfer from these
sites are 75" and 77", respectively. Each ensemble is com-
posed of different spin systems, 7, which, in a practical case,
would normally correspond to the individual molecular ori-
entations contributing to a powder-pattern spectrum. The
individual spin systems, /, may be coupled by internal ex-
change with all the other systems, j, within a given ensemble.
This coupling could be by Heisenberg exchange, in the case
of a localized region of high spin concentration, but more
generally by rotational diffusion. It is characterized by an
effective second-order rate constant, K. If the internal ex-
change is very rapid, e.g., in the case of conventional mo-
tional narrowing, then the approximation of a single effective
T, is valid. Otherwise, it is necessary to consider the coupling
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between the internal and two-site exchange processes. This
is done here.

The CW saturation experiment can be analyzed in terms
of the rate equations for the spin-population differences (4),
an approach which follows that introduced by Yin and Hyde
(5) for saturation recovery and ELDOR experiments. The
results for internal Heisenberg exchange (4), simple two-site
physical exchange (7), and simple two-site Heisenberg ex-
change (2) have been presented previously. It has been shown
that Heisenberg exchange and physical or chemical exchange
are formally equivalent in this context (¢). Thus the Hei-
senberg spin-exchange formalism for the internal process can
also be used, with appropriate definition of the exchange
rates, to represent the physical exchange process of rotational
diffusion (cf. Ref. 6). This is the convention that will be used
throughout the following.

The notation of Slichter ( 7) is used, as was done previously
(4). The populations of the Ms, = =+ energy levels for the
ith spin system in ensemble b are denoted by Ni;, and the
population difference in this spin system by n,, = Ny, —
Ng.i. The population difference corresponding to Boltzmann
equilibrium is denoted by ny;. The total population of the
ith spin system in ensemble b is further given by N,; =
Ny, + Ny, In addition, the total population summed over
all spin systems in ensemble b is given by N, = =N, ;, and
correspondingly for the population differences m, = Zn,;,
where the summation is over all ;. Similar definitions hold
for the ensemble f. The condition of detailed balance for the
two-site exchange can be expressed in terms of equilibrium
spin population differences as

ngty' = nirl. [1]
A further useful relation for the spin-population differences
at Boltzmann equilibrium is

=25 po. (2]

These relations will be used extensively below.
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For a simple two-level system (S,; = }), the standard
expression for the steady-state population difference under
CW irradiation is (7)

[+]
(%3

T1t2wT, (31

Ny k

where W is the rate of transitions induced by the H, field
and T, is the spin-lattice relaxation time. In two ensembles
of multispin systems, the kth (i.e., saturated ) spin system in
ensemble b is coupled by internal exchange with the other
spin systems, I, in ensemble b, and by two-site exchange
with those in ensemble f. For the present analysis, the de-
pendence of n,; on W given by Eq. [3] provides a definition
of the effective spin-lattice relaxation time, 75T, as deter-
mined in CW saturation studies for these more complex spin
systems (4).

The first case treated is that of restricted two-site exchange
with internal exchange at one site. Exchange between the
two ensembles of spins b and f is considered in which the
spin systems, {, in ensemble b are coupled by Heisenberg
exchange (or equivalently by rotational diffusion ). For sim-
plicity, the spin systems in ensemble f are assumed to be
identical but not to be coupled with each other. The latter
situation would obtain, for instance, in the case of rapid

T oo

FIG. 1. Schematic indication of the spectra (heavy lines) of two ensem-
bles of spins, b and f, which are undergoing mutual two-site exchange and
in one of which (ensemble b) the individual spin systems, i, are undergoing
internal exchange (Heisenberg exchange, rotational diffusion, etc.) with the
other spin systems, j. The two-site exchange is characterized by the transfer
rates 7, ' and 7¢', and the internal exchange within ensemble b by the rate
constant, K,.
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motional averaging at a rate far exceeding that of the pro-
cesses considered here. Initially, a restricted form is assumed
for the two-site exchange in which spin system / in ensemble
b exchanges only with the corresponding spin system /7 in
ensemble f. Within the context of anisotropic powder pat-
terns, this would correspond to preservation of angular ori-
entation on exchange. With this model for one-to-one two-
site exchange, material balance for a given system, i, requires
that

[+] -1 _ o __-—1
RpiTy = ATy .

[4]
Summing this equation over all  yields the general, less re-
strictive condition given by Eq. [1]; as for consistency it must.

