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Abstract

In the speech production model proposed by [Levelt, W. J. M., Roelofs, A., Meyer, A. S. (1999).

A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, pp. 1–75.],

syllables play a crucial role at the interface of phonological and phonetic encoding. At this interface,

abstract phonological syllables are translated into phonetic syllables. It is assumed that this

translation process is mediated by a so-called Mental Syllabary. Rather than constructing the motor

programs for each syllable on-line, the mental syllabary is hypothesized to provide pre-compiled

gestural scores for the articulators. In order to find evidence for such a repository, we investigated

syllable-frequency effects: If the mental syllabary consists of retrievable representations

corresponding to syllables, then the retrieval process should be sensitive to frequency differences.

In a series of experiments using a symbol-position association learning task, we tested whether high-

frequency syllables are retrieved and produced faster compared to low-frequency syllables.

We found significant syllable frequency effects with monosyllabic pseudo-words and disyllabic

pseudo-words in which the first syllable bore the frequency manipulation; no effect was found when

the frequency manipulation was on the second syllable. The implications of these results for the

theory of word form encoding at the interface of phonological and phonetic encoding; especially

with respect to the access mechanisms to the mental syllabary in the speech production model by

(Levelt et al.) are discussed.
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The aim of the present paper is to provide evidence for the assumption that speakers

access a separate mental store containing pre-compiled motor-programs of syllabic size.

The notion of such a Mental Syllabary that is accessed during speech production is an

inherent part of the theory of spoken word production by Levelt et al. (1999) and is also

implemented in its computer simulation WEAVERCC (Roelofs, 1997a,b, 1998, 1999).

In fluent speech, the individual sounds of a word are bundled together to form optimally

pronounceable units, namely syllables, which serve as the basis for motor execution. The

tens of thousands of words in any given language are composed of a relatively small

inventory of syllables. In fact, 500 syllables from English, Dutch, and German, i.e. less

than 5% of the entire syllable inventory in those languages, suffice to produce

approximately 80% of all speech in those languages (Schiller, Meyer, Baayen, & Levelt,

1996). To account for the easy and rapid production of these frequently occurring

syllables, Levelt and Wheeldon (1994) proposed a repository of ready-made syllabic

motor programs, called the Mental Syllabary.

The idea of a phonetic store of syllables was originally proposed by Crompton (1981)

and adopted in Levelt (1989). To account for certain types of speech errors (e.g. phoneme

and syllable substitutions and blends), Crompton suggested that speakers retrieve syllable-

sized programs from a library of articulatory routines. However, despite the general

agreement that syllables constitute an important linguistic and phonological/phonetic unit

(see Blevins, 1995; Fujimura & Lovins, 1978; Hooper, 1972; Kenstowicz, 1994; Selkirk,

1982) and the support from speech error analyses (Fromkin, 1971; Shattuck-Hufnagel,

1992) and especially meta-linguistic tasks (for Dutch: Schiller, Meyer, & Levelt, 1997; for

English: Treiman & Danis, 1988), there is to date relatively little psycholinguistic on-line

evidence that the syllable serves as a functional unit in speech production. This also holds

for the data reported in Levelt and Wheeldon (1994)-see below. Furthermore, what

evidence there is for the functional importance of the syllable is orthogonal to the issue of

whether or not there is mental storage for precompiled syllabic programs.

First, we introduce the process of word-form encoding in the framework of the model

proposed by Levelt et al. (1999) and its computer simulation WEAVERCC (Roelofs,

1997a,b, 1998, 1999) with particular attention to the encoding steps at the interface of

phonological and phonetic encoding and crucially how access to the mental syllabary is

involved. Second, an overview of the experimental evidence for syllabic representation in

speech production and stored syllabic units at different processing levels is presented.
1. Phonological and phonetic encoding

As soon as a speaker has selected a target word from the mental lexicon, phonological

encoding can be initiated. It largely consists of computing the word’s syllabification and

prosody in the larger context of the utterance. This, in turn, is incrementally followed by

phonetic encoding, which includes the computation of the articulatory gestures for the

target word’s syllables in their phonetic context. Finally, the execution of these gestural

scores by the laryngeal and supralaryngeal muscle systems produces the spoken word.

The present paper exclusively concerns the stages of phonological and phonetic encoding.
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2. Phonological encoding

The first operation in phonological encoding is the retrieval of the target word’s

phonological code from the mental lexicon. The code consists of an ordered set of

phonemic segments. For stress-timed languages such as English and Dutch, the model also

assumes the existence of sparse metrical markers in phonological codes. In these

languages, the default position for lexical stress is defined as the first full-vowel syllable of

a word. Thus, for polysyllabic words that do not have the stress on the first stressable

syllable, the metrical structure is stored as part of the phonological code; but, for

monosyllabic words and for all other polysyllabic words, it is not stored but computed.

Metrical structures describe abstract groupings of syllables (s) into feet (S) and feet into

phonological words (u). A phonological word was defined as the minimal unit above the

metrical foot, to which clitics, such as unstressed words, can attach (as in ‘she’s’ where the

reduced form of ‘is’ attached to ‘she’, see Levelt, 1989; Wheeldon & Lahiri, 1997).

Crucially, at the stage of phonological encoding, phonological segments are not yet

assigned to syllabic positions, nor is the C(onsonsant)-V(owel) (hereafter CV-) structure

for the word specified. This is in contrast to other models of spoken word production (in

particular Dell, 1986, 1988), which assume that the retrieved phonological codes are pre-

syllabified. Internal syllabic positions such as onset, rhyme and coda are pre-specified in

Dell’s model but not in the Levelt model. The main argument for not pre-determining

syllable positions in the phonological codes stored in the lexicon results from the

phenomenon of resyllabification. In connected speech, syllable boundaries often differ

from a word’s or morpheme’s canonical syllabification. The domain of syllabification is

the phonological word, which can be smaller or larger than the lexical word due to

morpho-phonological processes like inflection or cliticization (Booij, 1995). If, for

instance, the stored phonological code for the word defend would be syllabified (i.e. as de-

fend), then the speaker must ‘resyllabify’ the word when used in a different context, such

as the past tense (de-fen-ded) or cliticization (defend it - de - fen - dit). The ubiquity of such

‘resyllabifications’ in the normal use of English (or Dutch for that matter) renders pre-

specification of segments to syllable positions highly inefficient.1 The alternative

assumption, therefore, is that a word’s syllabification is not retrieved but computed on-

line depending on the context in which the word appears. During this process, called

‘prosodification’, retrieved segments are incrementally combined to form successive

syllables. Also, these successive syllables are incrementally assigned the appropriate

metrical properties, either following default stress, or otherwise the retrieved non-default

stress marking feature. The incremental composition of syllables follows, on the one hand,

universal syllabification constraints (such as maximization of onsets and sonority

gradations) and, on the other hand, language-specific rules, e.g. phonotactics. Together,

these rules create well-pronounceable syllables. The output of phonological encoding is a

phonological word, specified for its metrical, syllabic, and segmental properties.
1 The claim that phonological codes are not pre-syllabified is, in part, a language-specific claim. For a language

like Mandarin Chinese, which has a small set of syllables and limited resyllabification processes, the story might

be different (see, Chen, Chen, & Dell, 2002).
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Dell’s (1986, 1988) model makes different assumptions with respect to the

phonological encoding process. As already mentioned above, his model includes abstract

phonological representations that are specified for internal syllabic positions, i.e. the word

form retrieved from the mental lexicon activates not only segmental information but also

syllabic frames. These syllabic frames serve as placeholders into which the retrieved

segments are inserted during the process of segment-to-frame-association. The discussion

of whether or not the syllabic structure is part of word form encoding will be revisited

under the section ‘Empirical evidence for syllabic units in speech production’.
3. Phonetic encoding

The output of the phonological encoding process consisting of fairly abstract,

syllabified phonological words is incrementally translated into articulatory-motor

programs. These programs consist in large part of specifications for subsequent syllabic

gestures. A crucial assumption of Levelt’s theory is that speakers have access to a

repository of syllabic gestures. This repository, coined the ‘mental syllabary’ (Levelt,

1992; Levelt & Wheeldon, 1994), contains the articulatory scores for at least the high-

frequency syllables of the language. The model assumes that as soon as a syllable emerges

during incremental syllabification, the corresponding syllabic articulatory gesture will be

selected from the repository in a pre-motor area (Dronkers, 1996; Indefrey & Levelt, 2000;

Kerzel & Bekkering, 2000).

