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SYNOPSIS 

A novel application of dynamic programming to the folding problem for RNA enables one 
to calculate the full equilibrium partition function for secondary structure and the 
probabilities of various substructures. In particular, both the partition function and the 
probabilities of all base pairs are computed by a recursive scheme of polynomial order N 3  
in the sequence length N. The temperature dependence of the partition function gives 
information about melting behavior for the secondary structure. The pair binding 
probabilities, the computation of which depends on the partition function, are visually 
summarized in a “box matrix” display and this provides a useful tool for examining the 
full ensemble of probable alternative equilibrium structures. The calculation of this 
ensemble representation allows a proper application and assessment of the predictive 
power of the secondary structure method, and yields important information on alternatives 
and intermediates in addition to local information about base pair opening and slippage. 

The results are illustrated for representative tRNA, 5s RNA, and self-replicating and 
self-splicing RNA molecules, and allow a direct comparison with enzymatic structure 
probes. The effect of changes in the thermodynamic parameters on the equilibrium 
ensemble provides a further sensitivity check to the predictions. 

I NTROD UCTl O N  

The prediction of folded RNA structure is a chemi- 
cal problem of considerable biological importance. 
The sequence of ribonucleotide bases (C, G, U, and 
A), covalently linked in the chain polymer, deter- 
mines the fold through specific base-base interac- 
tions (pairing and stacking) involving hydrogen 
bonds, ring system conjugation, and hydrophobic 
effects in addition to the more globally acting elec- 
trostatic interactions between the negatively 
charged phosphate groups and with ions in solu- 
tion. Since the numbers of degrees of freedom in 
the polynucleotide chain exceeds that in polypep- 
tides, the full structural prediction problem is in- 
trinsically more difficult than the problem of pro- 
tein folding. However, for RNA, i t  has proved 

0 1990 John Wiley & Sons, Inc. 

Biopolymers, Vol. 29, 1105-1119 (1990) 
CCC OOO6-3525/90/051105-15 $04.00 

permissible to focus initially on an intermediate 
level representation of the folding (secondary 
structure) in tenns only of the bonds between pairs 
of nucleotide bases in the chain, relegating more 
detailed and additional folding information to a 
subsequent stage of analysis.’ Furthermore, for this 
secondary structural level, an approximate decom- 
position of the free energy of a structure into a sum 
of terms involving adjacent stacked base pairs and 
the consequent constrained loops in the polynu- 
cleotide backbone has allowed the additive applica- 
tion of information gleaned from conformational 
transitions in small model molecules and duplices2y 
to predict the optimal free energy secondary struc- 
ture. The resulting structures have proven useful in 
the prediction of the full tertiary structure and the 
associated biological function of RNA sequences 
found in living organi~ms.~ 

In this work, the partition function for sec- 
ondary structures of RNA is shown to be within 
computational reach by means of a novel applica- 
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tion of the dynamic programming technique intro- 
duced by Bellman.6 In common with previous work 
(see the review in Ref. 6), the application of dy- 
namic programming to the partition function here 
rests heavily on the constraint of the absence of 
knots (for further details see below). While a calcu- 
lation of the partition function has in principle 
been possible since the direct enumeration of all 
possible bonding patterns (cf. Ref. 3), the computa- 
tion time grows exponentially with the length N of 
the sequence, making this analysis of all but the 
shortest sequences intractable. Thus a major com- 
ponent in any theory for the partition function is 
the order of the solution algorithm. In recent years, 
the original of dynamic program- 
ming to the optimal structure prediction problem 
has been refined6>”*” to an order N 3  algorithm 
utilizing simplifying approximations for the free 
energies of large and multiple loops (see below). 
Recently,12 Waterman proposed a backtracking 
method for obtaining all structures in the vicinity 
of the optimal structure (following a dynamic pro- 
gramming analysis). The difficulty in the applica- 
tion of this algorithm is the embarwing abun- 
dance of structures having a free energy near that 
of the optimum, for sequences of even moderate 
length (e.g., N = 60), as found in a recent imple- 
mentation by the present author. This problem has 
been raised previously.6 

