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Introduction 

Cross-striated muscle evolved with higher animals 
in order to fulfil their demand for intentional and 
coordinated movements, which have to be per- 
formed at greater precision and speed. The generally 
accepted "two-filament-sarcomere model" (re- 
viewed e.g. by Huxley, 1990) could not, however, 
explain important properties of the muscle cell: 
upon passive stretch, for instance, muscles develop 
resting tension. Therefore, several attempts were 
made to extend this model to explain resting tension 
and intrinsic elasticity by postulating the presence 
of a third, elastic kind of filamentous system. The 
efforts to define such a third filament type were of 
limited success and lead to conflicting views of the 
nature of these structures (see review by Wang, 
1985). A comparison of intact and skinned single 

muscle fibres clearly showed that at least up to a 
sarcomere length of 3.8/2m---contrary to the gen- 
eral behef--resting tension cannot be attributed to 
connective tissue but instead arises in the elastic 
resistance of the myofibrfl itself (Magid and Law, 
1985). Likewise, the striking regularity of thin and 
thick filament geometries cannot be explained by 
the intrinsic serf-assembly properties of their major 
constituent proteins, actin and myosin. These can 
assemble into filamentous structures in vitro that 
bear many  morphological and functional features 
of native filaments; their precisely tailored lengths, 
however, are usually not observed in vitro. Sur- 
prisingly, thick filaments could be reconstituted in 
myosin-extracted sarcomeres in a way that  
rendered them virtually indistinguishable from na- 
tive filaments (Maw and Rowe, 1986). Obviously 
important factors that control the precise assembly 
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of sarcomeres are therefore usually lost during the 
fractionation of myofibriflar components. 

New sarcomeric proteins are discovered 

The discovery and subsequent characterization of 
new proteins in the myofibril raised broader at- 
tention for this subject. Low porosity gels had al- 
lowed for the first time the detection of two proteins 
in the megadalton range (Maruyama et al., 1977: 
Wang et al., 1979). The larger one, termed titin (or 
connectin), migrates as a doublet and is found only 
in sarcomeric muscles of vertebrates; the second 
protein, called nebulin, is absent from heart muscle 
and is therefore considered to be less important for 
the basic structure of the cross-striated myofibril 
(Wang and Williamson, 1980). Important support 
for the fundamental significance of an elastic struc- 
ture whose main component could be titin came 
from experiments where selective degradation of 
titin by ionizing radiation greatly reduced the ability 
of skinned muscle fibres to generate passive tension 
(Horowits et al., 1986). At the same time, thick 
filaments became misaligned. Thus, a dual role for 
titin was proposed: on the one hand, it should 
provide axial continuity between the two filmxmnt 
systems in order to be able to produce resting 
tension; on the other hand titin should keep thick 
filaments in register in the centre of the sarcomere, 
thus enabling the directed sliding of thick and thin 
filaments upon contraction (Horowits and Podolsy, 
1987). This proposed role for titin necessarily con- 
strains its localization. Nevertheless, early efforts 
using polyclonal antibodies resulted in conflicting 
views of the exact disposition of titin in the sar- 
comere (Maruyama et al., 1985; Wang, 1984). A 
panel of monoclonal antibodies directed against a 
series of distinct epitopes along the protein dem- 
onstrated that single titin molecules extend all the 
way from the Z line through the half sarcomere up 
to the M band (Ft~rst et al., 1988; Ffirst et al., 
1989b). These as well as other studies also revealed 
that titin is firmly anchored along the thick filament, 
while it can be stretched at least four-fold over its 
I band portion (Ffirst et al., 1988; Itoh et al., 1988: 
Whiting et al., 1989; Wang et al., 1993). The 
impressive molecular dimensions of titin were also 
demonstrated by electron microscopy of the purified 
protein (Maruyama et al., 1984; Trinick et al., 
1984; Wang et al., 1984). The most conclusive 
demonstration was from Nave et al. (1989): these 
pictures showed a long and thin rod (approximately 
1 #m in length, 3-4  nm diameter) bearing a con- 
spicuous head structure at one end. This head 

reflects the M band-anchoring portion of titin and 
includes two M line proteins (Nave et al., 1989: see 
also below/. An exhaustive panel of biochemical 
and biophysical methods was used to address crucial 
questions about titin, like for instance its mass, 
length, intrinsic elasticity and shape (Maruyama et 
al., 1986; Hainfeld et al., 1988: Kurzban and Wang, 
1988: Nave et al., 1991; Nave et al., 1989). The 
results consistently indicated a long. flexible protein 
of a molecular mass in the range of 2.5-3 million 
that exhibits largely fl-sheet structure. However, 
such methods, using the whole 1 Ira1 polypeptide, 
are at a loss to explain in molecular detail the 
mechanisms of elasticity (Soteriou et al., 1993a: 
King, 1994)  or to map the ligand interactions of 
the molecule in a spatially resolved manner. In 
order to approach these questions at the molecular 
level it is necessary to gain access to the complete 
primary structure of the 3 MDa protein. 