The output of the mental syllabary in turn serves as input to further phonetic encoding,

at which time contextually driven phonetic fine-tuning of retrieved motor programs

occurs: The motor programs are still rather abstract representations of the articulatory

gestures which have to be performed at different articulatory tiers, a glottal tier, a nasal tier

and an oral tier. The gestural scores are abstract in the way that their performance is highly

context-dependent (due to allophonic variation, coarticulation and—as a result of this-

assimilation). The actual details of the movements in realizing the scores, such as lip

protrusion and jaw lowering, is within the domain of the articulatory system (Goldstein &

Fowler, 2003). According to Levelt (1989), the stored syllable can be pronounced with

more or less force, with shorter or longer duration, and different kinds of pitch movements.

These are free parameters, which have to be set from case to case. For new or very low-

frequency syllables it is proposed that articulatory plans are assembled using the

segmental and metrical information specified in the phonological syllables. This route2

can also be used for the assembly of high-frequency syllables, for instance in cases when

more conscious on-line control of speech production is required, for example, when

speakers give a lecture or self-correct slips-of-the-tongue or speech errors in general.

However, the retrieval of gestural scores from the syllabary is usually faster and less error-

prone.
2 The terminology of ‘indirect’ or ‘direct’ route to refer to the computational process that bundles phonetic

segments to form syllabic scores was avoided as there is no consistent use of these terms in the literature.
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In the final step, the articulatory network, a coordinative motor system that includes

feedback mechanisms (Saltzman, 1986; Saltzman and Kelso, 1981; Goldstein & Fowler,

2003) transforms these articulatory plans into overt speech.
4. Predictions of WEAVERCC

WEAVER (Word-form Encoding by Activation and VERification) is the spreading

activation based computer network model developed by Roelofs (1992, 1996, 1997a,

1997b, 1998, 1999, 2002), which is based on Levelt’s (1989, 1992) theory of speech

production. WEAVERCC adopts Dell’s (1986) assumption of word form retrieval by the

spread of activation and Levelt’s (1992) on-line syllabification and access to a syllabary

(Levelt & Wheeldon, 1994).

WEAVERCC (Roelofs, 1997a,b, 2002) assumes that the syllabification of a word is

computed on-line during the speech production process. In the WEAVERCC model,

segments in the retrieved phonological code are not specified for their syllable position,

but only for their serial order within a word. The actual syllabic position of a segment is

determined by the syllabification process. Each retrieved segment in the phonological

code spreads activation to all syllabic gestures in which it partakes. Hence, upon retrieval

of a phonological code, there are always multiple phonetic syllable programs in a state of

activation. How is the appropriate syllable program selected? There are, first, selection

conditions. The crucial one is that the syllable matches the phonological syllable that is

incrementally composed; this involves a procedure of verification. Second, each syllable

in the syllabary has a frequency-dependent selection threshold. This causes the predicted

syllable frequency effect on naming latencies. Notice, however, that the threshold

assumption is a ‘modular’ one. Removing it does not affect the architecture of the system

as a whole. Third, syllable selection is subject to Luce’s (1959) choice rule. During any

smallest interval, the probability of selecting the (verified) target syllable equals the ratio

of its activation to the summed activation of all syllable nodes. Given the choice ratio, the

expected selection latency can be computed.
5. Empirical evidence for syllabic units in speech production

The question of whether or not the syllable constitutes a relevant unit in speech

production has been the subject of many psycholinguistic studies. Analyses of speech

errors suggested that phonological speech errors could be explained to a large extent

within a syllabic framework. It was often argued that segmental speech errors such as

exchanges of segments only occur for identical syllable internal positions, i.e. onsets

exchange with onsets, nuclei exchange with nuclei, etc. (Berg, 1988; MacKay, 1970;

Nooteboom, 1969; Shattuck-Hufnagel, 1979; Stemberger, 1982); this is referred to as the

syllable position constraint. A quantitative analysis, however, showed that the majority of

such errors take place in the onset position. Thus, the syllable onset constraint may be a

word-onset constraint (Shattuck-Hufnagel, 1987, 1992; see Meyer, 1992, for a critical

review). Recent analyses of speech errors that have taken this factor into account
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(Vousden, Brown, & Harley, 2000), however, do not support the view that the syllable-

position constraint on errors is really just a word-onset constraint.

Another source of evidence are meta-linguistic tasks, which suggest that syllables play

a role at some level of processing in speech production (Schiller et al., 1997; Treiman,

1983; Treiman & Danis, 1988; see Bagemihl, 1995 for a review) but no strong claims are

made about which level is involved. Despite the support for the syllable and the relevance

of syllables to linguistic phenomena, the support from reaction-time studies over the past

decade is rather scarce.

A series of cross-linguistic studies used a syllable priming task to identify the syllable

as a relevant unit in speech production (for Dutch: Baumann, 1995; Schiller, 1997, 1998;

for Mandarin Chinese: Chen, Lin, & Ferrand, 2003; for French: Brand, Rey, & Peereman,

2003; Evinck, 1997; Ferrand, Segui, & Grainger, 1996; Schiller, Costa, & Colomé, 2002;

for English: Ferrand, Segui, & Humphreys, 1997; Schiller, 1999, 2000; Schiller and Costa,

submitted; for Spanish and an overview see Schiller et al., 2002).

In all these studies, a syllabic prime was given which was either congruent with the

target’s syllabic structure (e.g. ba. as prime for ba.lade or the prime bal. for bal.con; a dot

indicates syllable boundaries) or incongruent (e.g. ba. as a prime for bal.con or the prime

bal. for ba.lade). The majority of these studies found a segmental overlap effect rather than

a syllable priming effect, i.e. phonologically related primes, whatever their syllabic

relation to the target word, facilitated the response relative to unrelated control primes,

with longer CVC-primes being more effective than CV-primes. Moreover, no specific

syllable priming effects were obtained. The original segmental overlap effect (Schiller,

1998) has recently been specified in more detail (Schiller, 2004). Much discussion has

been given to the results of the apparent syllable priming effect in French (Ferrand et al.,

1997, Experiment 5). However, Brand et al.’s (2003) failure to replicate the Ferrand effects

suggests that this should not be taken as strong evidence for the syllable effect (see also

Evinck, 1997; and for a review Schiller et al., 2002). In fact, the (only) study that showed a

clear syllable priming effect was a study by Chen et al., (2003) conducted in Mandarin

Chinese. Mandarin Chinese compared to the other languages under investigation consists

of a very reduced number of syllables. Mandarin Chinese has (not counting tone) a syllable

inventory of 400 different syllables whereas languages as Dutch and English have more

than 12,000 different syllables. Additionally, syllables in Mandarin Chinese are not

resyllabified in connected speech. Thus, in languages with far less syllables that are not

resyllabified the storage of syllables might be different. It might be the case that the

syllable structure is in fact stored within the word-form that is retrieved from the mental

lexicon. This would explain why a significant syllable priming effect could be found in

Mandarin Chinese but not in Indo-European languages (see also O’Sheagdha, Chen, Shen,

& Schuster, 2004). The issue of cross-linguistic differences has to be further investigated.

So far, we would like to conclude that the reason why there was no syllable priming effect

in Dutch, English, French and Spanish is that at the stage where the (explicit) priming taps

into the speech production process, there is only segmental but no syllabic structure

available. If one considers that the primes in the syllable-priming task never get overtly

articulated, one can imagine that these syllabic primes may not reach the late stage where

syllables are computed on-line. Instead, the primes are assumed to speed up the segmental

retrieval from the mental lexicon. The finding that the magnitude of the priming effect
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increases with an increase in the number of shared segments, independent of a syllable

match or mismatch with the target’s first syllable, confirms the assumption that only

shared segments can be primed. The finding that the magnitude of the priming effect

increases with an increase in the number of shared segments, independent of a syllable

match or mismatch with the target’s first syllable, confirms the assumption that only

shared segments can be primed. However, there are also studies that suggest that the word-

form in the mental lexicon is in fact richer than it is assumed within the Levelt et al. (1999)

framework. These studies provide evidence that the word-form contains information about

the internal syllabic structure such as the word’s CV-structure as well as syllable internal

positions (Costa & Sebastián-Gallés, 1998; Dell, 1986, 1988; Sevald, Dell, & Cole, 1995).