The present work returns to the original statisti- 
cal mechanical problemqf first calculating the par- 
tition function, from which further specific quanti- 
ties of thermodynamic interest may be derived. 
The most useful characteristic of the equilibrium 
ensemble of structures appears from the present 
work to be the matrix of equilibrium base pair 
binding probabilities between all the nucleotides in 
the RNA chain. To avoid any confusion at  this 
point, it  is essential to stress that these probabil- 
ities are not locally determined by the sequence- 
each reflects a sum over all equilibrium weighted 
structures in which the chosen binding pair occurs. 
In this way the matrix, which we shall display in 
terms of solid boxes whose size decreases as the 
logarithm of the binding probability, summarizes 
information about the global ensemble of struc- 
tures in equilibrium. The display is particularly 
useful in allowing the reconstruction of complete 
alternative structures and kinetic folding pathways 
between these, in addition to a determination of 
the flexibility of the structures toward local changes 
in base pairing (e.g., base pair opening and slip- 
page). This is possible because of the easy visual 
assessment of compatibility of pairs in a single 

structure. The present work should be distin- 
guished from the so-called dot matrix 
 method^,^,'^^^^ in which all possible matching re- 
gions of a sequence are displayed. In common is the 
use of a matrix layout for displaying information 
about bound pairs, but the information displayed 
is radically different. 

In addition to this analytical tool, the present 
work allows a full analysis of the unfolding transi- 
tion of secondary structure as temperature is in- 
creased (and in principle as salt concentration is 
increased). Further, the equilibrium-summed prob- 
abilities of binding of various bases allows a direct 
comparison with enzymatic and chemical modifi- 
cation experiments designed to detect exposed bases 
in the structure. 

The body of the article is organized as follows: 
The next section develops the partition function 
dynamic programming result, establishing its re- 
duction to an N 3  computation under a linear ex- 
trapolation for multiple loops. In the third section, 
the backsumming calculation for pair binding 
probabilities is described, and the “box matrix” 
introduced. The fourth presents the results of this 
analysis for some representative RNA molecules of 
interest: a transfer RNA, a 5s RNA, the midivari- 
ant RNA MDV replicated by the QP viral repli- 
case and a self-splicing RNA from Tetrahymena 
thermophila. In the fifth section, an unfolding 
transition is studied by temperature variation of 
the partition function. Comparison is made with 
calorimetric data for the melting of Escherichia 
coli 5s RNA and fair agreement is obtained con- 
sidering the limited range of applicability of the 
thermodynamic parameters. The paper concludes 
with a discussion of the usefulness of the equilib- 
rium secondary structure predictions for longer 
molecules and of the insights gained from the par- 
tition function approach. 

DYNAMIC PROGRAMMING CALCULATION 
OF THE PARTITION FUNCTION 

In describing the secondary structure, the notation 
of Ref. 6 has proved convenient. The sequence of 
length N is numbered from the phosphate (5’) end 
to the hydroxyl(3’) end. An admissable structure is 
defined as a set S of “compatible” bonded pairs of 
bases ( i ,  j )  with i < j .  Two base pairs are compati- 
ble if they have no base in common and do not 
form a “knot.” A knot occurs for two base pairs 
( i ,  j ) ,  ( h ,  1 )  chosen in the order i < h if i < h < j 
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< 1. The formation of the base pair (i, j )  results in 
a looped region [ i  + 1, j - 11 in the RNA chain, 
but any additional base pairs (h, I) with i < h < 1 
< j  form their own “loops” and these regions 

[ h  + 1, 1 - 13 are then by convention excluded 
from the loop “closed by” (i, j ) .  In general, a 
k :  loop consists of u unpaired bases and k - 1 
base pairs (excluding the closing base pair). Loops 
are traditionally classified as hairpins (k  = l), 
stacked pairs (k = 2, u = 0), bulges and interior 
loops ( K  = 2, u > 0 with the unpaired bases re- 
spectively all contiguous or not), and multiple loops 
(k > 2). Each base in the structure then belongs to 
one loop only or is “external” to all loops. 

