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Projection operators are employed to evaluate functions of operators. In particular, 
this formalism is used to find polynomial expressions for exponential operators and 
thence to solve density matrix evolutions in closed analytical form. Problems explicitly 
treated include pulse rotation ofspin- 1 and spin-j systems, spin tickling and spin interfer- 
ometry on a system of two coupled spin-f nuclei, isotropic mixing in systems of two 
coupled nuclei (both spins-i or spins-l ), and dipolar evolution in a two-spin-$ system. 
The method is compared to the BCH approach for operator evolutions. o 1990 Academic 

Press, Inc. 

Time evolution of a physical system is governed in quantum mechanics by the 
Schriidinger equation, or equivalently the Liouville-von Neumann equation for en- 
sembles. Formally, the time evolution may be effected by a time displacement opera- 
tor. The Hamiltonian ti of the system is the generator of infinitesimal time trans- 
lations; in formal descriptions of evolution over finite time durations, the Hamilto- 
nian therefore gets exponentiated and acts on the initial state of the system. Thus, 
with a time-independent Hamiltonian, the evolution of the density matrix p for an 
ensemble may be written as 

p(t) = exp( --iA?t)p(O)exp( i%t). [II 
In the average-Hamiltonian approach, the Magnus expansion or Floquet theory (I- 
4) is employed to cast evolutions under a time-dependent Hamiltonian in the same 
form, with the leading term # of these expansions substituted, to zeroth order, in 
place of X in [ 11. In either case, the evaluation of the right-hand side of [l] leads to 
the desired expression for the density operator as a function of time. Numerical or 
analytical solution of the individual elements of p is a popular approach; however, 
there is considerable interest in obtaining a closed form analytical solution to the 
problem, employing especially one of the several operator representations of p and 
the appropriate commutator algebra (5 7). In this work we point out and illustrate 
a complementary approach, obtaining explicit polynomial expressions for the 
exponential operators and proceeding then to analytically evaluate the right-hand 
side,of[l]. 

THEORY 

In the basic theory of normal operators, well-known methods are available to eval- 
uate operator functions in terms of the spectrum of the operator. These methods bear 
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a close relationship to the Cayley or Cayley-Hamilton theorem of matrix algebra 
(8, 9). For our purposes, however, the geometrically appealing methods of spectral 
decomposition and projection operators introduced by Lowdin appear particularly 
attractive ( ZO) . The resulting expression for a functionf( A) of an operator A is given 
as 

f(A) = C ftxiJpAi2 121 

the hi values being the eigenvalues of A ; the projectors Pxi are given by 

(A - xj) 
pAt=;j(A;- A,) * 

The sum in [ 21 -as also the product in [ 31 -runs over all distinct eigenvalues of A, 
each degenerate eigenvalue being accounted exactly once. The equivalence of [ 3 ] to 
the Sylvester matrix of A may also be noted, again bringing into correspondence 
the geometric and algebraic viewpoints. Note that the operators P are Hermitian, 
idempotent operators. They may be employed to project out an eigenvector I qk,) 
(corresponding to the eigenvalue A,), given a state vector I \k) , by operation from the 
left. They may also be employed to project out desired components of a density oper- 
ator p, by the operation PpP. For our present application, it is of particular interest 
to note that [ 21 and [ 3 ] imply the representation of any function of an operator A as 
a polynomial of degree n, ( y1+ 1) being the number of distinct eigenvalues of A. 

In the following, we illustrate the application of these methods to solve spin evolu- 
tion under various experimental situations, including pulse rotations, spin tickling, 
spin interferometry, spin locking, and dipolar evolution. In each case, the results are 
well established theoretically as well as experimentally. These examples permit, how- 
ever, a rather complete illustration of the projection operator methods for Hamiltoni- 
ans involving linear as well as bilinear operators in both degenerate and nondegener- 
ate cases. In a subsequent publication, we report on the application of the method to 
determine the coherence transfer process under isotropic mixing applied to systems 
of spin- 1 and spin-i nuclei. 

APPLICATIONS 

Pulse rotation. Consider the effect of a resonant RF pulse with flip angle l3 applied 
along the x axis in the rotating frame on a system of isolated spins- 1. The density 
matrix of the system following the pulse is given by 

p+ = exp ( -ieZ,) poexp ( i0ZJ. 141 

We proceed by first finding a polynomial expression for exp( +iOZ,). We note that the 
eigenvalues of Z, are + 1 , 0, and - 1, from the fundamental considerations of angular 
momentum theory. Thus we have 

exp(+i0Z,) = exp(+id)P1 + PO + exp(TiB)P-, 151 
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with 
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P, = iZx(Zx+ I)= f(Z:+Z,) 

PC)=-(I,- l)(zX+ I)=(1 -12) 

P-j = i(Zx- l)Zx= f(ZZ-I,). 

