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Abstract. We study optical second harmonic generation (SHG) in planar waveguide 
structures composed of several layers with different dielectric constants. We develop a 
general formalism for the calculation of mode generation by a planar antenna embedded in 
the waveguide. As an application we consider a monolayer of high second-order 
susceptibility adsorbed at the interface between two layers of the waveguide structure. 
Periodic modulation of the nonlinear susceptibility allows phase matching leading to 
dramatically enhanced second harmonic intensities. We investigate the SHG-efficiency of 
various experimentally realizable geometries. 

PACS: 42.65k, 42.80, 42.82 

In recent years several devices have been proposed for 
optical second harmonic generation in planar wave- 
guide structures. Extensive reviews of the various 
proposals have been presented by Stegeman and Seaton 
[1]. In this article we consider in particular second 
harmonic generation from a monolayer of optically 
nonlinear molecules adsorbed at an interface in the 
planar waveguide structure. 

In one of the earliest proposals a nonlinear mono- 
layer was deposited on the surface of a thin film 
waveguide [2]. In this article we consider more general 
planar waveguide structures with a view of optimizing 
the geometry for efficient second harmonic generation. 
We calculate the efficiency of conversion of an incident 
fundamental guided mode into a second harmonic 
guided mode propagating in the same direction. An 
optimized device, if realized, might be more effective 
than presently used inorganic frequency doublers such 
as crystals of KDP (potassium dihydrogen-phosphate) 
in which phase-matched bulk second harmonic gener- 
ation occurs. 

In the first few sections of this article we develop a 
formalism for the calculation of mode generation by a 
planar antenna embedded in a general waveguide 
structure. An alternative coupled wave formalism has 

been discussed by Sipe and Stegeman [3] in relation to 
a calculation of the total field. In our analysis the total 
field is represented by a Fourier integral and the 
amplitude of each of the generated normal modes is 
then found from a pole contribution to the integral. Wc 
present a detailed expression for the conversion effi- 
ciency in general planar waveguide structures. 

We apply the theory to a calculation of SHG from a 
nonlinear monolayer adsorbed at an interface. The 
efficiency is enhanced by arranging the adsorbed 
molecules into a grating. This allows constructive 
interference of the second harmonic waves, provided 
phase matching can be achieved. We investigate how 
to optimize the enhancement by a proper choice of an 
experimentally realizable waveguide structure and of 
the location and dimensions of the adsorbate grating. 

Up till now, waveguide SHG has usually been 
based on a phase-matching condition between guided 
modes at frequencies co and 2o9. The relevant theory 
was developed by Conwell [4], and an experimental 
realization has been demonstrated by Jain and Hewig 
[-5]. The effect is discussed in a recent review by 
Williams [6]. Phase-matched SHG in a liquid-filled 
waveguide was realized experimentally by Levine et al. 
[7], who used a periodic electrode to modulate the 
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nonlinear susceptibility. Phase-matched SHG in solid 
thin films with etched gratings was achieved by Chert et 
al. [-8]. Phase-matching achieved by a grating structure 
obtained by periodic index-modulation of a planar 
waveguide has been proposed by Haus and Reider [9]. 
They have studied the enhancement to be expected 
from such a structure. Second harmonic generation 
from surface gratings has recently been studied by 
Reider et al. [10]. 

SHG in a channel waveguide resonator has been 
investigated by Regener and Sohler [11 ]. "Cerenkov"- 
SHG was studied by Taniuchi and Yamamoto [121. 
Grating-assisted SHG was studied by Jaskorzynska et 
al. [13]. Quasi-phase-matched SHG was studied by 
Lira et al. [141 and by Webj6rn et al. [151. 

1. Planar Waveguide Theory 

We consider a stratified medium with frequency- 
dependent dielectric profile e(z, co) and magnetic per- 
meability profile #(z, co). We assume that for the 
frequencies co of interest e and # are real. Also we 
assume that e and # tend to constants el, #1 for z--, - oo 
and to constants el, #f for z ~  + oo. An example of the 
geometry with our choice of coordinates is shown in 
Fig. 1. We consider plane wave solutions of Maxwell's 
equations which do not depend on the y-coordinate 
and which depend on x and t through a factor 
exp(ipx-icot). Maxwell's equations for the electric and 
magnetic field amplitudes E(z) and H(z) then read in 
Gaussian units 

where k =co/c is the vacuum wavenumber. The so- 
lutions of these equations may be decomposed accord- 
ing to two polarizations. For TE-polarization (s) the 
components Ex, E~, and Hy vanish and the equations 
may be combined into the single equation [16] 

For TM-polarization (p) the components Ey, Hx, and 
H~ vanish and the equations may be combined into the 
single equation [161 

Fig. 1. Example of a stratified medium with our choice of 
coordinates. This situation is denoted as geometry I 

We first consider TE-polarization. We assume that 
for z < Zl the permeabilities ~, # equal el, #1 and that for 
z > zf they equal ef, #f. We write the solution of (1.2) in 
these two asymptotic regions 

where the wavenumbers ql and qf are given by 

Clearly these are real only up to a maximum value ofp 
given by ~ k  in either case, and are pure imaginary 
beyond this value. Through (1.2) the amplitudes in (1.4) 
are related by a transfer matrix W according to [161 

The guided mode solutions [17-19] occur at 

discrete values {Pi} of p larger than em~mk, where 
.~m]Am is the maximum of~1#1 and ef#f. At these discrete 
values there are solutions of (1.2) which decay ex- 
ponentially for z < zl and for z > zf. Hence a( and a~ 
must vanish, and from (1.6) we find the relations 

Thus for a nontrivial solution, the relation 

must be satisfied. At fixed k the roots of this equation 
determine the discrete values {p j} for which a guided 
mode solution exists. We call W22(P, k) the dispersion 
function and refer to (1.8) as the waveguide condition. 