The free energy of a secondary structure is as- 
sumed additive in terms of its loops 

where the free energies FL of the various k : loops 
L (for k I 2), especially including those of the 
sequence-specific stacked pairs that are usually 
called “stems” rather than “loops,” have been ob- 
tained from experiments with model compounds. 
The decomposition into enthalpy and entropy 
terms is used in order to be able to compute the 
temperature dependence (cf. section five), and 
non-Watson-Crick pairs are allowed making use of 
the known mismatch free energies. More detail 
about these thermodynamic parameters is con- 
tained in the fourth section where the method is 
applied to representative RNA molecules. For mul- 
tiple loops (k > 2), no detailed analysis of the free 
energy contribution has proved possible. It is 
known“ that the asymptotic entropy contribution 
to closure of a loop of length u is 

where A is a constant and the simplest treatment 
of the effective length of a loop with multiple 
bonded pairs is to count only the u unpaired bases. 
For efficient programming it will prove necessary, 
a t  least for longer multiple loops, to replace the 
convex form Eq. (2) by a linear approximation. 

The additivity of free energy implies a multi- 
plicativity in the contributions to the partition 
function Q defined by 

exponentially increasing number of terms as the 
sequence length N increases. This factorization of 
terms may be made explicit by introducing the 
restricted partition function Q& where the sum is 
now over all structures Sij  on the sequence seg- 
ment [i, j ]  for which the base pair (i, j )  E Sit 
This sum may be replaced by a sum over all possi- 
ble loops closed by (i, j ) ,  including the summed 
contributions of their subloops: 

with Q i  = 0, i < j ,  h I I .  .Each term in the sum 
involves a product over a set of base pairs {(h, I)} 
with < h k - l  < 1 k - l  
< j defining the k : loop L closed by (i, j ) .  The full 
partition function Qij for the inclusive segment 
[ i, j] includes, in addition, all configurations with i 
not bound to j, and it too satisfies a recursive 
formula 

i < h, < 1, < h, < 1, < 

Qi j  = 1.0 + C Qi,h-IQR (5) 
is h< h, 1 1s; 

for h I I with Qii = 1.0 and Qi+l,i = 1.0. Starting 
with the shortest segments one proceeds iteratively 
to calculate Q& and Qij until one reaches QIN, 
which is the full partition function Q. 

The difficulty with Eq. (3) is that the number of 
sets of bound pairs in a loop L closed by (i, j )  still 
increases exponentially with n = j - i, so unless 
there is some decomposition of FL the recursive 
scheme remains intractable. Fortunately, the clas- 
sification of loops introduced above restricts the 
need for such a decomposition: the problem only 
grows exponentially for multiple loops (k > 2) 
where a linear decomposition may be introduced6 
in the absence of experimentally determined free 
energies 

F , = a + b ( K - l )  + C U  ( 6 )  

where u is again the number of unpaired bases in 
the k : loop L and where a, b, and c are constants. 
One can then write, instead of Eq. (4), 

where the sum over all structures S involves an (7) 
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where 

+ Qrh-1 )  
Q; = C ( e-[c(h-i-l)/kTl 

h ,  1 

(8) x Qi'e - [ (b+ C(J- 1- l))/kTI 

with QF = 0 and QZl,i = 0. The dynamic pro- 
gramming solution in Eqs. (5), (7), and (8) grows as 
N4 with increasing sequence length N. 

A reduction to a cubic algorithm may be ob- 
tained if the free energy of long interior (12 = 2) 
loops u > u, may be regarded as prohibitive. This 
restriction has been widely used for long sequences. 
The computation of 2 : loops is then only quadratic, 
with a constant factor proportional to u i .  Alterna- 
tively, and more realistically, if the free energy of 
large 2 : loops with u > u, only depends on u and 
not on the position of the pair (h, I)  within the 
loop (excluding bulge loops whose calculation is N 3  
in any case) 

w, j ,  h,  0 = w, j ,  4 (9) 

where u = h - i + j -  I -  2 is the number of un- 
paired bases in the loop, then the 2 : loop term may 
be written in the order N 3  form: 

C e-[G4i ,  i, h, WkT1 

h ,  1 

= C e-[Wi, i, h, WkTI 

h, 1 
usu,  

+ C ( u  - l)e-[Fdi,i.u)/kTl (10) 
u> u, 

This is a much less restrictive constraint than 
disallowing all long 2 :  loops. A similar result was 
reported by Waterman." 