This results finally in 

exp(fi81,) = Z~(COS~- l)* iZ,sind+ 1. 

With p. = Z, therefore we have 

p+=[z;(cose- l)- 

= Z,cos 0 - Z,sin 0 

161 

171 

iZ,sin 0 + l]Z,[Z:(cos 19 - 1) + iZ,sin f3 + l] 

[81 

employing the identities Z,Z,Z, = 0 and ZfZz + Z,Zz = Z,, for Z = 1. For Z = :, on the 
other hand, we find 

exp(fi01,) = *iZ: ( 5 sin--sin- 30 I9 2 2 1 +-Z; 1 2 i cos--cos- 30 0 2 2 1 

+ iZ, ( i 
8 1 38 

sin---sin- 2 12 2 1 
1 

+-1 
8 36 

8 ( 9cos--cos- 2 2 ) , 191 

the eigenvalues of Z, being of course i, f , - 4, and -$ in this case. 
Spin tickling. Consider a homonuclear weakly coupled system of two spin-4 nuclei, 

I and S. The spin tickling experiment ( I1 ) consists in selective irradiation of one of 
the doublet resonances of, say, spin S while the spectrum is acquired. The Hamilto- 
nian of the system may be written, in the frame rotating with the frequency of irradia- 
tion on spin S, as 

.e = AZ= + z”( 1 + 2Z,)S, + ; w,( 1 - 2Z,)&. [lOI 

Here, the first term, which commutes with both the others, describes the resonance 
offset of spin I in this frame, while the second term accounts for the IS weak coupling, 
as well as the resonance offset of the S-spin irradiation, with J in units of angular 
frequency. The third term describes the effect of the selective irradiation on one of 
the S-spin transitions; the Hamiltonian of [lo] corresponds in fact to irradiation of 
the low-frequency component of the S doublet (J assumed >O), the RF being along 
the x axis of the rotating frame. Owing to the commutativity of the first term with 
the two others, the Hamiltonian of [ lo] may be rewritten as 
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with 

and 

X+1 +21,)&+&l -21,)&s,. [Ill 

The evolution under S may be considered as a cascade of independent evolutions 
under yt4 and &*, taken in either order. Here we focus attention on the evolution 
under X2, which may be rewritten as 

& = ,Jr( 1 + 2Z=)S, + b( 1 - 2Z,)S,] 1121 

with b = a1 / J. 
To evaluate expressions such as exp( - iX*t)p(O)exp( i&t) we note first that the 

roots of S*, expressed in units of J/2 are + 1, kb. Thus we have 

exp( -iUic;t) = exp( -iJt/2)P, -t exp(iJt/2)P-, 

+ exp( -iJbt/2)Pb + exp( iJbt/2)&, [ 131 

Performing the necessary algebra, we finally find 

exp( -iJEO,t) = i ( 1 + 2Z,)cos( Jt/2) + f ( 1 - 2Z,)cos( Jbt/2) 

- i(2S; + 4Z&)sin(Jt/2) - ;(2S, - 4Z,&)sin(Jbt/2). [ 141 

With an initial density operator corresponding to y magnetization of the I spins in 
the rotating frame, for example, this leads to the state 

The effect of the I-spin offset may of course simply be cascaded employing Sr. 
The above expression clearly demonstrates that each of the I-spin transitions is split 

into a doublet, where the two components have equal intensity and a splitting of 
w1/2?r Hz. Further, the creation of zero- and double-quantum coherences during 
tickling ( 12) is also transparent. 

Spin interferometry. An elegant, direct demonstration of the spinor properties of 
spin-4 particles has been performed by Vaughan and co-workers (Z3). Their experi- 
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ment, carried out on a scalar-coupled heteronuclear spin-i pair, may be represented 
as 

5(Z)-Sel.Irr.(T, S)-( T- T)-r(Z)-T-Acq.(Z). 

This experiment, which they appropriately termed spin interferometry, permits the 
change in phase of a wavefunction-effected by a pulse rotation-to be observed via 
a superposition state. Phase differences are observable in superposition states, and by 
employing a coupled heteronuclear spin as the reference in the superposition, the 
phase change of the other spin is monitored in effect. 