But, as discussed, in case of stored phonological syllables, the various syllable priming

studies should have shown different results for matching and mismatching prime-target

pairs. The fact that there was a segmental overlap effect leads us to believe that the word-

form does not contain any syllabic information. To trace the emergence of the syllable at

the interface of phonological and phonetic encoding, we might have to opt for a paradigm

which is known to be sensitive also to later stages of word form encoding: The ‘implicit

priming paradigm’. Whereas the explicit priming is sensitive only to early stages of

phonological encoding, the implicit priming paradigm exhibits effects that emerge at these

early stages but also comprise later stages at the interface of phonological and phonetic

encoding, i.e. on-line syllabification, possibly including syllabary access (Meyer, 1990,

1991; Roelofs, 1996, 1998; Roelofs & Meyer, 1998).

In a recent study, Cholin, Schiller, and Levelt (2004) used an odd man out variant

(Janssen, Roelofs, & Levelt, 2002) of the implicit priming technique to demonstrate that

speakers can benefit from a shared syllable structure. In this study, subjects learned sets of

prompt-target pairs. Two types of response sets were compared, namely constant and

variable response sets: Constant sets had overlapping initial segments and a constant

CV-structure (as in spui.en, to drain; spui.de, drained; spui.er, person who drains;

spui.end, draining). Variable sets had an overlap of the first segments but did not have a

constant syllable structure (e.g. spoe.len, to rinse; spoel.de, rinsed; spoe.ler, person who

rinses; spoe.lend, rinsing). Note that the second item of this set shares the same initial

segments but has a different initial syllable structure; it is the odd-man out for the set. The

prediction was that-under the assumption that the syllable is a relevant processing unit in

speech production and is stored and accessed independently during word form encoding-

speakers need knowledge about the current syllabic structure in order to prepare for a

target utterance. In two studies investigating two different CV-structures (CVV, Exp. 1;

CCVV, Exp. 2), Cholin et al. (2004) found a significantly larger preparation effect for

constant sets as compared to variable sets. The authors argue that this preparation effect,

which cannot be attributed to a segmental overlap effect, offers strong evidence for the

relevance of syllables in word form encoding.

The virtue of the implicit priming paradigm is that it taps into later stages of word-form

encoding than explicit priming paradigms do, but its shortcoming is that it is sensitive to

all processing stages prior to articulation, including segmental retrieval, on-line

syllabification, and possibly access to the mental syllabary. Thus, the above effect could

arise at any one of these stages or, possibly, at a combination of these stages. These results

testify to the relevance of syllabic units at the interface of phonological and phonetic
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encoding, however, they do not represent indisputable evidence for the notion of

separately stored syllabic units. It cannot be concluded with certainty that access to the

mental syllabary is involved. Effects that would certainly provide evidence for

the existence of the mental syllabary are effects of syllable frequency because only the

retrieval of stored units produces frequency effects.
6. Evidence for the mental syllabary and syllable frequency studies

As already stated, the mental syllabary is conceived as a store for abstract motor

routines of syllabic size. The economic advantage of such a repository becomes apparent if

one considers the computational load that would evolve when the single sub-syllabic or

phonemic motor-patterns had to be computed anew each time in speech production. The

above mentioned analyses by Schiller et al. (1996) demonstrated that speakers re-use a

rather small set of syllables over and over again, even for languages such as English,

German or Dutch which have more than 12,000 different syllables. It would be efficient to

store these over learned syllabic patterns and retrieve them as wholes, instead of

computing them anew time and again as they appear during syllabification.

Levelt and Wheeldon (1994) studied this storage hypothesis by comparing access

latencies of high- versus low-frequency syllables. They had subjects produce disyllabic

words consisting of high- versus low-frequency syllables. Participants learned to associate

symbols with written target words (e.g. ###### Z koning ‘king’). During the test phase,

the learned symbols were repeatedly presented in random order and each time participants

responded with the associated target word.

Levelt and Wheeldon’s core finding was that, when word frequency was controlled for,

words consisting of high-frequency syllables were named faster than words consisting of

low-frequency syllables. If all syllables are computed on-line rather than retrieved from a

repository, their frequency of use should be irrelevant. The obtained syllable frequency

effects therefore seemed to support the notion of the mental syllabary. However, a

potential problem with this conclusion is that syllable frequency was correlated with

segment frequency in some of Levelt and Wheeldon’s experiments (Hendriks &

McQueen, 1996).

Evidence for the assumption that syllables are retrieved as whole entities come from

recent studies in Spanish and French. Carreiras and Perea (2004) reported syllable

frequency effects in Spanish speech production tasks (see also Perea & Carreiras, 1996).

Brand, Rey, Peereman, and Spieler (2002) found also significant syllable frequency effects

in a larger-scale study. Laganaro (2003) investigated effects of syllable frequency in

French from a psycho- and neurolinguistic perspective. In her psycholinguistic studies, she

found that syllable frequency affected naming latencies in a picture-naming experiment

(see also Alario, Ferrand, Laganaro, New, Frauenfelder, & Segui, 2004) and in non-word

reading. In her neurolinguistic study, she obtained a significant frequency effect on

segmental substitution errors and a syllable-frequency effect on non-word repetition

performance in aphasics. Furthermore, Aichert and Ziegler (2004) found a syllable

frequency effect in patients with apraxia of speech (but see Wilshire & Nespoulous, 2003;

Howard & Smith, 2002).
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To summarize, a speech production model was outlined that incorporates syllables as

functional units in word form encoding. We presented empirical evidence supporting this

assumption and moreover, we could make a good case for the stage at which syllables

come into play. It was argued that the absence of syllable priming effects on the one hand

and the positive syllable preparation effects on the other hand suggest that (phonologically

abstract) syllables are not stored units (as argued by Dell, 1986, 1988) but rather generated

by an on-line syllabification process.3 Evidence that these abstract phonological syllables

trigger the selection of their phonetic representations from a mental syllabary is still rather

scarce. As already mentioned, the results by Levelt and Wheeldon (1994) have to be

handled with care as some of the syllable frequency effects were confounded with segment

frequency. The syllable frequency effects in Spanish (Carreiras & Perea, 2004; Perea &

Carreiras, 1996) and also the positive results from French (Brand et al., 2002) provide

evidence for the notion of the mental syllabary but have to be seen before the background

that syllables in Romance languages might have a different processing status than syllables

in Germanic languages such as Dutch, German, and English4. The question of whether or

not speakers can access pre-compiled syllabic units from a repository is still under

discussion. The aim of the present paper is to gather additional evidence for the existence

of such a mental syllabary. An additional aim of the paper is to investigate whether or not

the claim that was raised in the Levelt and Wheeldon paper (1994) that only the second

syllable in disyllabic (pseudo-)words is sensitive to frequency manipulations can be

maintained.
7. Symbol-Position Association Learning Task

A Symbol-Position Association Learning Task was used to investigate effects of

syllable frequency, a technique which was comparable to the one used in the Levelt and

Wheeldon (1994) study. However, in the Levelt and Wheeldon (1994) study, participants

had to associate sets of four strings consisting of six non-alphabetic characters

(as ‘%%%%%%’ or ‘&&&&&&’) to four written disyllabic Dutch words (containing

high- and/or low-frequency syllables). In the present experiments, participants had to

associate an auditorily presented word to one of two positions on the screen. In learning

phases, participants were presented with a symbol, namely an icon of a little loudspeaker,

in one of two potential positions, left or right, and were simultaneously presented with the

to-be-associated word via headphones.
3 Note that the idea of a mental syllabary is also compatible with Dell’s syllabified phonological code, the

existence of stored units does not deny a store for pre-compiled syllabic programs.
4 Romance languages (or syllable-timed languages; Abercrombie, 1967; for psycholinguistic evidence see

Cutler, 1997; Cutler, Mehler, Norris, & Segui, 1986) have syllables as their primary rhythmic units. Germanic

languages (or stress-timed languages) have a stress-based rhythm and are less prone to use the syllable as primary

segmentation unit in speech perception (however, see Zwitserlood, Schriefers, Lahiri, & van Donselaar, 1993, but

also Vroomen & de Gelder, 1994; for a critical, cross-linguistic review see Cutler, McQueen, Norris, &

Somejuan, 2001).
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In production phases, i.e. practice and test phases, the symbol was presented either on

the left, the right, the top or the bottom of the screen to prompt the previously associated

target corresponding to the particular position. One of the main advantages of this

technique compared to the one applied by Levelt and Wheeldon (1994) lies in the

presentation of the spoken target item instead of a printed word during learning phases.

The auditory presentation of the target ensures that potential confounds deriving from

orthographic factors (e.g. grapheme frequency) can be excluded.