The multiple loop partition functions, on the 
other hand, may be calculated in cubic time with- 
out further approximation by introducing the addi- 
tional restricted partition function 

j 

C=i+l 
(11) b -[c(J-l)/kT] Q;' = C Qire 

which enables Eqs. (7) and (8) to be written in the 
form 

where the final sum is over the nonfixed index h 
and where 

The cubic order calculation of the full partition 
functions Qii for the segments [ i, j], replacing Eq. 
(51, 

is completed by performing and storing the I sum- 
mations separately as the ancillary quantities Qii 
defined by 

with initial conditions Qii = 0, Qii = 1.0, and 
Qi+,, = 1.0. 

In summary, then, the partition function Q = 
QIN can be calculated with a dynamic program- 
ming algorithm of cubic order by a recursive appli- 
cation of Eqs. (10)-(15). This is the same order as 
that achieved in the optimal structure computa- 
tion of Zuker and Stiegler.16 

EQUILIBRIUM PROBABILITIES FOR 
STRUCTURES A N D  SUBSTRUCTURES 

The probability of a given structure S, while pro- 
portional to the free energy factor exp( - F / k T )  in 
equilibrium, is not known in absolute magnitude 
until the partition function has been calculated. 
Following the previous section, such probabilities 
are now available: 

However, what actually occurs, on the time scale of 
most enzymatic reactions relevant for biological 
function, is rather an ensemble of related struc- 
tures interchanging more or less rapidly with one 
another. While an equilibrium calculation does not 
suffice to define these kinetically clustered objects, 
the probability of a single completely defined set of 
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base pairs is not the quantity of interest either. 
The solution to this dilemma is to focus on the 
equilibrium probabilities of substructures S, , com- 
mon to a whole class of related structures S: 

P(%) = c P ( S )  (17) 
s2s, 

One such substructure is of fundamental impor- 
tance as it allows the display of the most signifi- 
cant features of the equilibrium ensemble and the 
interpretation of features relevent to chosen ki- 
netic ensembles. It is the binding of a given pair of 
bases in the sequence. In this section we calculate 
the equilibrium probability of occurrence for each 
possible base pair, making use of the partition 
function and its restricted forms calculated in the 
second section. A direct summation then further 
yields the probability that a given base in the 
sequence is bound. We postpone a discussion of the 
significance of these equilibrium structure-ensem- 
ble weighted probabilities until the details of the 
calculation have been elucidated. 

We define P h i  as the probability that h is bound 
to 1 in the equilibrium ensemble of structures 

‘ h l =  c P ( s )  (18) 
S 3 ( h ,  0 

If (h ,  I) is always a nonenclosed (or exterior) base 
pair, then 

but there will be other contributions to Phl from 
structures with exterior base pairs (i, j )  with i < h 
< 1 < j .  We proceed recursively, for d = 1 - h de- 
creasing from the starting value N ,  to construct 

Qi, h- i Q h Q i +  1 ,  N 

Q I N  
= 

the second and third lines the contributions from 
structures involving ( h ,  1 )  in bulge, interior, and 
multiple loops with closing pair (i, j ) ,  summed 
over all possible pairs (i, j ) ,  with the factor Pi, 
being previously calculated since j - i > 1 - h. 

As formulated, the calculation of all Phl  is of 
order N4, since summations over i, j ,  h, and 1 are 
required, and even a particular value Phl requires 
an N 4  calculation, since in general of order N 2  
other values must first be calculated owing to the 
recursivity. However, as in the previous section, it 
is possible to reduce the calculation to order N 3  by 
introducing ancillary quantities and a careful dis- 
tortion of the natural order in which the sums are 
performed. 