How titin is assembled from modules 

Over the last years, the advances in large-scale 
sequencing technology have made the primary 
structures of a family of related proteins available. 
The first molecule whose complete primary struc- 
ture became available was the mutationally defined 
uric-22 gene product from the nematode Caenor- 
habditis elegans (Moerman et al., 1988: see below). 
~vitchin was found to be an unusually large mod- 
ular protein (molecular mass ~ 750kDa) mainly 
consisting of regularly arranged 100 amino acid 
domains that belong to the immunoglobulin su- 
perfamily (Benian et al., 1989). This general prin- 
ciple of a modular architecture is shared by other 
invertebrate giant muscle proteins (Ayme-South- 
gate et al., 1991; Fyrberg et al., 1992; Lakey et al., 
1993) as well as vertebrate titin. The complete 
primary structure of titin is expected to be available 
in the near future (Labeit et al., in preparation). 
The analysis of titin begun with cDNA contigs 
isolated from human cDNA expression libraries 
using A band titin-speciflc antibodies. These cDNAs 
showed a repetitive pattern of two kinds of modules 
that belong to the immunoglobulin superfamily: 
fibronectin class III (titin type I domains) and im- 
munoglobulin C2 (titin type II domains) repeats 
(Labeit et al., 1990). Extensions of these sequences 
soon revealed a more complex picture: in the C- 
region of the A band (Sj/~str/Sm and Squire, 1977) 
these type I and II modules are arranged in super- 
repeats of 11 modules each (Labeit et al., 1992). 
As the predicted size of one module is about 4 nm 
(Holden et al., 1992), the expected extent of one 
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l l domain super-repeat is 44 nm. This closely re- 
flects the spacing of the 11 transverse stipes ob- 
served in electron micrographs (Sj6str6m and 
Squire, 1 9 7 7 ) .  Analysis of the domains within sev- 
eral super-repeats of titin revealed a higher degree 
of similarity between domains 11 positions apart, 
even in sequence stretches that are not crucially 
involved in the folding of Ig domains (Labeit et al., 
1992; Higgins et al., 1994: Politou et al., 1994a). 
Originally the concept of a molecular ruler was 
proposed for titin's role to tailor thick filaments to 
a uniform length (Whiting et al., 1989; Trinick, 
1992). Although this hypothesis awaits ex- 
perimental evidence, the finding of the 11 domain 
super-repeat in the C-region suggests that this con- 
cept may well hold true for interactions with ac- 
cessory proteins (see below). A number of further 
cDNAs has confirmed a high degree of inter-species 
homology of A band titin (Labeit et al. 1992; Fritz 
et al., 1993) up to the A/I band junction (Tan 
et al,, 1993), as might be expected from a molecule 
involved in multiple protein-protein interactions. 

The linking of cDNA contigs, derived from in- 
dependent clones and obtained by antibodies 
mapped ultrastructurally, also allowed the ori- 
entation of titin in the sarcomere to be defined. 
Thus the N-terminus was placed in the Z line and 
the C-terminus in the M band (Labeit et al., 1992). 

Towards the M band a catalytic protein kinase 
domain, similar to the myosin light chain kinase 
family, was found. The presence of a kinase domain 
now seems to be the common denominator of the 
"giant muscle protein superfamily", which includes 
titin, twjtchin, projectin and the molluscan mini- 
titins, as revealed by DNA sequencing and im- 
nmnological methods (Benian et al., 1989: Nave 
et al., 1991: Labeit et al., 1992: Vibert et al., 1993: 
Heierhorst et al., 1994). This group of muscle pro- 
teins may therefore also be regarded as a family of 
unusually large protein kinases of yet unknown 
function. The conservation of the molecular or- 
ganization of the P-region modules (Labeit et al., 
1992) and of the kinase domain from nematode to 
man, argues for a crucial function in muscle. The 
M band region of titin (located C-terminally to the 
kinase domain) consists of a complex array of type 
II modules, interspersed by unique sequence in- 
sertions with no homology to other known proteins. 
Within one of these insertions, four copies of the 
amino acids VKSP are repeated in analogy to the 
multi-phosphorylation repeat of neurofilaments 
(Gautel et al., 1993b). A related RSP motif was 
reported from an avian cDNA reactive to the 
Pc 1200 antibody (Maruyama et al., 1994), how- 
ever, the position of this antibody is not un- 
ambiguously defined. 