In order to test whether or not this method is at all sensitive to frequency effects, a pre-

test was conducted comparing the production latencies of high-frequency words compared

to low-frequency words. The fact that high-frequency words are produced significantly

faster than low-frequency ones is a stable finding in the literature (e.g. Jescheniak &

Levelt, 1994; Oldfield & Wingfield, 1965). The pre-test showed a clear word-frequency

effect: High-frequency word-forms were produced on average 37 ms faster than the low-

frequency word-forms: (694 ms for the high-frequency word-forms versus 731 ms for the

low-frequency word-forms). This result can be taken as a replication of the standard

finding that high-frequency words are produced faster than low-frequency words, which

reflects faster retrieval processes for high-frequency words from the mental lexicon. As the

pre-test demonstrated the Symbol-Position Association Learning Paradigm to be sensitive

to word frequency, it is plausible that it would also be sensitive to syllable frequency, even

though the two effects are assumed to arise at two different levels of processing.
8. Experiment 1: Monosyllabic pseudo words

In this experiment, the production of high-frequency versus low-frequency syllables is

investigated. The high-frequency monosyllabic pseudo-words have all the same CV-

structure, namely CVC. The outcome that high-frequency items are produced faster than

low-frequency items would support the notion of a mental syllabary.
9. Method

9.1. Participants

Sixteen native speakers of Dutch participated in the Experiment. They were randomly

taken from the pool of participants of the Max Planck Institute in Nijmegen, The

Netherlands and were paid for their participation. They had no known hearing deficit, and

they had normal or corrected-to-normal vision.

9.2. Materials

All frequency counts were obtained from the computer database CELEX (CEntre for

LEXical Information), which has a Dutch lexicon based on 42 million word tokens.

Syllable frequency was counted for phonetic syllables in Dutch. The phonetic script

differentiates the reduced vowel schwa from full vowel forms, giving approximately
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12,000 individual syllable types. Syllable frequencies were calculated for the database

from the word form occurrences per one million. Two syllable frequency counts were

calculated: The number of occurrences of each syllable within words (independent of the

frequency of occurrence of the syllable in a particular word position), i.e. the type

frequency and the number of the summed frequency of occurrence of each syllable (within

words), i.e. the token frequency. The syllable frequency ranges from 0 to approximately

90,000 per one million words, with a mean frequency of 121.5

For the following experiments, the experimental high- and low-frequency items should

only be different in their syllable frequency. Therefore, it was crucial to construct an

experimental item set that was controlled for length in phonemes, phoneme frequency, CV

structure and bigram frequency. We decided to administer only CVC-syllables to the list of

experimental items for the following reasons: (i) the CV-structure CVC is one of the most

frequent syllable structure in Dutch6 and (ii) CVC syllables provided for the best match on

various features between the high- and low-frequency sets. Furthermore, the CVC-

syllables could fulfill all of the criteria listed below.

We applied the following search criteria to the list of syllables: For a given high-

frequency syllable a low-frequency counterpart should be found that was different from

the given syllable only in one segment. For example, if the high-frequency syllable is kem

[k3m], the corresponding low-frequency syllable should be different by only the last

segment, thus, a possible counterpart is kes [k3s]. Thus, we have one pair of syllables

which has the same onset and the same nucleus, namely the same short vowel. The only

difference lies in the deviating coda, that is, the final consonant differentiates the two high-

and low-frequency syllables. The next search device was to take those two syllables and to

look again for counterparts but this time for each syllable in the opposite direction: For the

high-frequency syllable kem [k3m] this involved looking for a low-frequency syllable that

had an identical offset but a different onset. The last two positions should be matching. The

low-frequency syllable wem [y3m] has an offset-overlap with the high-frequency syllable

kem [k3m] and was taken as third member in the syllabic quadruple. The final step was to

look for a high-frequency syllable that had a) the same onset as the low-frequency syllable

wem [y3m] and (b) the same offset as the other low-frequency syllable kes [k3s]. A

successful quadruple was constructed when a high-frequency syllable was found which

fulfilled this criterion, which in this case was the high-frequency syllable wes [y3s]. See

Table 1 for a schematic depiction of the described quadruple.
5 The CELEX lexical database includes a list of Dutch syllables and their frequencies, based on syllabification

of isolated word forms. In connected speech, as discussed above however, context-dependent phonological rules

can modify the syllables and accordingly their token frequency. Schiller et al. (1996) carried out an empirical

investigation in order to estimate the changes syllables may undergo in connected speech. A large Dutch

newspaper corpus (TROUW) was transcribed, word-level rules were applied and then syllabified. In a first step

the resulting lexeme syllables were compared to the corresponding entries in the CELEX database. In a second

step, additional phonological sentence-level rules were applied to the TROUW corpus and then the frequencies of

the resulting connected-speech syllables were compared to the lexeme syllables again. The overall correlation

between lexeme and connected speech syllables was very high.
6 In the inventories (CELEX and TROUW) the three most frequently occurring syllable types are, in order of

frequency, CVV, CVC and CVVC, together accounting for more than 70% of all syllables. For more details and

exact values of the two inventories, please see Schiller et al. (1996).



Table 1

Example of an experimental quadruple consisting of two high- and two low-frequency syllables, onsets and

offsets are frequency controlled

Syllables within one quadruple

High-frequency Low-frequency

kem [k3m] kes [k3s]

wes [y3s] wem [y3m]
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One remaining criterion had to be taken into account before such a quadruple was

actually chosen to serve as an experimental quadruple. It was carefully controlled that

none of the syllables within one quadruple were in fact existing words as it was crucial to

investigate syllable frequency that was independent of word frequency. As already

mentioned, two different syllable frequency counts were calculated, the number of

occurrences and the summed frequency of occurrences; only instances that had in both

scores comparable values were taken. Eventually, eight quadruples were taken as

experimental item set. Thus, as every quadruple consisted of two high- and two low-

frequency syllables each, the item set contained sixteen high-frequency and sixteen low-

frequency items. The low-frequency items ranged in the count for the number of

occurrence (per one million words) from a value of 0.02 to 1.19 with an average of 0.31

(SDZ0.36) and for the count of the summed frequency of occurrence (per one million

words) from a value between zero and 3.67 with an average of 1.28 (SDZ1.28). For the

high-frequency-items the values in both counts were as follows: For the count number of

occurrence (per one million words), the high-frequency items ranged from 1.48 to 23.50

with an average of 5.32 (SDZ5.23). For the count of summed frequency (per one million

words) of occurrence, high-frequency items ranged from 34.12 to 1,192.57 with an

average of 242.32 (SDZ287.22). For an overview of all experimental quadruples and their

values in both frequency counts see the Appendix A. We decided not to present an

experimental quadruple as one experimental item set. Rather, all experimental sets were

composed of syllables from different quadruples, this to avoid phonological overlap

between the target items in one experimental set.

Since the immediate repetition of items could not be prevented in the present two-item

design, we introduced fillers in the form of different numbers presented in the center of the

computer screen that have to be named in between trials. This number naming should

distract participants’ attentiveness to any expectation of trial succession and beyond that it

should help to ‘neutralize’ the articulators as the immediate repetition of two identical

items could have huge facilitation effects. Four numbers were taken to serve as ‘fillers’: At

the beginning of each set and between two subsequent targets a number which appeared in

the middle of the screen had to be named. The following numbers were used: 1 (een),

3 (drie), 5 (vijf), and 8 (acht). These numbers were all monosyllabic and there was no

phonological overlap between the numbers and the experimental test items.

Acoustic versions of the syllables were spoken by a female native speaker of Dutch.

The spoken syllables were digitized at a sampling rate of 22 kHz, to be used during the

learning phase of the experiment. They varied in duration from 382 ms to 586 ms with an
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average of 484.69 ms (SDZ48.23 ms). There was no difference in duration between high-

frequency and low-frequency syllables (both ts!1).
9.3. Procedure and Apparatus

The experiment consisted of alternating learning, practice and test phases. Participants

were tested individually in a quiet room. They were given a detailed written instruction

specifying that they had to respond as accurately and as quickly as possible.

In the learning phases, the participant’s task was to associate an auditorily presented

target-word to one of two positions on the computer screen. An icon of a little white

loudspeaker (4 by 4 cm) was presented on one of two possible positions on a black

computer screen (iiyamaLM704UT) while the to-be-learned target word was simul-

taneously presented auditorily via headphones (SennheiserHD250). The two positions of

the loudspeaker icons were on the left or the right side on the screen. Participants were

instructed to listen carefully to the spoken pseudo-words and to memorize the position on

which the current two target items were presented. Each target word was presented two

times on its specific position.

