English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family.

MPS-Authors
/persons/resource/persons14826

Beckh,  S.
Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15658

Pongs,  O.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grupe, A., Schroter, K. H., Ruppersberg, J. P., Stocker, M., Drewes, T., Beckh, S., et al. (1990). Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family. EMBO Journal, 9(6), 1749-1756.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-0DB8-9
Abstract
We have isolated and characterized a human cDNA (HBK2) that is homologous to novel member (RCK2) of the K+ channel RCK gene family expressed in rat brain. RCK2 mRNA was detected predominantly in midbrain areas and brainstem. The primary sequences of the HBK2/RCK2 K+ channel proteins exhibit major differences to other members of the RCK gene family. The bend region between segments S1 and S2 is unusually long and does not contain the N-glycosylation site commonly found in this region. They might be O-glycosylated instead. Functional characterization of the HBK2/RCK2 K+ channels in Xenopus laevis oocytes following micro-injection in in vitro transcribed HBK2 or RCK2 cRNA showed that the HBK2/RCK2 proteins form voltage-gated K+ channels with novel functional and pharmacological properties. These channels are different to RCK1, RCK3, RCK4 and RCK5 K+ channels.