We note that in the continuum 0 < p < ~m~m k the 
transfer matrix is related to the transmission and 
reflection coefficients of the planar structure by 
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The properties 

provide the transfer relations between transmission 
and reflection coefficients for a wave incident from 
z < Zl or from z > zf. The relation (1.8) therefore implies 
that the guided mode solutions occur at poles of the 
analytically continued transmission coefficient T'. This 
is analogous to the condition for bound states in 
quantum mechanics [20]. 

The analogy with quantum mechanics may be 
made more evident by use of the transformation 

Ey(z) = ~ - ~ f ( z ) .  (1.11) 

By substitution we find that (1.2) is transformed to 

dz 2 V( z ) f  =pZf  , (1.12) 

where the function V(z) is given by 

d 2 1 (1.13) V(z)= 2 + 

By comparison with the Schr6dinger equation we see 
that 

U(z) = ~m/Xm k2 -F V(z) (1.14) 

may be identified as the potential. The eigenvalues 
em#mk2__p2 then correspond to bound state energies. 

It follows from (1.3) that for TM-polarization 
exactly the same relations hold if we replace Ey by Hy 
and E by #. Where necessary the symbols correspond- 
ing to the two types of solution will be distinguished by 
a superscript E or M. 

2. Mathematical Properties 

In this section we deduce some mathematical pro- 
perties which follow from the above equations. Again 
we consider only TE-polarization, the transcription to 
TM-polarization being obvious. 

The form (1.12) of the wave equation has mathe- 
matical advantages. We define two fundamental 
solutions fl(z) and fz(z) by the requirements 

1 i lz fl(z) = - - e  q 
V< 

for z <z  1 . (2.1) 
1 

fz(z)= - - e  -lqlz 

By comparison with (1.6) we find that the asymptotic 
behavior of the solutions for z > zf is given by 

fl(z) = ~ [W1 leiqf: + Wzle -iqfz] 

for z>zf .  (2.2) 

f2(z) = - 7  [W12 eiqfz q- W22 e-iqfz] 
V,f 

From the form of (1.12) it follows that the Wronskian 
of the two solutions 

L [,~ (2.3) A(fl ' f2)= f1 J~ 

does not depend on z. Hence we find the relation 

Wjl W22_ Wl zW2t_  txf ql . (2.4) 
#1 qf 

Using (1.9) this yields the reciprocity relation 

#lqf T =  #fql T' .  (2.5) 

From the fact that the coefficients in (1.12) are real 
it follows that for p2 in the interval 0~p2__<eUxlk 2, 
where ql is real, the solutions fl  and f2 are each other's 
complex conjugate. Hence it follows from (2.2) that for 
values of p for which qf is also real the following 
relations hold 

Wll = I47"2, W12 = W*l. (2.6) 

These relations are special cases of more general 
relations valid in the whole complex p-plane, namely 

WI1 = W22, W12 = ff'21, (2.7) 

where the overhead bar indicates a "time-reversal" 
operation. The meaning of this operation will be made 
clear in Sect. 6. 

It will be convenient to introduce a third funda- 
mental solution by 

f3(z)=~f~fe iqf~ for z > z f .  (2.8) 

It follows from (2.2) that, for the values {p j} for which 
the waveguide condition is satisfied, the solutions f2 
and fa are related by f2(z)= W12f3(z). 

For later purposes it is of interest to derive an 
expression for the norm of the eigensolutions. Differen- 
tiating (1.12) with respect to p2 one easily finds the 
identity 

L[sL( s os as]=s  (2.9) 
oz L Oz \Op2J @2 ~z • 

Applying this identity to the eigensolution f2j(z), 
making use of the waveguide condition (1.8), and 
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integrating over z, one finds 

Nj= ~ f~dz= - - i q f j  W 1 2 ( P j ) ~  (2.10) 
- oo i t f p j  p j "  

We shall show in the next section that the norm Nj is 
related to the intensity of the mode. We note that for 
realp-values for which qa and qf are pure imaginary the 
functions W12(P) and WEE(P) are real. 

3. Excitation of Guided Modes 

In this section we return to the physical situation and 
describe how the eigenmodes may be excited by an 
oscillating dipole density. We begin by relating the 
norm of an eigenmode, given by the expression (2.10), 
to the physical intensity. The energy current density 
averaged over a time period 2re/co is given by the 
Poynting vector 

S =  f -  Re(E × H*). (3.1) 
8~ 

The x-component of this expression may be decom- 
posed into 

_ _  E M Sx - Sx + S~, (3.2) 

with the separate terms for TE- and TM-polarization 

C , E_ ~_Re{ErH~}, M_ - c  . S x -  Sx - ~-n Re{EzH, }. (3.3) 

We define the total intensity by the integrals 

JE(X) = ~ S[(X, z)dz, JM(x) = ~ S~(x, z)dz. (3.4) 
- 0 0  - o 3  

For a single eigenmode of either TE- or TM-type 
the expressions (3.3) become 

_ cp~ IE,jl~ ~ _  cp~ IH,~I = (3.5) 
SxJ- 8nk it ' S~J- 87ck e 

which are independent of x. By comparison with (1.11) 
and (2.10) we find that for a single eigenmode excited 
with amplitude a[-j the intensity is related to the norm 
of the mode by 

j j=  cpj Njla~_jl2. (3.6) 

This expression is formally the same for both polariza- 
tions. 