In practice phases, the loudspeaker symbols were simultaneously presented on both

sides, namely the left and right position on the screen. Both icons were presented as

interactive fields. While displaying the two loudspeakers, one of the target items was

presented via headphones and participants were instructed to associate this target item to

its position by clicking with the left mouse button (cordless Wheel Mouse, Logitech) on

the correct loudspeaker on one of the two positions. The practice phase contained eight

trials in which the target items had to be correctly associated to their corresponding

position; each target was auditorily presented four times. During practice phases,

erroneous trials were counted and were displayed by a little white number on a black

computer screen succeeding the practice phase. Only if participants could pass the practice

phase with zero errors, the experimenter started the test phase. When they failed, the

learning phase was started again and the session was rehearsed to ensure that they learn the

sets accurately. Participants were explicitly asked to refrain from rehearsing the target

items by articulating them.

In test phases, one position (left or right) was presented on the screen and had to be

named as accurately and fast as possible. At the beginning of each test phase and between

two subsequent target trials, i.e. responding to the left or the right position on the screen,

one out of four numbers (1, 3, 5 or 8) was presented in the middle of the computer screen,

white on black, which had to be named. Simultaneously with the presentation of a

loudspeaker symbol on the left or the right side of the screen the voice key was activated

for 1,500 ms. The symbol disappeared after the response with a delay of 500 ms. One of

the numbers appeared after 100 ms. Loudspeaker symbols triggering target items within

one set were repeated eight times in a random order, resulting in response blocks of 16

items plus the additional four number items, which were repeated four times each. Thus,

one response block involved 32 items in total. The experiment started with a short practice

session of two sets, practice items mimicked the experimental materials, in which

participants could get acquainted with different phases and the experimental setting.



J. Cholin et al. / Cognition 99 (2006) 205–235218
The presentation of the stimuli and the measuring of the reaction times were controlled

by the NESU software package. The spoken reactions were registered by a Sennheiser

MD211N microphone, which fed into a NESU-box voice key device and a DAT recorder

(Sony DTC-55ES). The experimenter sat in the same room and took note of hesitations,

voice key errors, wrong naming responses, and time outs. On average, an experimental

session lasted 30 min.

9.4. Design

The two-level variable Frequency (high-frequency vs. low-frequency) was tested

within participants and within quadruples. Each participant produced each of the 32

syllables eight times, resulting in a total of 256 experimental trials. One experimental set

consisted of two syllables that were presented as a pair. These pairs were constructed as

follows: Only items of the same frequency, i.e. either high- or low-frequency items, were

combined to build one item pair. These frequency-homogeneous pairs were constructed on

the basis that they were as distinct as possible from each other, that is, it was taken care of

that the two syllables within each set had no segmental overlap. That implied that no two

items were taken from the same quadruple. The pairing of two syllables resulted in 16 sets,

that is, eight high- and eight low-frequency sets. The pairing of two items into one

frequency-homogeneous set was the same for high- and low-frequency pairs, that is, once

a pair was built, take for example the high-frequency pair lug [lYX]—bin [bIn], this pairing

determined also the pairing of their counterparts, which is in this case the low-frequency

pair lur [lYr]—bing [bIs]. A full list of experimental item pairs is given in the Appendix B.

For the order of the 16 experimental sets two constraints had to be respected: 1) High-

and low-frequency counterparts (e.g. lug [lYX]—bin [bIn]; lur [lYr]—bing [bIh]) should be

presented with a maximum distance of trials between them. 2) Items or sets which had an

overlapping onset with other items or sets should not be presented as trials in direct

succession (e.g. the item set lug [lYX]—bin [bIn]) should not be presented in direct

succession to the other item set luk [lYk]—teg [t3x]). High- and low-frequency item sets

alternated across the 16 item sets. Taking these constraints into account, two separate

Latin Squares were designed that contained only those four item sets, which did not

overlap with each other. These two Latin Squares were then combined in such a way that

the transitions between them were also controlled for initial overlap. The order of the first

eight trials was reflected by the remaining eight item sets. Using this Latin Square

procedure, sixteen experimental versions resulted: Every item set occurred at each

position across all experimental versions. The position of the production cue (left vs. right)

was also counterbalanced across participants.
10. Results

Test items leading to wrong or invalid responses (mispronunciations, voice key errors,

or hesitations) were not included in the reaction time analysis. They were coded as errors.

Reaction times above 800 ms and below 200 ms were considered as invalid and did not

enter the reaction time analysis. Observations deviating from a participant’s and an item’s



Table 2

Mean voice onset latencies (in ms), percentage errors, and standard deviations (in parentheses) in Experiment 1

Frequency M (SD) % Err (SD)

High 436 (41) 3.2 (2.2)

Low 445 (48) 4.6 (3.5)

Difference scores K9 K1.4
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mean by more than two standard deviations were considered as outliers and also discarded

from the reaction time analysis. One hundred and sixty-one (3.9%) trials were treated as

errors and 67 (1.6%) as outliers.

The mean of the high-frequency items and the mean of the low-frequency items were

submitted to t-tests. Two complementary analyses were computed, one treating

participants (t1) and one treating quadruples (t2) as random factor (Clark, 1973). The

mean voice onset latencies, standard deviations and error rates for Experiment 1 are

summarized in Table 2.

The analysis of reaction times showed that high-frequency monosyllabic pseudo-words

were produced significantly faster than low-frequency monosyllabic pseudo-words (t1
(15)Z2.651, P!0.05; t2 (7)Z2.904, P!0.05). The analysis of errors revealed a tendency

towards more errors in the low-frequency condition than in the high-frequency condition

(t1(15)Z1.689, PZ0.11; t2 (7)Z2.418, P!0.05).
11. Discussion

The results of Experiment 1 show a significant frequency effect for monosyllabic Dutch

pseudo-words. High-frequency syllables are faster produced than low-frequency syllables.

As potential confounds were carefully controlled for, the present effect might be

interpreted as a small but significant syllable frequency effect. As already pointed out,

syllable-frequency effects are expected to be found only for stored units. Thus, these

results clearly support the notion of the mental syllabary. In consideration of the negative

results of the syllable priming studies (see above), we conclude that this frequency has to

be attributed to the frequency of stored phonetic syllables rather than to stored

phonological syllables.

After having demonstrated a syllable frequency effect on mono-syllables, we now turn

to disyllabic targets. This can provide a follow-up to another finding of Levelt and

Wheeldon’s (1994) results. By using disyllabic Dutch words to investigate effects of

syllable frequency they factorially manipulated first versus second syllable frequency. The

overall word-form frequency was controlled for. An interesting outcome of their

experiments was that there was only a frequency effect for the second syllable but not for

the first one. They argued that this result reflects an underlying principle namely that ‘[.]

the speaker cannot or will not begin to articulate the word before its phonetic encoding is

complete.’ (Levelt & Wheeldon, 1994, p. 254).

This conclusion depends crucially on the assumption that the retrieval of a phonetic
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syllable from the mental syllabary is independent of the processing status of the preceding

syllable. For example, as soon as the second syllable of a disyllabic word has been

constructed at the level of phonological encoding, the retrieval of its gestural score will be

initiated, even if the retrieval of the gestural score for the first syllable is not yet complete.

As a consequence there can be some temporal overlap between the retrieval of the second

and the first syllable. But even if the first syllable’s gestural score has been retrieved before

phonetic encoding of the second syllable has been completed, articulation will wait until

both syllabic programs of the target word have entered the output buffer. Any speed benefit

gained from a high-frequency first syllable will thus not become apparent.7

In order to replicate the frequency effect obtained with mono-syllabic pseudo-words

and to test the prediction that (only) the second syllable in a disyllabic word will exhibit

frequency effects we investigated disyllabic (Dutch) pseudo-words having the frequency-

manipulation on their second syllables.
12. Experiment 2: Disyllabic pseudo-words, frequency-manipulation on the second

syllable

In Experiment 2, disyllabic Dutch pseudo-words were used to investigate effects of

syllable frequency. High- and low-frequency syllables were embedded in pseudo-words,

the second syllable in these pseudo-words was frequency-manipulated. All of the used

pseudo-words were phonotactically possible strings of Dutch. Under the assumption that

articulation waits for the retrieval of all gestural scores of the phonological word, the

syllable frequency effect should be replicated.
13. Method
13.1. Participants

Thirty-two native speakers of Dutch participated in the Experiment. They were

randomly taken from the pool of participants of the Max Planck Institute in Nijmegen, The

Netherlands and were paid for their participation. They had no known hearing deficit, and

they had normal or corrected-to-normal vision.
7 Notice that this assumption presupposes that the processing duration of the second syllable is independent of

the processing of the preceding syllable(s). Moreover-according to Levelt and Wheeldon-the first syllable could

only have an effect when the retrieval of the first syllable is completed only after the second syllable is retrieved,

which is very unlikely. Levelt and Wheeldon state that it takes approximately 200 ms to articulate a syllable;

whereas Wheeldon and Levelt (1995) showed that the generation of phonological syllables only needs half of that

time, some 100 ms. Thus, they argue-as their reported syllable frequency effect amounts to only 15 ms-‘[.] it

seems implausible that phonetic encoding of the second syllable can ‘overtake’ encoding of the first one due the

advantageous frequency conditions.’ (Levelt & Wheeldon, 1994, p. 254).
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13.2. Procedure and apparatus

The procedure and apparatus were the same as in Experiment 1.