Here the selective irradiation is on one of the transitions of the S-spin doublet. The 
evolution of the I-spin magnetization under the offset term is refocused at the start 
of acquisition; evolution under heteronuclear coupling during the period (T - T) 
before and after the 7r pulse is also refocused. The observed I-spin signal then is to be 
computed by taking into account evolution under coupling and selective irradiation 
during the first T period, the effect of the ?r pulse, and evolution under coupling during 
the last 7 period (just prior to acquisition). In fact, the entire procedure is spin tickling 
in disguise, and straightforward calculation of the evolution of the first two terms of 
[ 15 ] under the ?r pulse and under coupling for T seconds leads to the desired expres- 
sion for the observable components of the density matrix at the start of acquisition: 

p(2T)= zycos(w,T/2). 1161 
This clearly demonstrates that rotation of the state of the S spins by a selective pulse 
with flip angle WIT has actually resulted in rotation of the wavefunction by W,T /2, a 
manifestation of the spinor property of the spin-4 particle. 

Spin locking. Homonuclear spin-lock experiments have grown in popularity in the 
last several years and can be described accurately especially at low fields by a model 
Hamiltonian of the form (14-16) 

Ye= JI*S [I71 

It is instructive to compute the evolution of a spin system under this Hamiltonian by 
employing projection operator methods. For two spins-f, the Hamiltonian of [ 171 
has the following eigenvalues, in units of J: +a (triply degenerate) and -3. Accord- 
ingly, we have 

exp( +iuE”t) = [ $ exp( -tiJt/4) + $ exp(+3iJt/4)] 1 

+ [exp(-+iJt/4) - exp(T3iJt/4)](IeS). [18] 

With an initial density operator p( 0) = I,., we thus find for evolution under spin lock 
for a period t 

p(t) = exp( -iSt)p(O)exp( i.Xt) 

= f ZX( 1 + cos Jt) + $&( 1 - cos Jt) + (I$‘, - Z,S,)sin Jt iI91 

employing the identities Z/Z, = -Z,,,Z, = (i/2) qmnZ,, + is,, valid for spin-4 particles. 
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For Z = 1 = S, on the other hand, we have the eigenvalues 1, - 1, and -2 in units 
of J, with respective degeneracies of 5,3, and 1, leading to 

exp( +iJI. St) = (I. S)2 [i exp( ?iJt) - 4 exp( TiJt) + 4 exp( T2iJt)] 

+ i(I.S)[exp(fiJt) - exp(TiJt)] 

+ l[exp(TiJt) + f(exp(+iJt) - exp(r2iJt))l. [20] 

Dipolar evolution. For a homonuclear pair of spin-4 nuclei, the dipolar Hamilto- 
nian takes the form 

in the rotating frame, expressed in angular frequency units. The two terms of the last 
factor commute and their effects may be cascaded. The last term of this Hamiltonian 
is in fact of the same form as the model Hamiltonian for isotropic mixing under spin 
locking considered above. The first term, Z&, has the eigenvalues +-$, expressed in 
unitsof 3D/2 = 37*h( 1 - 3 cos*0)/4 a r3 12, each of them doubly degenerate. We find 

exp(f3iDZzSzt/2) = cos(3Dt/S)l k 4isin(3Dt/8)ZzSz, [211 
which is identical in form to the well-known equation for evolution under weak scalar 
coupling. This leads to 

exp( -irEL&t)Z,exp( iY&t) = $ ZX[cos( 3 Dt/4) + cos(Dt/4)] 

+ 1 S,[cos( 3Dt/4) - cos(Dt/4)] 

+ ZYSz[sin(3Dt/4) + sin(Dt/4)] + SYZz[sin(3Dt/4) - sin(Dt/4)]. [22] 

DISCUSSION 

In the preceding, we have pointed out and demonstrated by way of several illus- 
trations a convenient and straightforward method of dealing with exponential opera- 
tors, leading to the solution of density operator evolutions. This method of solving 
evolutions may be compared with the method of solution employing commutator 
algebra arising from the Baker-Campbell-Hausdorff formula. In a certain sense, the 
present method leads to a solution in the frequency domain, while the BCH method 
really results in a time-domain solution. The two are, therefore, entirely equivalent 
as they must be. The BCH method is probably the method of choice if one is, in 
particular, interested in short time evolutions, initial rate approximations, etc., and 
makes the geometry of the evolution process transparent in this sense. On the other 
hand, the present method is clearly more convenient when one seeks a closed analyti- 
cal solution of the problem, making as it does the bookkeeping of infinitesimal evolu- 
tion steps entirely unnecessary: a very important consideration in dealing with com- 
plex evolutions, multidimensional spin systems, etc. However, the present method 
usually carries along a certain amount of irrelevant information: the exponential op- 
erator reflects essentially all possible “connectivities” in the system, while the direct 
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BCH method generates only those connectivities that are allowed for a given ini- 
tial state. 
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