Using orthogonality of the eigenmodes [17-19] we 
find that for a linear superposition of guided modes, all 
oscillating at the same frequency o9, the total intensity 
is given by 

j ~  E M Z. (J~ + Jj  ) (3.7) 
J 

which again does not depend on x. 

Next we investigate how radiation is emitted by an 
antenna in close contact with or embedded in the 
waveguide. We consider a surface polarization [-21, 22] 
pS(x) of finite extent in the x-direction, independent of 
y, located in the plane Z=Zo, and oscillating at 
frequency co. The corresponding charge and current 
densities are 

Ops 6 ( z -  Zo) - pS 5'(z - Zo) , ~(r )= -  0~- 
(3.8) 

j(r) = - io)pS(x) 6 ( z -  Zo), 

which must be added as source terms to Maxwell's 
equations. A Fourier analysis of the surface polariza- 
tion yields 

pS(x) = ~ pS(p)eipXdp. (3.9) 

From Maxwell's equations we now find instead of (1.2) 

d2Er 1 d# dEy +(e#k2_p2)Ey 
d2 2 it dz dz 

= - 4~zkZitP'sy 6(z - Zo). (3.10) 

Similarly we find instead of (1.3) 

d2Hy 1 de dH r 
dz 2 8 dz dz -t-(8itkZ-p2)Hy 

de 

+ 4~kpP s6(z-  zo). (3.11) 

The solutions of these equations may be found with the 
aid of the Green's functions GE(z, Zo) and GU(z, zo) 
defined by the equation 

d zG _ V(z) G = p2 G + 6(z-  Zo). (3.12) 
dz 2 

The Green's function G may be expressed in terms of 
the fundamental solutions defined in the preceding 
section. It is given by [23] 

f2(z<)fa(z>) 
G(z, zo)= , (3.13) 

A(fz, f3) 

where z<(z>) is the smaller (larger) of z and z o. The 
solution of (3.10) is given by 

Er(z) = -4rck2[#(z)] 1/2 GE(z, Zo) [#(Zo)] 1/2P~y. (3.14) 

The solution of (3.11) is given by 

H,(z) = -4rfik[e(z)]l/2 [ OGMo(~Zz 'o z°) 

1 d l ~ z o )  GM(z, zo) ] [~(Zo)]_l/2p s 
+ 2 az o d 
+ 4rcpk[e(z)]l/2 GM(z, Zo) [e(Zo)] - 1/2 ps. (3.15) 
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From (3.13) and (3.14) we find that Ey(z) has the 
following discontinuities at Zo 

FdErq -4~k2p~y.  (3.16) 
[,G] =0, LZ;A = 

Similarly Hy(z) has the discontinuities 

~dHy] = 47rkppS. (3.17) [-HY] =47fik/~S' L dz J 

These discontinuities are in agreement with the jump 
conditions [Ref. 21, Eq. (8)1. 

For a surface polarization pS(x) with arbitrary 
variation in the x-direction the fields Er(x,z) and 
Hy(x, z) are now obtained by Fourier superposition. 
Thus we find 

Er(x, z) = ~ Er(p, z)eipX dp , 
(3.18) 

Hy(x, z) = ~ n~,(p, z)eipXdp, 

where Er( p, z) and Hr( p, z) are given by (3.14) and (3.15) 
in terms of OS(p). It follows from (2.2) and (2.7) that the 
denominator in the Green's function (3.13) takes the 
form 

A(f( ,  f3 ~) = 2iqf Wze2(p ' k), 

#f (3.19) 
A M M 2iqe (f~ , f~ ) = W~(p, k). 

ef 
Hence the denominator vanishes at the eigenvalues 
{p[} and {pM}, respectively. For  large x the contri- 
bution from the corresponding poles dominates the 
integrals in (3.18). This allows us to evaluate the 
amplitude of the various guided modes excited by the 
oscillating surface polarization. 

4. Emitted Radiation 

In this section we analyze the radiation emitted by a 
planar antenna, as introduced in the preceding section, 
in more detail. We are interested in the radiation 
channeled into the waveguide and detectable at large 
positive x. At sufficiently large distances from the 
antenna, i.e. after the decay of transients corresponding 
to evanescent wave solutions, the behavior of the fields 
is dominated by pole contributions to the integrals 
corresponding to roots of the waveguide condition 
(1.8). The contributions may be found by contour 
integration in (3.18) with the poles at positive {Pi} 
shifted slightly upwards into the complex plane and 
those at { - p j }  shifted slightly downwards. Thus we 
find for large positive x 

Er(x, z) '~ Z a/~lpy(z) exp (ip~x), (4.1) 
J 

where we employ the notation 

~py(z) = ] , / ~  f~(z). (4.2) 