The module patterns of I band titin seem to be 
of a completely different organization if compared 
to the super-repeat arrangement of the A band. A 
cDNA derived from the main immunogenic region 
of human cardiac titin near the A/I junction showed 
both type I and type II domains in an irregular 
pattern (Gautel et al., 1993a). Partial cDNA se- 
quences from embryonic avian I band titin suggest 
that immunoglobulin C2 modules may be an 
abundant building block along this portion of titin 
(Maruyama et al., 1993). Since this region of titin 
is also the part that is extensible upon sarcomere 
stretch and is likely to show elastic behavior, the 
study of this molecular region should, in the long- 
term, enable us to understand the molecular basis 
of titin elasticity. 

The making of modules 

The most universally used module of cardiac titin 
is the immunoglobulin C2 domain (Labeit et aI., 
in preparation). The sequence similarity of these 
modules to other members of the immunoglobulin 
superfamily (see below) is reflected in an analogous 
fold of the amino acid chain, resulting in a beta 
barrel with seven strands that tightly buries the 
invariant tryptophane (Holden et al., 1992; Politou 
et al., 1994a). This common fold displays re- 
markable, though variant, stability in all regions 
of the sarcomere (Politou et al., 1994a, b). Although 
intrinsic extensibility of A band titin has been dem- 
onstrated (Higuchi et al., 1992), there is no in- 
dication that A band titin extends significantly at 
physiological salt conditions or sarcomere lengths 
(see above). Differences in melting temperatures 
and urea denaturation midpoints for modules from 
this region are therefore more likely to reflect "neut- 
ral" changes or sequence differences necessary to 
immobilize different ligands rather than to play a 
mechanical role. In addition, little is known about 
stabilizing interactions that may occur between 
neighbouring modules and differences in stability 
could well be due to a loss of such neighbouring 
domains or seemingly "useless" linkers (Politou 
et al., 1994a). This highlights the general problem 
of dissecting large modular proteins into functional 
units. 

Interactions with other sarcomeric 
proteins 

If indeed the main task of titin is to stabilize the 
contractile apparatus and to maintain sarcomere 
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Figure 1 Morphology of titin molecules as revealed by low angle rotary shadowing with tantalum/tungsten. Note the 
uniform length of the molecules and the globular head-piece at the end that is located in the M band of the sarcomere. 
Tobacco mosaic virus was added for a comparison of sizes (arrow). Bar: 500 nm. (reproduced from Nave et al., 1989). 

integrity, then it has to be able to bind to a number of 
sarcomeric proteins at distinct parts of the myofibril. 
Titin must, for instance, be firmly attached to the 
thick filament. In vitro binding assays indeed in- 
dicated such a direct interaction (Maruyama et al., 
1985; Labeit et al., 1992). A group of monoclonal 
titin antibodies exhibiting multiple epitopes in the 
A band also hinted at a more complex interaction 
of titin with the thick filament via C-protein and 
H-protein, both previously described as myosin- 
binding proteins (Ftirst et aL, 1989b; Vaughan et 
aL, 1993 and references herein). This interaction 
has, at least for C-protein, been confirmed by various 
in vitro assays (Ffirst et al., 1992; Labeit et al., 1992; 
Koretz et at., 1993; Soteriou et al., 1993b). The 
latter two papers also reported binding of titin to 
AMP-deaminase, an enzyme which is located in 
the I band of the sarcomere (Cooper and Trinick, 
1984). It is interesting to imagine ti t in--beyond its 
role in anchoring the contractile apparatus--as a 
scaffold to immobilize certain enzymes or even 
multi-enzyme complexes (Cooper and Trinick, 
1984). 