Transitions are induced by the microwave H, field between
the kth pair of electron spin levels in ensemble b; i.e., it is
the saturation of this transition that is considered. The steady-
state rate equation for the spin-population difference of the
kth transition in ensemble b undergoing internal exchange
with all the spin systems / and two-site exchange with en-
semble f is then given by (see Refs. /, 4)

dny .
d;)‘k = =2Wep(nox — n5x) — Ko Nohing — Noyhty)

= Mot + AT — 2Whyy, = 0, [5]
where 2W., = 1/ TV, is the electron spin-lattice relaxation
rate (assumed to be the same for all transitions in ensemble
b), and K, is the rate constant for internal exchange in
ensemble b. The corresponding steady-state rate equation
for the spin-population difference of the kth transition in
ensembile f that is coupled to ensemble b, but is not under-
going internal exchange and is not irradiated, is given by

dngy

e —2W. (N — N — T e' + mpgrp! = 0,

(6]

where 2W, ¢ = 1/ T is the electron spin-lattice relaxation
rate for transitions in ensembile f.
Eliminating n¢, between Eqs. [ 5] and [6] yields

- 2We,f7'l:l -
- ZWe_b + 2W r-{'—.—-‘r- ;] + Kx.bNb + 2W Py i
e,
2”; ngl
+ Koo Nostty + | 2Wep + =212 Ype — 0,
b NVoi ( YT TFI)’?b,I\ 0, [7]

where use has also been made of Eq. [4]. Summing Eq. [7]
and its equivalents over all spin systems i in ensemble b,
where only the kth system is irradiated, then yields

2Wo s

W., +
P AW, o+ T

)(nf,' —np) = 2Wn, = 0. [8]
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Solving Egs. [7] and [8] for n,x and making use of Eq. [2]
then yields an expression that is identical in form to Eq. [3]
for the saturation of the kth spin system in ensemble b. The
effective spin-lattice relaxation time is then given by

QWb+ 2We it /(2We et 77" ) + K o Nok

Teff =
Lok T W+ 2 W p15 QW+ 76 ]
X[2Wep+ 2We (75" /2 We e+ 75" ) + Koy N
[9]
In the absence of two-site exchange (ie., 75,' = 0 =

7¢'), Eq. [9] yields the standard expressxon for the effective
spin—lattice relaxation time, T b4, in the presence of cou-
pling between spin systems solely by internal Heisenberg ex-
change (cf. Ref. 4),

T(X] —
Lb.k 1+ leTexb

b [10]

where 7, = Np«/ Ny is the fractional population (or degen-
eracy) of the kth spin system, and 7./, is the Heisenberg
exchange frequency, in ensemble b. The latter is given in the
usual bimolecular formalism (i.€., 7 b = Ky uNb) and is pro-
portional to the total spin concentration in ensemble b (4).

In the absence of internal exchange (i.e., K., = 0), Eq.
[9] yields the standard expression for the effective spin-lattice
relaxation time, T\%", in the presence of exchange between
ensembles b and f(cf. Ref. 1},

o To T—l

1.b 1,b

= =1+ (11]
Ty

1+T|fT41’

which for this model of the two-site exchange it must.

The results given above make it possible to explore the
validity of the simple two-site exchange formalism. Exami-
nation of Eq. [9] reveals the conditions under which sim-
plified expressions of the form of Eq. [11] may be used to
determine rates of two-site exchange in the presence of Hei-
senberg exchange (or of other internal exchange process such
as rotational diffusion) within one of the ensembles. First,
for relatively slow two-site exchange, given by the condition
2”';.‘., + Kx,bNb,k > 2We‘ngl/(2VVc.f + T?l), the effective
spin-lattice relaxation rate is approximated by

(x}
Tl bk _ ?,b
2si) *
T T3

(12]

Hence, the normalized exchange rates defined by Eq. [11]
can be obtained from measurements of the experimentally
accessible quantities 7'\ and T5%, which correspond to the
effective spin—lattice relaxation times for the one-component
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and two-component systems, respectively. This condition is
most usefully fulfilled by fast rates of Heisenberg exchange
(or rotational diffusion) relative to the intrinsic spin-lattice
relaxation rate. It is also fulfilled for slow two-site exchange
relative to the intrinsic spin-lattice relaxation rate, but in
these circumstances the sensitivity to the two-site exchange
is relatively low.