The amplitudes are given by 

- r  2" 2 E E-1  Z ^S ~ (4.3) alj =4re lk  (pjNi) tp~(zo)P~,(p~), 

where we have used (2.10). From (4.1) we may evaluate 
the intensity defined in (3.4). Because of the orthogo- 
nality of the different modes [,17-191 there are no 
cross terms and we find 

j E . =  ~ j y  = 21r3 ck3 E E - 1  E 2 AS E 2 Z(PjNj )  [-~Pj (Zo)] I P y ( P j ) I  • 
J J 

(4.4) 
Similarly we find for large positive x 

Hr(x, z) ~ 2 a;~p~(z) exp(ip~x) (4.5) 
J 

with the notation 

~p~(z) = eV~f~i (z  ). (4.6) 

The amplitudes are given by 

a,-)M= _ 4~2k(p~Sr~)- i 1 &p~. (Zo) ^s M 
e(Zo) d z ~  ex(pj ) 
M 2 

_4rc2ik(NM)_ 1 lpj (o)  ,^s, M, (4.7) e(Zo~) rztpj ). 

This yields for the intensity 

jM = 2 J~ 
J 

2r~ack Zj (P MNM)-I F,(~O) dl])~(zO)dz 0 Px(pĵS M) 

' M~P~(Zo)~'S" M'IE (4.8) 

The expressions (4.4) and (4.8) have a fairly simple 
structure. The efficiency with which a surface polariza- 
tion pS(x) excites the guided modes is determined by its 
Fourier component at the mode wavenumber Pi, as 
well as by its location Zo via the eigenfunction ~pj(Zo), 
which appears quadratically with its proper normaliz- 
ation Nj. 

5. Phase-Matched Second Harmonic Generation 

In this section we discuss the principle of second- 
harmonic generation by use of a phase-matched 
adsorbate in close contact with or embedded in a 
planar waveguide. In practice the adsorbate consists of 
optically nonlinear molecules located at an interface. 
We assume the general type of geometry discussed in 
the preceding section and consider a surface polariza- 
tion pS(x) which is induced by an incident fundamental 
wave and which acts as an antenna emitting waves at 
the second harmonic frequency [-24]. Thus we put 

pS(x) = z~3)(x): Elo(X)E1 o(X), (5.1) 
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Z 

Fig. 2. Example of the grating and waveguide structure 

where Elo(x) is the incident fundamental field. Of 
course, if the fundamental field oscillates with frequen- 
cy o), then the surface polarization oscillates at fre- 
quency 2o) and this must be taken into account in the 
expressions of the preceding sections. We assume that 
the adsorbate is so weak that it does not disturb the 
fundamental wave. This is expressed by the subscript 
zero in (5.1). 

The fundamental wave is a linear combination of 
guided modes with x-dependence exp(ipjx) with 
wavenumber pj(o)). We shall assume that the suscepti- 
bility tensor Z (3) depends on x via the density of 
adsorbed molecules. If the adsorbate has a periodicity 
a characterized by the wavenumber K = 2rc/a, then we 
may expect resonance when the phase-matching 
condition 

pj(2o)) = 2pk(o) ) + nK, n = 0, _ 1, _+ 2 . . . .  (5.2) 

is satisfied. More specifically it is natural to aim at 
satisfying the condition 

po(2o)) = 2po(o) ) _  K ,  (5.3) 

for the lowest mode j = 0. We shall call this the Bragg 
condition. 

We consider in particular a grating of period a 
consisting of N adsorbate stripes of width b < a. An 
example of the grating and waveguide is shown in 
Fig. 2. The susceptibility function is given by 

Z(x) = zgN(x), (5.4) 

with the geometric function 

N - 1  
gN(x)= 2 

n = O  

where 

O(b, x) = 1 

O(b, x - n a -  ½ b), (5.5) 

b b 
for - ~ < x <  

b 
= 0  for Ixl>~. (5.6) 

The prefactor Z in (5.4) is a third rank tensor indepen- 
dent ofx. We shall assume that Z has the characteristics 
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of a layer isotropic about the surface normal (in the 
z-direction). We also assume that there exists a mirror 
plane containing the z-axis to exclude chirality. From 
these assumptions it follows that ~ has only three 
independent components (for details see [-25-27]). The 
Fourier-component pS(p) is proportional to 

GN(P-- 2pk(C0)) = ~ -  g~(x)e2iVk(~')x-lVXdx 
- a o  

exp(iskb)-- 1 1--exp(iNska) 
-- 2~is k 1 --exp(iska ) ' (5.7) 

where we have introduced the variable 

Sk = 2pk(o)) -- p. (5.8) 

For  real p the absolute square of the second factor in 
(5.7) is given by 

] __eiNSa 2 sin2(Nsa/2) 
FN(sa)= i ~  [ -- sin2(sa/2) (5.9)' 

which takes the value N 2 at sa=2nzc, where 
n = 0, _+ 1, _+ 2, . . . .  Since we wish pS(p) to be maximum 
at po(2o)) we choose the lattice distance a such that 

a = 2zcl2po(o))- po(2o))1-1 (5.10) 

corresponding to n = 1 or n = -- 1. In this way we satisfy 
the Bragg condition (5.3). The width of the function in 
(5.9) at s=  +_2~/a is of order 1/Na. Hence the area of 
the peak is proportional to N. The larger N the more 
precisely the condition (5.10) must be satisfied. An 
error Aa in the value of a implies an error Ap = 2ztAa/a 2 
in p-space. If we require this to be at most 1/Na, then N 
cannot be larger than a/2zcAa. Ideally one would use a 
tunable laser and adjust the frequency o) such that the 
condition (5.10) is precisely satisfied. With that choice 
the absolute square of the first factor in (5.7) is maximal 
at b = l a .  