Probably the strongest interactions of A band 
titin occur at the M disk: two major M band proteins, 
namely M-protein and myomesin, were shown to 
copurify consistently with titin under native con- 
ditions. The interaction could only be completely 
abolished by strong denaturants or by proteolysis 

(Nave et al., 1989). An interesting aspect that is 
revealed by these observed bindings is the following: 
the results summarized above now put C-protein, H- 
protein, M-protein and myomesin into the context of 
a cytoskeletal framework. The recent availability of 
cDNA sequences for titin (see above), C-protein 
(Einheber and Fischman, 1990; F~irst et al., 1992; 
Weber et al., 1993), H-protein (Vaughan et al., 
1993), M-protein (Noguchi et al., 1992: Vinkemeier 
et al., 1993) and myomesin (Vinkemeier et al., 
1993) rather enforces this view. All these proteins, 
like titin, belong to the group of the intracellular 
members of the immunoglobulin superfamily (Fig. 
2). Each "family member" is characterized by a 
particular pattern of immunoglobulin CII and 
fibronectin type lJ/domains. M-protein and myo- 
mesin exhibit an overall sequence similarity of 50% 
and the same domain organization; thus they can 
be viewed as a subfamily (Vinkemeier et al., 1993). 
The C-protein isoforms together with the H-protein 
seem to define another subfamily, since the domain 
sequence of the latter is identical to the C-terminal 
portion of C-proteins (Vaughan et al., 1993). The 
distinct domain patterns may explain the differential 
localization within the A band of the sarcomere. 

These findings now lead to a view of the cyto- 
skeleton of the myofibril as a highly modular struc- 
ture in which these two groups of domains build a 
structural framework for multiple protein-protein 



Sarcomere Cytoskeleton: Titin and Associated Proteins 955 
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Figure 2 Domain organization of proteins comprising the cytoskeleton of the vertebrate striated myofibril. The 
schematic illustration of the repeat patterns of the cytoskeletal proteins identified so far reveals that they comprise to 
a common group, the intracellular members of the inununoglobulin superfamily (compiled from references cited in the 
text). 

interactions. Homophilic, as well as heterophilic 
bindings of individual domains could occur in a 
similar fashion as in the extracellular proteins of the 
immunoglobulin superfamily. Individual domains 
could provide "a stable platform upon which a 
diversity of sequences are exposed on the external 
surfaces of the beta sheets or on the loops con- 
necting the beta strands" (Williams et al., 1989). 
The problem of structure-function correlation will 
certainly be tackled in the near future by assaying 
the interactions of a panel of bacterially expressed 
domains in combination with the ultrastructural 
mapping of functional domains by immunoelectron 
microscopy. This makes both a detailed structural 
and functional understanding of the sarcomeric 
cytoskeleton feasible. 

The role of tiUn in muscular 
development 

Morphogenesis of the striated myofibril involves a 
complex sequence of events which in the vertebrate 
embryo extends over a period of several days. The 
detailed analysis of the processes involved is com- 
plicated by the fact that heart muscle and the 
various skeletal muscles (trunk, head and limb 
muscles) develop on different time scales. The avail- 
ability of muscle cell culture systems derived from 
embryonic tissue has considerably facilitated ex- 
perimental access to these questions. The fun- 
damental differences in the experimental systems 
used, however, has to be kept in mind when results 
are compared and/or extrapolated. 

Several studies have investigated the expression 
and assembly of titin relative to other myofibrillar 
proteins (see also the review by Fulton and Isaacs, 
1991). A first key question to be asked is, when does 
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the expression of the various sarcomere-speciflc 
proteins become evident? A series of studies using 
different combinations of antibodies, mainly on cup 
tured cardiac myocytes, culminated in the as- 
sumption that the expression ofdesmin (the muscle- 
specific intermediate filament protein) in early post- 
mitotic myoblasts precedes the expression of a co- 
hort of other myoflbrillar proteins (see Schultheiss 
et al., 1990 and references herein). The early ap- 
pearance of desmin holds true also in several other 
studies on rat and mouse skeletal muscle (Bignami 
and Dahl, 1984; Ffirst et 03., 1989a; Schaart et al., 
1989). A comparative analysis of the expression 
of sarcomeric proteins in the myogenesis of the 
mouse embryo, however, revealed a specific order 
of appearance: desmin~titin~c~-actinin-+muscle 
myosin, actin and myomesin~nebul in  in myo- 
blasts. M-protein and C-protein were only revealed 
much later when myotubes began to form (Ftirst 
et 03, 1989a; Ffirst and Weber, in preparation). 