13.3. Materials

All 32 items were disyllabic pseudo-words obeying Dutch phonotactics. In this

experiment, the same syllables as in Experiment 1 were used which served as second

syllables. In total, there were again 16 high-frequency and 16 low-frequency disyllabic

items. As first syllables, eight high-frequency CV-syllables were selected. For the count

number of occurrences, the CV-syllables ranged in frequency from 54.43 to 137.74 with an

average of 97.34 (SDZ33.01). For the count summed frequency of occurrence, the CV-

syllables ranged in frequency from 1,101.76 to 3,475.79 with an average of 2,900.53 (SDZ
924.34). One high-frequency syllable was assigned to one quadruple to serve as first syllable

for all four members of this quadruple in order to keep the comparability within the

quadruples (e.g. li.kem [li.k3m], high-frequency; li.kes [li.k3s], low-frequency; li.wes

[li.y3s], high-frequency; li.wem [li.y3m], low-frequency). It was taken care of that none of

the resulting disyllabic pseudo-words would form any existing word form in Dutch. A full

list of items used in this experiment can be found in the Appendix C. The assignment of

items to experimental pairs or sets remained the same, i.e. the pairing of two items taken

from different quadruples, which were presented as one experimental set was the same as in

Experiment 1. A list showing these pairs is also given in the Appendix D. The same numbers

as in Experiment 1 were used which were presented in between two subsequent test items.

Acoustic versions of the disyllabic pseudo-words were spoken by a female native

speaker of Dutch. The spoken pseudo-words were digitized at a sampling rate of

22 kHz, to be used during the learning phase of the experiment. They varied in

duration from 567 ms to 799 ms with an average of 644.78 ms (SDZ57.42). There

was no difference in duration between high-frequency and low-frequency items (both

ts!1). The disyllabic pseudo-words were spoken with stress on the second syllable. It

has been suggested that articulatory routines for stressed and unstressed syllables are

independently represented in the repository (Crompton, 1981; Levelt, 1989). Thus, in

order to keep the basic syllable material between Experiments 1 and 2 as consistent

as possible, we opted for the non-default stress-pattern in Dutch, that is, the second

syllable carries the stress.

13.4. Design

Thirty-two different experimental versions were constructed applying the same

principles as in Experiment 1.
14. Results

The raw data were treated in the same way as in the previous experiments. Four

hundred and ten (5%) trials were treated as errors and 156 (1.9%) as outliers. The mean



Table 3

Mean voice onset latencies (in ms), percentage errors, and standard deviations (in parentheses) in Experiment 2

Frequency M (SD) % Err (SD)

High 435 (51) 5.2 (3.5)

Low 435 (51) 4.8 (4.0)

Difference scores 0 K0.4
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voice onset latencies, standard deviations, and error rates of Experiment 2 are summarized

in Table 3.

The frequency of the second syllable in a disyllabic pseudo-word did not affect naming

latencies in this experiment as demonstrated by t-tests (both t’s!1). The comparison of

error rates did not show a significant difference either (t1!1; t2(7)Z1.049, PO0.3).
15. Discussion

The results of Experiment 2 did not show any second syllable frequency-effect for

disyllabic Dutch pseudo-words. However, before concluding that disyllabic pseudo-words

containing high- and low-frequency syllables are not sensitive to frequency-effects, let us

carefully consider what could have possibly caused the present null-effect.

By comparing Levelt and Wheeldon’s (1994) results to the present experiments, we can

distinguish a few differences that might be crucial in explaining the (divergent) data

pattern. The fact that their experiment used existing disyllabic Dutch words that had to be

learned in the context of four other targets, whereas participants in the present experiments

had to memorize only two disyllabic pseudo-words could be responsible for the different

results. The theoretical assumption that led to the hypothesis that only the second syllable

should exhibit frequency effects was that speakers do not initiate articulation before all

phonetic syllables have been retrieved. Could it be the case that this assumption is more

plausible for existing words where linguistic integrity plays a role than for pseudo-words

where integrity does not play such a prominent role? Do speakers set another response

criterion? Under the present high-speed conditions participants may have started

articulation as soon as the gestural score for the initial syllable was available for execution.

Results that point to the assumption that not all of the phonological word’s components

have to be phonetically encoded before articulation is initiated stem from a study by

Schriefers and Teruel (1999). They investigated the production of German adjective-noun

phrases while hearing prime syllables that were identical to one of the syllables in the

target phrase (as in ‘lila Säge’ [purple saw]). Overall, they obtained priming effects of the

first syllable of the first word, weak priming effects for the second syllable of that word but

no priming effects for the second word. However, based on the number of restarts and

hesitations, participants were divided into two groups for post-hoc analyses. Participants

in the ‘careful’ group (mean of three restarts and hesitation errors) showed priming for

both, the first and the second syllable of the first word, whereas participants in the ‘hasty’

group (mean of eight restarts and hesitation errors) only showed priming effects for
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the first syllable. Schriefers and Teruel argued that this reflects speakers’ ability to adjust

the size of the planning unit and that planning of the first syllable might suffice to initiate

articulation.8

The assumption that speakers in general ‘wait’ until all components of a polysyllabic

phonological word is phonetically encoded as proposed by Levelt and Wheeldon (1994) is

apparently incorrect. It rather seems likely as argued in Meyer, Roelofs, and Levelt (2003)

that articulation cannot start before completion of phonological word encoding, but it can

start after phonetic encoding of the first syllable of a disyllabic word. Then, if this is indeed

what happens here, one should predict a first-syllable frequency effect. The next

experiment was designed to determine just that.
16. Experiment 3: Disyllabic pseudo-words, frequency-manipulation on the first

syllable

In Experiment 3, the first syllable of the disyllabic Dutch pseudo-words was frequency-

manipulated. Since there was no frequency effect for the second syllable in a disyllabic

pseudo-word, the aim of this experiment is to test whether or not the first syllable in this

pseudo-word context is sensitive to frequency effects. According to the explanation that

the absence of the syllable frequency effect for the second syllable is due to the initiation

of articulation upon phonetic completion of the first syllable of the disyllabic targets, we

expect-contrary to the original hypothesis-a syllable frequency effect for the first syllable.
17. Method

17.1. Participants

Sixteen participants were paid for their participation. None of them took part in any of

the previous experiments.

17.2. Procedure and apparatus

The procedure and apparatus were the same as in Experiment 1.

17.3. Materials

Materials in this experiment consisted of disyllabic pseudo-words, all of which were

possible strings in Dutch. Most of the syllables used for building the second syllables were

the same high-frequency CV-syllables used in Experiment 2. In three cases, these second
8 The fact that the first syllable for all items in the present experiment consisted of only eight syllables which

were thus highly repeated might also have contributed to the initiation of articulation after the retrieval of the first

syllable.
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syllables were exchanged by other high-frequency syllables as they fitted the base material

better than the original ones. In these cases the regrouping of syllable position resulted in

either existing words or in words very similar to existing words. Thus, we exchanged two

of the previously taken CV-syllables (‘li’ and ‘ra’) to appear as part of another quadruple

and introduced one new CV-syllable (‘mo’ to replace ‘si’) (see item list in the Appendix E;

for the pairing of items into frequency-homogeneous sets see Appendix F). For the count

number of occurrences, the CV-syllables ranged from a frequency of 54.43 to 135.38 per

one million words with an average of 88.89 (SDZ29.68). For the count summed frequency

of occurrence, the CV-syllables ranged from a frequency of 1,101.76 to 3,475.79 per one

million words with an average of 2,845.28 (SDZ910.09).