6. Specific Geometries 

In this section we describe three geometrical structures 
which we shall investigate with regard to their effi- 
ciency for second harmonic generation. The simplest 
geometry under consideration is depicted in Fig. 1. 
Here the waveguide structure consists of a layer of 
thickness d with dielectric constant e 2 sandwiched 
between two halfspaces with dielectric constants el and 
e3. In practice we consider one of the halfspaces to be 
air and in that case we put e 3 = i. The grating of 
adsorbed molecules is located at the interface between 
media 2 and 3. We choose the dielectric constants such 
that e2>ex ~ 3 .  In that case the layer e2 may act as a 
plane waveguide. We denote the structure shown in 
Fig. 1 as geometry I. 
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Fig. 3. Geometry II. In the explicit calculations we take the limit 
h ~ 0 +  and put e4=el  

h+d 

0, 

d! 

Z 
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E1 ,Pl 
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N 2 g2 N 

El, [21 

Fig. 4. Geometry III. In the explicit calculations we take the limit 
h ~ 0 +  

The second structure we consider is depicted in 
Fig. 3. In this case the structure of geometry I is 
modified such that medium 3 has a finite thickness h, 
beyond which there is a halfspace with dielectric 
constant e4. In our explicit calculations we put e4 = ~ .  
We denote this structure as geometry II. If h is 
comparable with or smaller than d, then the field 
amplitude of the fundamental at the adsorbed mole- 
cules can be much larger than in geometry I. This leads 
to enhanced second harmonic generation. 

Finally we consider the symmetric structure shown 
in Fig. 4. This case is a modification of geometry II. We 
take h to be small, i.e. much less than d and the 
wavelength of the fundamental. Medium 4 is replaced 
by a layer of thickness d with dielectric constant ez and 
a halfspace with dielectric constant el- We denote this 
structure as geometry III. We shall show that with 
respect to SHG efficiency geometry III is the most 
favourable one from a theoretical point of view. 

In all three geometries the wave equations (1.2) and 
(1.3) may be solved by the transfer matrix method [-16, 
21]. We briefly recall the basic equations in the 
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notation of this article. In the layer z j_ 1 < z < zj the 
fields are written 

Ey(x, z) = [a + ~ exp (iqjz) + a 7 z exp ( - iqjz)] exp (ipx), 
(6.1) 

Hr(x , z) = Ear M exp (iqjz) + a i M exp (-- iqjz)] exp (ipx). 

The amplitudes a +, a f  below the discontinuity at zj 
may be related to the amplitudes a++ 1, ai+ 1 above by a 
2 × 2 transfer matrix 

a~-+ 1/ a J_j . (6.2) 

The transfer matrix Rj may be written as 
! Rj = UiMjU j (6.3) 

with the diagonal matrices 

0 
U)= (eXP(oqJ+ ~zJ exp(iqj+ xZj) ) 

(6.4) 
Uj=(exp(lOqjzj) 0 ) 

exp(--iqjzj) 

and with a matrix Mj which is independent of position. 
The matrix M~ is given by 

M j -  (6.5) 
tj+ 1,j rj+ 1,j 

with Fresnel coefficients t u and r u which are 

t E -- 2#Jqi r E =/AJqi -- ]liqJ (6.6) 
[2iqj -'[- ~tjqi' #iqj + ktjqi 

for TE-polarization, and 

tM_ 2ejql r~-- ejqi-  eiqj 
~3iq j -}- ~'jqi' g'iq j -1- ~'jqi 

(6.7) 

for TM-polarization. The transmission of a wave 
through an array of l discontinuities is given by the 
product 

w =  1)M -1 ... M2  2(z2 --Zl)M1 
(6.8) 

with the propagation matrix for medium e j, #j 

 j z,:(exp qjz  exp 0iqjz,) 
The complete transfer matrix W may be written in the 
form (1.9). The time-reversal operation mentioned 
below (2.7) is performed by replacing all wavenumbers 
q by - q .  

For  each of the three geometries one may calculate 
the intensity J~(2~o) of second harmonic generation in 
modej  of polarization a for given intensity Jg'(o)) of the 
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fundamental. The ratio of these two quantities defines 
the conversion coefficient 

ff~r' --  ff 17' ~/jk -- Jj(2co)/Jk (co). (6.1 0) 

In numerical calculations we consider only qoo~"- 

7. E x p l i d t  R e s u l t s  

In this section we present explicit results for the three 
geometries discussed above. For each of the three 
geometries we list the expressions for the functions 
W12(P , k), W22(P , k) as well as the product WI2 W22 a t  pj 
from which the norm of the wavefunction may be 
evaluated according to (2.10). We recall the definitions 
(4.2) and (4.6) of the wavefunctions ~pE(z) and ~p~(z) in 
terms of f~(z) and f2~(z). As before we omit the 
polarization index where possible. At the end of the 
section we also give the value of the wavefunction and 
its derivative at the position of the adsorbate. 

W~ 0W221 _ 
12 O~-[pj 

Here the prime indicates differentiation with respect to 
p. The explicit expression for ~Yk is 

O~ E -- k 2' ' eJ#J - ek#k (7.7) 
jk-- ~j~k (/2kqj)2_ ( # j ~ k ) 2  

and similarly for a~k. Of course, everywhere on the right 
in (7.5) one must put p=pj. We do not indicate this 
explicitly. 