Second, for relatively slow Heisenberg exchange (or ro-
tational diffusion), given by the condition 2W,, +
2W, 75 [(2We s + 75') » K pNo, the effective spin-lattice
relaxation time is given by Eq. [11] for simple two-site ex-
change, as would be expected. In this case, determination
from the experimental parameters according to Eq. [12] is
also valid because then Tl b= TTs.

It is possible to rewrite Eq. [9] for the effective spin-lattice
relaxation time, in terms of the relaxation times defined by
Egs. [10] and [11] for the internal ( Heisenberg) exchange
and two-site exchange alone, respectively:

_ 1+ ZoiTi%" X e'x'b
L+ TED X 1l

x T8, [13]

Interestingly, this latter expression is of exactly the same form
as that for Heisenberg exchange (or rotational diffusion, etc.)
alone (cf. Eq. [10]). For this model of two-site exchange,
therefore, the Heisenberg exchange rates may be extracted
in the normal way (cf. Ref. 8), yielding values, 75 7o),
that are normalized by the effective spin-lattice relaxation
time for two-site exchange in the absence of Heisenberg ex-
change.

Equation [13] may be used to analyze more closely the
range of validity of Eqs. [11] and [12] for determining two-
site exchange rates. The relaxation rate enhancement,

m/ 75t predlcted by Eq. [9] and normalized relative to
the value, T,b/Tl b , given by the approximation in Eq.
[11], is given as a function of the normalized internal ex-
change rate, 77,75}, in Fig. 2. Plots are given for various
values of the degeneracy factor, Z,, and the degree of re-
laxation enhancement by two-site exchange, 75,/ T\ 5. The
values chosen for the latter span, or even exceed, those likely
for these parameters. Validity of the approximate Eq. [12]
requires that (T /T%T)/(T%/ Ti") ~ 1. From Fig. 2, it
1s seen that this condition is approximately fulfilled at low
exchange rates, 77,75' < 1, and at high exchange rates,
Tf_bru‘ > 30-40, depending on the values of Z,; and

T/ T tf') In terms of rotational diffusion, this implies that
the correlation times should lie either in the slow motional
regime (or faster) of conventional spin label EPR spectros-
copy (<1078 s) or in the slower regime of saturation transfer
EPR spectroscopy (=107%s) (cf. Refs. 9, 10). In particular,
the fast-exchange condition for validity of the simple ap-
proximation is easily fulfilled for spin-label spectra in the
conventional motional narrowing regime (i.e., 7r < 107°
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FIG. 2. Dependence of the effective spm lattice relaxation rate, 1/75T, for two-site exchange in the presence of internal exchange, relative to that for

(2si}

a simple two-site exchange model. l/T‘l h' on the normalized internal exchange frequency, T7,75's. The effective relaxation rates, 1/T5%, and 1/7T7,, . are
obtained from Egs. [9] and [l 1], respectlvel) and are normallzed to the corresponding values (I/T,xb and 1/7T 7, respectively) in the absence of two-site
exchange. (=) Zyy = 35. (—) Zox = 5. and (- + +) Zy, = 3. From upper to lower. each set of curves corresponds to 7 h/T‘,zf,” = 1.2, 1.5, and 2.0.

s—see Refs. /1, 12). Equation [12] may or may not be a
reasonable approximation at intermediate exchange rates.
The criterion for a reasonable approxnmatxon is that the de-
viation of (T3 T50)/( T2,/ T'%") from unity be much less
than that of 70,/ T,‘S') In general the approximation there-
fore can be expected to have a reasonably broad range of
validity (see also later).

Because of the asymmetry in the above two-site exchange
model, in that only ensemble b is subject to internal ex-
change, the saturation of component f will be characterized
by an effective spin-lattice relaxation time that differs in
form from that for ensemble b. If for simplicity, it is assumed
that the ensemble f is motionally narrowed. all component
subsystems will be irradiated simultaneously. The steady-
state rate equations for the population differences, summed
over the component spin systems in each ensembile, are then
identical to those for a simple two-site model (cf. Ref. 1),
and the effective spin-lattice relaxation rate for ensemble f is
given exactly by Eq. {11] with the indices b and f permuted.
Under these circumstances, the saturation of the ensembile fis
unaffected by the internal exchange processes in ensemble b.