Acoustic versions of the pseudo-words were spoken by a female native speaker of

Dutch. The spoken targets were digitized at a sampling rate of 22 kHz, to be used during

the learning phase of the experiment. They varied in duration from 491 ms to 722 ms with

an average of 622.69 ms (SDZ55.86). There was no difference in duration between high-

frequency and low-frequency syllables (both ts!1).

17.4. Design

The design of Experiment 3 was identical to the one used in Experiment 1.
18. Results

The raw data were treated in the same way as in the previous experiments. There were

148 (3.6%) errors and 82 (2.0%) outliers. The mean voice onset latencies, standard

deviations and error rates for Experiment 3 are summarized in Table 4.

Disyllabic pseudo-words were produced significantly faster when the first syllable was

high-frequency than when the first syllable was low-frequency as shown by t-tests (t1
(15)Z3.508, P!0.01; t2 (7)Z7.320, P!0.001). The analysis of error rates did not show a

significant difference (t1 (15)!1; t2(7)Z1.008, PO0.3).
19. Discussion

The results of Experiment 3 revealed a significant syllable frequency effect for

disyllabic Dutch pseudo-words in which the first syllable is frequency-manipulated

whereas the second syllable is consistently high-frequency. The magnitude of the effect
Table 4

Mean voice onset latencies (in ms), percentage errors, and standard deviations (in parentheses) in Experiment 3

Frequency M (SD) % Err (SD)

High 417 (50) 3.9 (4.2)

Low 427 (55) 3.3 (2.7)

Difference scores K10 0.6
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(10 ms) is comparable to the size of the effect in Experiment 1 (9 ms). Thus, this

experiment replicates the results of the experiment that investigated the monosyllabic

pseudo-words. Again, the results of this experiment support the notion of a mental

syllabary.

Initially, it was predicted that (only) the second syllable in a disyllabic (pseudo-)word

would be frequency-sensitive, which we did not find in Experiment 2. We cannot attribute

this difference to differences in materials between the experiments, because the relevant

syllables were essentially the same. The obvious conclusion is that under the present

experimental conditions subjects were able to initiate articulation of the first syllable right

upon completion of its phonetic encoding. In that case frequency properties of the first, but

not the second syllable will affect onset latencies.
20. General discussion

The aim of the present study was to test the notion of a mental syllabary. The

assumption that speakers access a mental storage of precompiled articulatory gestures

at the interface of phonological and phonetic encoding was described as an inherent

part of the speech production model by Levelt et al. (1999). Such a mental storage

implies different retrieval times for high- and low-frequency syllables. In three

experiments using a symbol-position association learning task we investigated effects

of syllable frequency by contrasting the production of high- and low-frequency

syllables in mono- and disyllabic pseudo-words. The syllabic material used in these

experiments was carefully controlled for any potential confounds by applying specific

search routines. Two high- and low-frequency syllables were each assigned to one

quadruple thereby guaranteeing that onsets, offsets, phoneme and bigram frequency

and also the transitional probabilities between the single phonemes were controlled for

within each of these quadruples. In Experiment 1, a significant syllable frequency

effect was obtained. We therefore attributed the observed syllable-frequency effect to

the retrieval of stored, pre-compiled syllabic gestural scores.

In all experiments reported here we exclusively used existing Dutch syllables.

Speakers are, however, able to produce new syllables as well. Participants will, for

instance, rather fluently read materials containing pseudo-words consisting of

phonotactically legal but non-existing syllables. Apparently, we can assemble syllables

on-line. This means that there are two possible operation routes in the phonetic

encoding of syllables: Retrieving pre-compiled syllabic programs and on-line

assembly of phonetic programs. Although the present experiments provide support

for the first route, retrieval of pre-compiled gestural programs, they are neutral with

respect to the existence and ubiquity of the second, on-line assembly route. Assembly

may be limited to just new syllables. It may also be the dominant operation for low-

frequency syllables. But it cannot be excluded that the assembly route is always

active, running in parallel to the retrieval route. Speech latencies are then determined

by whichever operation is fastest.
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20.1. Disyllabic pseudo-words with frequency manipulated syllables

In Experiments 2 and 3, disyllabic pseudo-words were tested that had the

frequency-manipulation on the second syllable (Exp. 2) and first syllable (Exp. 3),

respectively. Both experiments were carried out in order to replicate the

syllable-frequency effect previously obtained for mono-syllabic pseudo-words

and to test the theory’s prediction for syllable-frequency effects in disyllabic

(pseudo-)words.

Experiment 2 using disyllabic pseudo-words containing frequency-manipulated

syllables on the second position attempted to find a frequency effect as predicted by

the outcome of prior experiments (Levelt & Wheeldon, 1994). As Levelt and

Wheeldon (1994) claimed, the initiation of articulation itself is dependent on the

completeness of the phonetic encoding of the corresponding planning unit, namely the

phonological word. In case of a disyllabic word, phonetic encoding is completed as

soon as both syllables are ready for execution. The outcome of Experiment 2

contradicts this assumption. No syllable frequency effect was obtained for the

second syllable of a disyllabic (pseudo-)word. Apparently, articulation was initiated

before the frequency-manipulated second syllable was retrieved from the mental

syllabary.

There are other findings in conflict with the assumption that speakers wait with

speech onset until both syllables of a disyllabic word are phonetically encoded. For

example, Bachoud-Lévi, Dupoux, Cohen, and Mehler (1998) failed to find different

production latencies for mono- and disyllabic target words in a series of picture-

naming experiments in French and English. The authors concluded that either a) word

forms are not generated sequentially or b) that speakers in fact start articulation

before completion of the phonological word’s phonetic encoding. The assumption that

phonological encoding is a sequential process is supported by several studies (Meyer,

1990, 1991; Meyer & Schriefers, 1991; Roelofs, 1998), thus, it rather has to be

concluded that speakers do start articulation before the whole phonological word is

phonetically generated. However, by presenting results from a series of experiments

investigating effects of word length, Meyer et al. (2003) offer a convincing

explanation for the results of Bachoud-Lévi et al. (1998). In Meyer et al.’s

experiments, Dutch participants had to name objects with short, monosyllabic and

long, disyllabic names. Interestingly, they found effects of word length only when

long and short target words were presented in separate blocks, not when they were

presented in mixed blocks. They argued that speakers used different response criteria

in pure and mixed blocks: Participants tried to meet different response deadlines by

either generating the motor program for one syllable of monosyllabic target words

or the motor programs for both syllables of disyllabic target words before speech

onset.

Several studies suggest that participants can adopt different time criteria

when to respond contingent on task difficulty (Lupker, Brown, & Colombo, 1997;

Monsell, Patterson, Graham, Hughes, & Milroy, 1992; Taylor & Lupker, 2001).

For example, Lupker et al. (1997) found that participants can adjust their

performance in relation to the preceding trial. Therefore, Meyer et al. (2003) suggest
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that the absence of a word length effect reported in the study by Bachoud-Lévi et al.

(1998) could be due to their stimuli presentation only in mixed blocks. In

mixed blocks, participants might set an intermediate response criterion and

start with the first completed syllable also in disyllabic words. Schriefers and Teruel

(1999) also argued for strategic control of response initiation by speakers. They claim

that the actual response criterion is apparently influenced by various factors and that

the amount of what has to be (phonetically) completed before speech onset is

variable.

Taken the results from the latter studies together, speakers seem to be able to

adjust their speech coordination to the difficulty and speed of the current experimental

task, and furthermore different speakers generally seem to have a preference for faster

or slower responses or for smaller or larger planning units. The actual response

criterion is apparently influenced by various factors and the amount of what has to be

phonetically completed before speech onset seems variable. We interpreted the

results of Experiment 2 in that light and concluded that the absence of the

second syllable’s frequency effect was due to the early initiation of articulation,

namely after completion of phonetically preparing the first syllable. This account

was confirmed by the results observed in Experiment 3. Here, the frequency of

the first syllable of a disyllabic pseudo-word was manipulated. We found a

significant syllable frequency effect (which was of the same size as the effect

observed in Experiment 1 and thereby replicated the results with the monosyllabic

pseudo-words). Thus, taken the results of Experiments 2 and 3 together, the

assumption that speakers can start articulation as soon as the first syllable is fully

encoded is supported.