Similarly we find for geometry II depicted in Fig. 3 

ei(ql - q2)d - i(q3 + q4)h 
W12 = [(r32 + r2 le2iq2d)e 2iq3h 

ta3taEt21 

+ r43(1 + ra2r21e2iq~a)], 
ci(q 1 -- qE)d- i(q3 - q4)h 

W22 -- [1 + ra2r21 e2iq# 
t43t32t21 

+ ra3(r32 + r2 le2iqza) e2iqah]. (7.8) 

For the product W12W~2 at Pi we find 

_ 2t34 e -  2r ld I 
t431t3212 It21[ 2 sin~°32 1_ ~0~1 +2q'2d 

(1 - r23e_ - '~h)  q);2 - 2(rka - 2x'3hr,3)e - 2~h sin q~32] 
-f 1 + r23e-4rah + 2r43e-  2r3h cos~032 ]"  (7.9) 

We note that in all three geometries the wavenum- 
bers qj for the guided modes are pure imaginary for 
j = 1,3, 4, whereas q2 is real. Hence we may write 

ql = i/¢1, q3 = i / ¢ 3 ,  q4  = i/¢4 • (7.1) 

In addition we may put 

r21 = e  iq'21, r a 2 = e  i~°32 (7.2) 

with real phase angles q~21 and q~32. This implies the 
identities 

r21 1 r32 1 
t221 - )2112,  t2 2 - - ] t a 2 1 2 .  (7.3) 

For geometry I, as depicted in Fig. 1, the elements 
W12 and W22 in this geometry are given by 

ei(ql -q2)d 
W12--  _ _  [r32 + r 2 1 e 2 i q 2 q ,  

t32t21 
ei(q, -q2)d (7.4) 

W22 = - -  [1 -~- r32r21e2iq2d] . 
t32t21 

For the product W12W~2 at pj we find 

W~ 8w22l _ 2 p j  [t231 
t2 ~ - I , j  q2 ]t321lt2112 

x e-2~'a [ d +  e12+xl a32]'xa J (7.5) 

where ejk is defined by 

qjqk r)k (7.6) 
O~Jk-- 2p rjk" 

Finally we consider geometry III depicted in Fig. 4. 
We simplify the expressions by taking the limit h = 0 +.  
This yields 

W12 = 2ira1 sin2q2d, 
t lz t21 
eZi(ql-q2)d (7.10) 

W22--  [-1 - -  r21eglq2a].  
t12t2t 

For the product WlzW~2 at pj we find 

W12 0W22 4pj  e - 2 ~ ' a  [ ~ 1 2 ] .  
63P pj --  q2 1t121 It21[ d +  t q  A (7.11) 

In all three geometries we choose coordinates such 
that the interface between media 2 and 3 is at z = 0. The 
adsorbate is located just above at z = 0 + .  The wave- 
function and its derivative at z = 0 +  are given by 
expressions which are the same for the three geome- 
tries. For the value of the wavefunction we find 

~/)(0 -}- ) = e - Kid COS(1 @21 -~- q2 d) 
cos½ ~021 (7.12) 

and for its derivative 

lp'(0 + )  = 1t231 -x 'as in(½¢PEl+q2d)  (7.13) 
- 31t32  e cos½ 2  

The expressions presented in this section may be 
used for an explicit calculation of the intensity radiated 
by a polarization sheet, as given by (4.4) and (4.8). 
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8. Intensity Ratios 

In this section we evaluate the ratio of the intensities 
of emitted second harmonic light and of the incident 
fundamental radiation. For each of the three geome- 
tries we consider the conversion coefficients (6.10). We 
assume that the fundamental is present as a single 
mode k oscillating at frequency co with amplitude 
characterized by ai-fi(co) for TE-polarization and by 
a~-M(CO) for TM-polarization. According to (4.1) for TE- 
polarization the electric field is given by 

E(CO; x, z) = a l~(co) E ~Pk (CO, Z) % exp [ip~(co) x] .  (8.1) 

Assuming an isotropic tensor Z with mirror symmetry 
we find from (5.1) and (5.4) for the induced surface 
polarization 

pSE(2co, X) 

= z2gN(x) [a ;~(co) ~p~(co, Zo)] 2 ez exp [2ip~(co)x] (8.2) 

with Z2 = Z ~  = Zzry. For TM-polarization the electric 
field is according to (4.5) 

aiM(co) F . CqtpM( co, Z) 

_ pM~pM(CO, z)ezJ exp [-ip~(co)x]. (8.3) 

The induced surface polarization is 

and the dimensionless wavefunction coefficient 

ajk = [e3(co)k/pE(co)] 4 [~pM(2CO, 0 +)]2 [~pE(CO, 0 +)]a  (8.9) 

Similarly we find for the conversion coefficient q~M 

t/~M= 256n5co - 1 [dN(pM(2CO ) -  2pM(CO))[ a ( ~  Bi~Z'~Z*) 

M x J~ (co), (8.10) 

where the coefficients Bj;~ are given by 

B i~k " ---- "~ jk/~MM /~),~t, j k (8.11 ) 

with normalization factor C~k M given by (8.8) and 
dimensionless wavefunction coefficient bj~k ~ given by 

b l l  . 2 .  4 1 2  - 2 .  2 .  2 .  t 2  
jk = (~3 j (~;k , b jk  = Pk lt; j i/3k (/3k , 

1 3  - 1  - 1  t 3 t 
bjk  = 2pj Pk IPjlPjlPk l f k ,  

bEe _-4. 2. ,4 (8.12) 
jk = Pk ~ j  ~gk , 

2 3 _ _  bjk -- -- 2pj lp[  3~pjlp)pklp~3 ' 

b 3 3  / I  - 2  - 2  , 2  2 t 2  
jk  - '=~Pj Pk 11)j IPklPk " 

The values of the wavefunction and its derivative at 
% = 0 +  are given by (7.12) and (7.13). 