The second case treated is that of random two-site ex-
change with internal exchange at both sites. This model is
an alternative to, and less restrictive than, that given above
and can be envisaged realistically for the two-site exchange

process. In this situation, each spin system in ensemble f
exchanges with all of those in ensemble b (e.g., a scrambling
of orientation on exchange), rather than a restricted one-to-
one exchange. Simultaneously, the restriction that internal
exchange takes place in only one of the two ensembles may
also be lifted. In this more general case, a fraction Ny /N,
of the total f ensemble on average will exchange with the kth
spin system in the b ensemble. The steady-state rate equation
corresponding to Eq. {5] is then

dnb k

7 —2Wen( oy —

nok) = Kap(Noox — Npihy)

Nyi
‘I’Ib/\Tb +‘N—n(7f _2”"1[,/\—0 [14]

b

and that corresponding to the version of Eq. [6] summed
overall / is

dng

dr = —2We.f(nf -

ng)—neri' + mgrg! = 0. [15]

This latter equation is unchanged in the presence of internal
exchange within ensemble f because these internal terms drop
out on summation.



252

The solution of Egs. [14] and [15] with the summed ver-
sion of Eq. [14], and using Egs. [1] and [2], yields an
expression for n, that is identical in form to Eq. [3], with
the effective spin-lattice relaxation time given by

2Wep + 2Weiti /W o+ 75') + KanNos
+ (Nos/No) 73 78 /W s + 77!
[2Wep + 2Werrs ' /(2QWe e+ 771)]
X (2Wep + 75" + Ko Np)

[16]

eff
Tl.b.k -

This expression is somewhat more complicated than that of
the previous model. It leads to similar conclusions regarding
the validity of the approximate Eq. [12], but with slightly
less stringent conditions. It may be rewritten in the same
form as Eq. [13], except that Tecn is augmented by a term
that depends on the two-site exchange. The modified effective
Heisenberg exchange rate is then

[17]

For this model of the two-site exchange, the expression given
by Eq. [17] replaces 7. at all occurrences in Eq. [13].
Therefore the condition for the validity of the approximation
given by Eqgs. [11] and [12] is achieved more readily than
for the restricted one-to-one exchange model.

Because of the inherent symmetry in this more general
model, the effective spin-lattice relaxation time on irradiating
spin system k in ensemble f is now given simply by per-
mutation of the indices b and f in Eq. [16], and similar
considerations for the validity of the approximations apply.

The final case considered is that of two-site exchange in
the presence of nuclear relaxation. This situation with nuclear
relaxation between the hyperfine manifolds within a given
component (b or f) is closely related to that of internal ex-
change. The nuclear transition probability for a component,
say b, with nuclear spin I and nuclear magnetic quantum
number M, is given by

Wo(Ms, My — Mg, M, £ 1)

= WoolI(1+ 1) = Mi(M * 1)], [18]
where an electron-nuclear dipolar (END) mechanism is as-
sumed and the selection rules for nuclear transitions are AM,
= +1. This is a considerably more restrictive selection rule
than that for internal exchange which was treated above.
An S = } electron spin system with nuclear spin / = 1 is
assumed, as appropriate to "*N-nitroxyl spin labels. Internal ex-
change within a component is neglected, for simplicity. The
steady-state rate equations for the spin-population differences in

NOTES

the M; = 0, and =1 manifolds of component b in two-site ex-
change with component f are then, respectively (see Refs. 1, 4),

dn
d;)'o = —(QWep + 4Wop + 75" + 2Wom) 0
+ 2Won(Mosr + Ho-1)
+ ngor !t + 2Weptpo = 0 [19]
d +
’;btq = —2Wep + 2Wopo + 75" + 2W b m) iy

+ 2Wopto + NraiTy!

+ 2Wephy 2y = 0, [20]

where the second subscripts for » now indicate the values of
M,. The equilibrium population differences are assumed to
be the same for a particular spin system in the three mani-
folds, i.e., n9y = ng4; = ng—,. Transitions are taken to be
induced by the H, field within the manifold for which M, =
m (i.e., dpym = 1 for My = m, and O otherwise).

The component f is not irradiated. For convenience, nu-
clear relaxation in this component is neglected. This would
correspond either to very fast or to very slow nuclear relax-
ation, relative to the two-site exchange. The steady-state rate
equation for the spin-population difference in hyperfine
manifold M, of component fis then (cf. Eq. [6])

dny, M

o CWe e+ 7 Y000

+nb“”ngl +2We.fn€M|=0. [21]

The condition for material balance at equilibrium two-site
exchange is, in this case, given by an equation similar to Eq.
[4] above, with | = M.

