Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells

MPG-Autoren
/persons/resource/persons14946

Chow,  R. H.
Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15340

Klingauf,  J.
Research Group of Microscopy of Synaptic Transmission, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15570

Neher,  E.
Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chow, R. H., Klingauf, J., & Neher, E. (1994). Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12765-12769. doi:10.1073/pnas.91.26.12765.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-0403-5
Zusammenfassung
We have used the secretory response of chromaffin cells to estimate the submembrane intracellular Ca2+ concentration ([Ca2+]i) "seen" by secretory granules during short depolarizations. The rate of secretion during a depolarization was assessed by combining the electrochemical method of amperometry and electrical capacitance measurements. The rate was then related to [Ca2+]i based on a previous characterization of how Ca2+ affects the dynamics of vesicle priming and fusion in chromaffin cells [Heinemann, C., Chow, R. H., Neher, E. & Zucker, R. S. (1994) Biophys. J. 67, in press]. Calculated [Ca2+]i rose during the depolarization to a peak of < 10 microM, then decayed over tens of milliseconds. In synapses, vesicles are presumed to be located within nanometers of Ca2+ channels where [Ca2+]i is believed to rise in only microseconds to near steady-state levels of hundreds of micromolar. Channel closure should lead to a decrease in [Ca2+]i also in microseconds. Our findings of the slower time course and the lower peak [Ca2+]i suggest that in chromaffin cells, unlike synapses, Ca2+ channels and vesicles are not strictly colocalized. This idea is consistent with previously published data on dense-core vesicle secretion from diverse cell types.