We are now in a position to compare the conver- 
sion coefficients for different geometries. We assume 
that for each of the geometries only the lowest 
fundamental mode is excited with the same intensity 

Fai-M(co) 72 f - M M &;~(CO, Z) 

+[)h(pMtpM(CO, z))E--ZE(~lP~'Z))21ez}~=~oOXp[2ipM(CO)X], (8.4) 

where Z1 = Zzzz and 23 = Zxzx = Zx=. It follows from (4.4) 
and (4.8) that in both cases the emitted radiation is 
TM-polarized. For TE-polarized fundamental the 
emitted radiation is proportional to 

[psE(2co ' pM(2CO)) 12 

_-iz=l 216N(P~(2CO)--2p~(co))l 2 lai-~(co)l 4 [];E(~, 0 +)34.  
(8.5) 

Here the amplitude factor may be expressed in terms of 
the intensity of the incident radiation by use of (3.6). 
This yields for the conversion coefficient ~ E  defined in 
(6.10) 

q~E = 256n5CO-116N(pM(2CO)_ 2p~(CO))I2 AjkIZ2[2 jE(CO), 
(8.6) 

where the coefficient Ajk is given by 

Z j k  -= C ~ E a j k  (8.7) 

with the normalization factor 

Cjk = pj(2co) p2(co) [e2(2co) e~(co) Nj(2co) N~(co)] - 1  (8.8) 

J~(co) or JoM(co) and we consider the intensity JoM(2CO) of 
the lowest second harmonic mode. Assuming perfect 
phase-matching the factor F N in (5.9) takes the value 
N 2 and choosing b = ½ a  the first factor in (5.7) has 
absolute value aV2/4rc 2. In this case the three geome- 
tries differ only in the factors Aoo and B ~  in (8.6) and 
(8.10). 

In our numerical calculations we put the magnetic 
permeability # equal to unity everywhere. At the 
fundamental frequency we put e1(co)=2.13, e2(co ) 
= 2.25, and s3(co ) = 1. At the second harmonic frequen- 
cy we put el(2co ) = 2.17, e2(2co ) = 2.28, and e3(2co ) = 1. In 
Fig. 5 we plot the reduced wavenumber po(co)/k for the 
three geometries as a function of kd. The correspond- 
ing plot for po(2co)/2k at the second harmonic frequen- 
cy is very similar. In Fig. 6 we plot the logarithm of the 
ratio (Aoo/4k 6) as a function ofkd. In Fig. 7 we plot the 
logarithm of the ratio (B~/4k6), again as a function of 
kd. We note that in geometry III the derivatives 
~p~(a), 0 +)  and tp~(2co, 0 +)  vanish by symmetry, so that 
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Fig. 5. Reducedwavenumberpo(co)/kforthefundamentalguided 
mode of lowest order plotted against kd for geometries I, II, and 
III 0L__ 
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Fig. 6. The logarithm ~°log(Aoo/4k6), with Aoo as defined in (8.7), 
for geometries I, II, and III plotted against kd 
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Fig. 7. The logarithm l°log(B~/4k6), with B~ as defined in 
(8.11), for geometries I, II, and III plotted against kd 

in (8.12) only the coefficient blolo differs from zero. It is 
evident from Figs. 6 and 7 that there is a marked 
difference in efficiency for the various geometries. 
Roughly speaking geometry II is several orders of 
magnitude more efficient than geometry I, and 
geometry III is again several orders of magnitude more 
efficient than geometry II. 

In all three geometries the distribution of the 
adsorbate enters via the prefactor [GN(pj(~o)--2pk(~O))l 2 
in (8.6) and (8.10). A less than perfect grating affects this 

geometrical prefactor. Also irregularities in the wave- 
guide structure affect mainly this prefactor. If we 
express the effect of scattering due to irregularities by 
an exponential damping of the wave, i.e. by complex 
values of the guided mode wavenumbers pj(2c0) and 
pk(CO), then both the surface polarization and the 
second harmonic wave are exponentially damped in 
the x-direction. In calculating the second harmonic 
intensity at a distance D from the grating we must 
replace the factor IdNI 2 by 

exp E -  2p~(2o9) (D + Na)] I dN(pj(2co) - 2pk(Og)) ] 2, (8.13) 

where now pj = p) + ip~ and Pk = P~ + ip~ are complex 
wavenumbers. In order to find the optimum grating we 
may maximize the above expression with respect to N. 

9. Efficiency Considerations 

In this section we compare the conversion efficiency of 
the various waveguide configurations studied in the 
preceding sections with that of bulk-SHG in KDP. 
First we compare surface-SHG and bulk-SHG for the 
case of Fresnel reflection (FR) and total internal 
reflection (TIR) at a single surface. Next we consider 
the conversion efficiency for the different waveguide 
configurations for realistic physical dimensions and 
under the assumption that recently available nonlinear 
monolayers of high second-order susceptibility Z~ 2) are 
employed. 