Solution of Eqgs. [19]-[21] for saturation in the M; = 0
or =1 manifolds of component b, together with Eq. [4],
yields results of the same form as Eq. [3]. The corresponding
values for the effective electron spin-lattice relaxation times
are, respectively

l + vathl/(l + T?va;l)"‘b
1+ Tprg /(1 + T2 )+ 3b

Ti(0) =

X o —1 = © =1 [22]
L+ TTpre /(1 + TV 7Y

and
T5h(+1) = TFL(0)
. BT
(L+ b1+ Tiprs' /(14 T ers') +30]
(23]

where b = W, /W, is the ratio of the nuclear to the electron
spin-lattice relaxation rates.




253

0.6

0.4

(T1 ,bn/T1 ,beﬁ)/(T1 ,bo 1 .bzsi)

0.2

FIG. 3.

6 8 10
b

Dependence of the effective electron spin-lattice relaxation rate, 1/7%7, for two-site exchange in the presence of nuclear relaxation. relative

to that for a simple two-site exchange model. l/T‘ff,”. on the normalized nuclear relaxation rate, b, for I = 1. The effective relaxation rates, /757 and
1/7",2_"), are obtained from Eqgs. [22] or [23] and [1 1], respectively. and are normalized to the corresponding values (l/ﬂ'}’, and 1/T7y, respectively) in the

absence of two-site exchange. (—) M; = 0, and (---) M| = £1. From upper to lower, each set of curves corresponds to Tﬁb/T(,

In the absence of nuclear relaxation (b = 0), Eqs. [22]
and [23] both reduce to the expression for the simple two-
site exchange model, i.e., Eq. [11], as they should. In the
absence of two-site exchange (75" = 0 = 77'), they vield the
standard expressions for a single component with 7/ = | in
the presence of nuclear relaxation (cf. Ref. 13),

1+ 5
N0y = X T? 24
TiR(0) = 757 X TT [24]
and
1 +3b+ b2
T (1) = — 53 XT%  [25]

(L +5)(1 + 3b)

for the M|, = 0 and %=1 hyperfine manifolds, respectively.
Conditions for the validity of the simple expression for
two-site exchange given by Eq. [11] in the presence of nuclear
relaxation may be deduced from Eqs. [22] and [23]. Here
the principal requirement is that the nuclear relaxation
should either be slow, 3b < 1 + T{,r5' /(1 + TP ;77"), or
fast, b> | + T{o75' /(1 + TP ¢ 7¢"), relative to the two-site
exchange rate. The relaxation enhancement, Tﬁf'b) /TS, from
Eqs. [22]-[25], normalized to that given by the simple two-
site approximation, 7,/ T\, is given in Fig. 3 as a function
of the normalized nuclear relaxation rate, . The effects are

2si)

v = 1.2, 1.5, and 2.0.

less than those for internal exchange. presumably because
of the more restricted selection rules for nuclear relaxation.
It would appear that over most of the likely range of nuclear
relaxation rates ( /4, 15), the simple model provides a rea-
sonable approximation.

In conclusion it is found that only over limited ranges is
the simple two-site exchange approximation subject to ap-
preciable error. The maximum deviations are for correlation
times in the region of 5 us for rotational diffusion /Heisenberg
exchange (cf. Fig. 2) and for b ~ 1-2 for nuclear relaxation
(cf. Fig. 3). The latter correspond to rotational correlation
times in the region of 107 s (14). In these cases, corrections
may be made by using Eqs. [9] and [16], and Egs. [22] and
[23]. respectively. For this purpose, a correspondence be-
tween the rotational correlation time, as determined by sat-
uration-transfer EPR experiments, and the effective ex-
change/spin diffusion rate has been established in Ref. (6).
It will be noted that the correlation time regimes for which
rotational diffusion and nuclear relaxation, respectively, have
their largest effects are quite different. Therefore, there is
little or no reinforcement of the two combined effects. In
particular, nuclear relaxation is expected to have only a lim-
ited effect in anisotropic powder patterns. This is because of
the very restricted selection ruies for the latter, as compared
with the general case of two-site exchange with reorientation.
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