The next major event is the successive integration 
of these proteins into myofibrils, presumably on 
stress-fibre-like structures beneath the sarcolermna 
(Dlugosz et al., 1984). In the early development 
of the chicken embryo heart, titin was found in 
periodically aligned spots together with ~-actinin, 
at a time when sarcomeric actin and myosin were 
still diffusely organized (Tokuyasu and Maher, 
19 8 7). This could reflect the initiation of sarcomere 
formation at the Z line found earlier by electron 
microscopy (Markwald, 19 73). Essentially the same 
conclusions were reached in studies of cultured 
chicken cardiomyocytes comparing the patterns of 
titin, actin and tropomyosin (Handel et al., 1991) 
or those of titin, myosin, a-actinin and C-protein 
(Rhee et 03., 1994). On the other hand some reports 
concluded a close association of titin with myosin 
in developing muscle cells (see also review by Fulton 
and Isaacs, 1991). This discrepancy may be ex- 
plained by the fact that the images provided by 
different titin antibodies depend on the position of 
the corresponding epitope along the titin poly- 
peptide. Thus it seems that the Z line end is already 
anchored at an early stage (resulting in periodic 
labeling) whereas the interaction with the A band 
occurs at a later time point (Ffirst et al., 1989a). 
This view is strikingly supported by the recent 
characterization of the C-terminal portion of titin 
(see also above). This part of the molecule (situated 
in the M band of the sarcomere) is phosphorylated at 
early developmental stages by a kinase structurally 
related to cdc2 kinase. Upon differentiation these 
sites are likely to become dephosphorylated (Gautel 
et a3., 1993b). This would provide an elegant pos- 
sibility to control the assembly of titin in the dif- 
ferentiating myofibril. 

Titin and muscular disease 

Although the large size of the titin gene and its 
repetitive structure seem to make it a likely target 
for genetic diseases, little is known so far about the 
involvement of the titin gene or protein in human 
disease. The invertebrate giant muscle proteins 
twitchin and projectin show several mutants with 
altered function. One mutant, for instance, results 
in anomalous movement in C. elegans (Benian et 
al., 1989: Moerman et al., 1988), while another 
one even leads to lethal phenotypes in homozygous 
Drosophila due to impaired hatching (Fyrberg et 
al., 1992), No comparable genetic defects have 
however, been identified in human titin so far. One 
reason for this apparent scarcity of large genetic 
defects in the titin gene on human chromosome 2q 
(Labeit et 03. 1990) may be the crucial involvement 
of titin in muscle development, leading to early 
abortion due to a non-functional heart-anlage. On 
the other hand, small deletions or point-mutations 
may be of little effect due to the large size and 
redundancy of the modular arrays with multiple 
potentials for compensation, as long as continuity 
from the Z line to the M band is assured. 

The known examples of titin in muscular disease 
seem to reflect mostly a secondary involvement, 
like an increased degradation of titin by calpain due 
to elevated calcium levels in Duchenne's dystrophy 
(Ffirst et al., 1987: Matsumura et 03., 1989), Sur- 
prisingly, titin was found to be specifically re- 
cognized as an autoantigen in a subset of 
Myasthenia gravis, where patients with myasthenia 
gravis and thymoma (MGT) form IgG auto- 
antibodies against titin (Aarli et 03., 1987; Aarli 
et al., 1990: Williams et al., 1992). Molecular clon- 
ing using sera with high anti-titin titres dem- 
onstrated that these titin-autoantibodies are 
directed against a very short sequence stretch in 
the A/I junction, confined to a protein fragment of 
only about 30kDa. (Gautel et 03., 1993a) which 
represents a main immunogenic region of titin. 
Assays using this recombinant titin fragment detect 
titin autoantibodies in 97% of patients with MGT. 
Clinically, the recognition of MGT is important since 
removal of a thymoma at an early stage may 
determine patient survival (LeGolvan and Bell, 
1977). Hence, the availability of a recombinant 
antigen may prove a useful clinical marker for 
this purpose. Titin has also been described as a 
histological marker for the differential diagnosis of 
rhabdomyosarcoma v leiomyosarcoma and leio- 
myoma (Osborn et 03., 1986). In mice, the titin 
gene maps on proximal chromosome 2 in proximity 
to the gene of nebulin and the "muscular dystrophy 
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with myositis" (mdm) gene (Mfiller-Seitz et al., 
1993), but it is as yet unclear  if this genetic disease 
is caused by mutat ions  of either nebul in  or titin or 
other genes. The complete cDNA sequence of titin 
will provide a basis to screen potential candidates 
at high resolution for muta t ions  in the titin gene. 
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