In line with the assumption that speakers can start articulation upon phonetic

completion of the first syllable in a disyllabic pseudo-word are recent results from

Spanish and French. Carreiras and Perea (2004) investigated disyllabic pseudo-word

naming in Spanish, manipulating first and second syllable frequency. They obtained

significant syllable-frequency effects for the first but not for the second syllable. This

result also suggests that speakers start their articulation before having retrieved or

computed all of the word’s syllables. This result is not restricted to the experimental

use of pseudo-words9 as shown by not only the study by Schriefers and Teruel (1999)

but also by Brand et al. (2002). These latter authors collected the naming latencies of

600 French frequency-manipulated disyllabic words from 100 participants in a larger-

scale study. A facilitative effect for the frequency of the first syllable but not for the

second syllable was obtained.

All in all, the moment speakers actually initiate articulation apparently depends on

various factors. It does not seem to be the case that there is a fixed planning unit

here. We conclude that the present results as well as the findings reported in the

literature can be explained by an advanced and completed phonological planning on

the one hand and (more importantly) the incremental nature of the subsequent
9 The experimental use of pseudo-words is unavoidable when we have to control for a great number of

potentially confounding variables as in the present experiment.
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processes on the other hand. The phonological encoding procedures must operate

on the basis of the whole phonological, i.e. the on-line syllabification process must be

applied to the planning unit as a whole. The further processes that are

the transformation of the single phonological syllables into phonetic representations

might take place in a piecemeal fashion, syllable by syllable. This incremental, left-to-

right procedure in which successive syllables are generated leads to some temporal

overlap of processes: The first syllable’s gestural score has been successfully

retrieved from storage, while the second and potential later syllables are still

under construction. Furthermore, the fact that words with more syllables have

longer speech onset latencies than words with fewer syllables when other factors,

such as number of segments or word frequency are controlled for does not pose a

problem for this proposal. These effects of word length can be explained by

assuming that the phonological rather than the phonetic encoding of a phonological

word must be completed before speech onset (see Eriksen, Pollack, & Montague,

1970; Klapp, Anderson, & Berrian, 1973; Meyer et al., 2003; Santiago, MacKay,

Palma, & Rho, 2000, but see also Roelofs, 2002; Santiago, MacKay, & Palma, 2002;

Wheeldon & Lahiri, 1997). Further research is needed to investigate which planning

unit is used in a given speech context and what factors release the articulation

initiation.
21. Conclusion

We found a clear and significant syllable-frequency effect in monosyllabic as well

as in disyllabic pseudo-words. This was interpreted as evidence for the existence of

the mental syllabary; access to pre-compiled gestural scores for high-frequency

syllables from storage being faster than access to low-frequency syllables.

Such pre-compiling will contribute to the speed and fluency of spoken language

production.

Furthermore, only in the disyllabic pseudo-words that had the frequency-

manipulation on the first syllable we obtained a significant syllable frequency-effect

but not when the second syllable was manipulated. We interpreted this finding as a

result of speakers’ flexibility to initiate articulation when the phonetic planning of the

first syllable is completed for execution.
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Appendix A

Experimental syllable quadruples

Quad. nr. High-freq.

sets

Frequency counts Low-freq.

sets

Frequency counts

No. of

occurrence

No. of

summed

frequency

No. of

occurrence

No. of

summed

frequency

1 bin [bIn] 6.4 127.26 bing [bIs] 0.17 0.48

1 ning [nIh] 23.5 1192.57 nin [nIn] 0.02 0.00

2 bur [bYr] 4.76 214.79 bug [bYx] 0.02 0.38

2 lug [lYX] 2.36 49.71 lur [lYr] 0.21 0.67

3 ket [k3t] 4.86 60.81 keg [k3x] 0.07 0.24

3 teg [t3x] 6.71 190.57 tet [t3t] 0.67 2.43

4 kem [k3m] 1.48 62.24 kes [k3s] 1.19 3.1

4 wes [y3s] 3.24 162.60 wem [y3m] 0.02 0.1

5 luk [lYk] 1.74 209.14 lup [lYp] 0.19 0.67

5 sup [sYp] 4.17 82.55 suk [sYk] 0.26 3.02

6 mer [m3r] 5 313.12 meg [m3x] 0.07 1.4

6 reg [r3x] 8.19 339.86 rer [r3r] 0.05 0.00

7 sjam [Eam] 1.67 34.12 sjag [Eax] 0.05 0.07

7 wag [yax] 4.31 546.24 wam [yam] 0.86 3.67

8 tur [tYr] 4.95 227.81 tug [tYx] 0.71 1.98

8 zug [ZYX] 1.86 63.81 zur [zYr] 0.33 2.33
Appendix B

Pairing of syllables into frequency-homogeneous sets in Experiment 1

Set number High-frequency sets Low-frequency sets

1 lug-bin lur-bing

2 mer-sjam meg-sjag

3 ning-reg nin-rer

4 wag-bur wam-bug

5 luk-teg lup-tet

6 wes-sup wem-suk

7 ket-zug keg-zur

8 tur-kem tug-kes
Appendix C

Materials for Experiment 2

Quadruple nr. High-frequency sets Low-frequency sets

1 ta.bin [ta.bIh] ta.bing [ta.bIh]

1 ta.ning [ta.nIh] ta.nin [ta.nIh]

(continued on next page)
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Quadruple nr. High-frequency sets Low-frequency sets

2 ko.bur [ko.bYr] ko.bug [ko.bYx]

2 ko.lug [ko.lYx] ko.lur [ko.lYr]

3 si.ket [si.k3t] si.keg [si.k3x]

3 si.teg [si.t3x] si.tet [si.t3t]

4 li.kem [li.k3m] li.kes [li.k3s]

4 li.wes [li.y3s] li.wem [li.y3m]

5 ra.luk [ra.lYk] ra.lup [ra.lYp]

5 ra.sup [ra.sYp] ra.suk [ra.sYk]

6 wa.mer [ya.m3r] wa.meg [ya.m3x]

6 wa.reg [ya.r3x] wa.rer [ya.r3r]

7 ti.sjam [ti.Eam] ti.sjag [ti.Eax]

7 ti.wag [ti.yax] ti.wam [ti.yam]

8 jo.tur [jo.tYr] jo.tug [jo.tYx]

8 jo.zug [jo.zYx] jo.zur [jo.zYr]
Appendix D

Pairing of items into frequency-homogeneous sets in Experiment 2

Set number High-frequency sets Low-frequency sets

1 kolug–tabin kolur–tabing

2 wamer–tisjam wameg–tisjag

3 taning–wareg tanin–warer

4 tiwag–kobur tiwam–kobug

5 raluk–siteg ralup–sitet

6 liwes–rasup liwem–rasuk

7 siket–jozug sikeg–jozur

8 jotur–likem jotug–likes
Appendix E

Materials for Experiment 3

Quadruple nr. High-frequency sets Low-frequency sets

1 bin.ta [bIn.ta] bing.ta [bIh.ta]

1 ning.ta [nIh.ta] nin.ta [nIn.ta]

2 bur.ko [bYr.ko] bug.ko [bYx.ko]

2 lug.ko [lYx.ko] lur.ko [lYr.ko]

3 ket.li [k3t.li] keg.li [k3x.li]

3 teg.li [t3x.li] tet.li [t3t.li]

4 kem.ra [k3m.ra] kes.ra [k3s.ra]

4 wes.ra [y3s.ra] wem.ra [y3m.ra]

5 luk.mo [lYk.mo] lup.mo [lYp.mo]

5 sup.mo [sYp.mo] suk.mo [sYk.mo]
(continued on next page)
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Quadruple nr. High-frequency sets Low-frequency sets

6 mer.wa [m3r.ya] meg.wa [m3x.ya]

6 reg.wa [r3x.ya] rer.wa [r3r.ya]

7 sjam.ti [Eam.ti] sjag.ti [Eax.ti]

7 wag.ti [yax.ti] wam.ti [yam.ti]

8 tur.jo [tYr.jo] tug.jo [tYx.jo]

8 zug.jo [zYx.jo] zur.jo [zYr.jo]
Appendix F

Pairing of items into frequency-homogeneous sets in Experiment 3

Set number High-frequency sets Low-frequency sets

1 lugko-binta lurko-bingta

2 merwa-sjamti megwa-sjagti

3 ningta-regwa ninta-rerwa

4 wagti-burko wamti-bugko

5 lukmo-tegli lupmo-tetli

6 wesra-supmo wemra-sukmo

7 ketli-zugjo kegli-zurjo

8 turjo-kemra tugjo-kesra
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