In order to facilitate the comparison of surface- 
SHG and bulk-SHG we assume that in the former case 
the incident wave is s-polarized. Hence the SHG signal 
is p-polarized and depends only on the surface suscep- 
tibility component [28] )Gyy- The surface susceptibility 
Z~ 2) can be as high as 10-13 esu [-29]. Typically the bulk 
susceptibility )(2) of KDP approaches 10 -8 esu [30]. 
For  a particular choice of geometry in surface-SHG we 
may evaluate the effective length/eft of a KDP crystal 
leading to the same conversion efficiency under the 
assumption of perfect phase-matching [31]. Table 1 
represents a compilation of such effective KDP-lengths 
for different angles of incidence in the FR or TIR case. 
It is evident from this table that surface-SHG can be 
quite an efficient conversion process. In fact, for an 
angle of incidence of 45 ° in Fresnel reflection and for 
Z~2)= 10-ta esu it takes 790nm phase-matched KDP 
to achieve the same conversion efficiency. The en- 
hancement by an additional factor 10 in total reflection 
is in agreement with previous measurements [32, 33]. 
This enhancement is reduced considerably upon devi- 
ation from the critical angle of incidence. Under the 
conditions of Table 1 this angle is 43.3 ° for e(e))= 2.13. 
However, even for 60 ° incidence the length/eft in total 
reflection still exceeds the value for Fresnel reflection. 
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Table 1. Effective KDP-lengths in nanometer for Fresnel refiec- 
tion (FR) and total internal reflection (TIR) for selected angles of 
incidence of a surface-SHG experiment (see text for details) 

Angle of /eft for KDP l e f  t for KDP 
Incidence 

FR Enm] TIR [nm] 

45 ° 797 7906 
46 ° 807 7411 
47 ° 817 6988 
48 ° 826 6551 
49 ° 824 6170 
50 ° 842 5816 

60 ° 847 3149 

In Fig. 8 we plot the calculated conversion efficien- 
cies for the three previously discussed waveguide 
configurations I, II, and III as a function of the 
waveguide length N . a .  An initial cross section 
A =0.5 ~tm x 0.5 gm =0.25 ~tm 2 and a typical power of 
100 mW in the red spectral range have been assumed. 
We compare with the conversion efficiency of K D P  as 
calculated under optimized focusing conditions for 
Gaussian beams [30], which results in a linear increase 
with crystal length. In the waveguide devices the 
conversion efficiency will exceed the linear dependence 
with length due to continuous guidance in the 
z-direction of the fundamental wave. However, the 
quadratic dependence shown in Fig. 8 will not always 
be realized, since the fundamental wave will tend to 
spread out in the y-direction. In Fig. 8 we have 
assumed a lateral spreading of the fundamental beam 
identical to that in K D P  for the same length. Accord- 
ing to Fig. 8 a conversion efficiency of 0.01% at an 
input power of 100mW seems achievable for wave- 
guide version III. Provided a critical length is exceeded 
the efficiency of the device is higher than a K D P  crystal 
of the same length. It should be added that the 
proposed device is open to improvements. We have 
assumed a Z~2)-value of 10-13 esu. Newly synthesized 
organic dyes [34] may exhibit surface susceptibilities 
as high as 5x10-13esu ,  or even 10-12esu, under 
favorable excitation conditions. These large nonlinear- 
ities should compensate for the inevitable losses due to 
absorption of the generated SH-radiation and due to 
scattering of the fundamental  The experimental re- 
sults of [24, 30] clearly indicate that absorption-free 
guidance of the fundamental wave in adsorbate- 
covered waveguide structures is possible. In addition, 
latest developments in waveguide fabrication [35] 
indicate that guidance of the fundamental in both the 
vertical and lateral directions is now possible. The high 
nonlinearity achievable with surface effects, contin- 
uous large-scale phase-matching, and possibly two- 
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Conversion efficiency versus length for the various 
waveguide configurations and KDP. For each of the three 
waveguide geometries we choose a thickness d corresponding to 
the maximum in Fig. 6 and we assume perfect phase-matching. 
For KDP we assume optimized focussing conditions according 
to [25] 

dimensional confinement of the fundamental wave 
should ultimately allow higher conversion efficiencies 
as compared to conversion with inorganic crystals. 

10. Discussion 

We have discussed in some detail the relative merits of 
three different geometries for second harmonic genera- 
tion in planar optical waveguides. In all three geome- 
tries, shown in Figs. 1, 3, and 4, we consider a 
monolayer of optically nonlinear molecules adsorbed 
at the interface between media 2 and 3 arranged in a 
periodic grating structure. We have found that the 
symmetric geometry shown in Fig. 4 is by far the most 
efficient. Experimental efforts should aim at realizing 
this favourable geometry. 

We have simplified our calculation by the assump- 
tion that in the excitation of the nonlinear surface 
polarization by the fundamental wave depletion of the 
latter may be neglected. If the proposed mechanism is 
efficient and an appreciable part of the fundamental 
intensity is converted into second harmonic intensity, 
then the above assumption can no longer be justified 
and a more complicated coupled wave theory must 
be considered [17-193. 
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