We first concentrate on the case where the 
2 :loops are strictly truncated at u = urn so that 
only the multiple k:loops k > 2 constitute the 
strictly N4 part of the calculation. The sum over i 
and j may be reduced to a single sum by introduc- 
ing 

and 

D 

These sums must be calculated at  the appropriate 
point in the recursion, when Pi, has been defined, 
but being independent of h, they do not need 
recalculation if the values are stored. The expres- 
sion for Phl then becomes 

x ( e - [ ( h - i - l ) c / k T ]  rn 

x e - I ( j - 1 -  l )c /kTI + 

Q1+1,  j - 1  + QE1, h-1  

Q E i ,  h-iQEn+i, j -1)  (20) 

The first line gives the contribution of Eq. (19), and 

Similarly, the assumption of Eq. (S), rather than 
truncation, for large 2:loops results in a cubic 
order summation in the second line in addition to 
the existing quadratic order term. In order for 
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Figure 1. The box matrix for E. coli phenylalanine tRNA. The equilibrium ensemble 
probabilities of base pair bindings, using the Salser-Tinoco compilation of thermodynamic 
parameters at 25"C, are displayed in the upper right triangle. The probabilities p i j  are 
displayed on a logarithmic scale over 10 orders of magnitude by boxes of decreasing size at  
rows i and columns j in the matrix. In the lower left triangle, the predicted optimal 
structure is displayed by placing an 0 for each base pair (i, j) at row j and column i. The 
experimental structure is likewise denoted by the symbol E, and where the predicted 
optimal and experimental structures coincide, a box of size corresponding to unit 
probability is drawn. The linear sequence of decreasing size boxes is displayed near the 
base of the matrix. They correspond to logarithmic (base 10) intervals of width 1 (i.e., a 
factor of ten) centered at -j, j = 0 . . .  9. The first interval is [0, - 0.51 and all 
probabilities p l j  with log,, p l j  < -9.5 are displayed as blank. The sequence is displayed 
along the diagonal in 5' to 3' order and repeated with numbering along the edges of the 
plot. X indicates a nonbonding modified base. 

this to occur, one further quantity must be intro- 
duced: 

lated once for each d in the recursion for Phl. They 
must be stored in the same array indexed by 1 and 
u for each d (to preserve the N 2  storage limita- 
tion). The resulting algorithm is order N 3 .  

The binding probabilities Pi, for the base a t  

<-u-1 ,  j e - - [ & ( j - u - L j .  u W T 1  pi= c 
l < j < l + u + 1  QP-u-I, j 

position i in the-sequence to be bound (including 
all possible pairs), is simply 

The extra term to the second line of Eq. (23) may 
then be written 

ph; Urn = C QPP, (24) 
u>u, 

The intermediate sums, P:, need only be calcu- 

N i- 1 

Pi = C Pij + qi 
j = i + l  j =  1 



EQUILIBRIUM PARTITION FUNCTION 1111 

The pair binding probabilities may be simulta- 
neously displayed in the array of boxes, with size 
decreasing as the logarithm of the probability, { Pij} 
in the upper triangle i < j (Figure 1). The sequence 
of bases is displayed along the diagonal and along 
two edges of the array, and is numbered along the 
remaining two. The optimal structure found with 
the same set of thermodynamic parameters is dis- 
played in the lower triangle by setting = 1.0 
when ( i ,  j )  belongs to the structure. I t  provides a 
useful mirror image (in the diagonal) comparison in 
the interpretation of the probability distribution in 
the upper triangle. 

APPLICATIONS T O  SPECIFIC 
RNA MOLECULES 

In order to illustrate the new insight won by the 
present method, this section discusses the probabil- 
ity distributions of base pairing for four represen- 
tative RNA molecules of general interest: a tRNA 
( N  = 76), a 5s ribosomal RNA ( N  = l20), a self- 
replicating RNA ( N  = 220), and a self-splicing 
RNA ( N  = 414). The results serve to substantiate 
the claim that the present method removes the 
uncertainties about the predictive value of optimal 
structures obtained from secondary structures. In 
addition, the skeptics' unease about the huge num- 
ber of near optimal structures found for sequences 
of moderate length is shown to be formally correct 
but practically exaggerated since the many alterna- 
tives group into rather well-defined ensembles of 
structures that can usually be identified as kineti- 
cally interchangeable, i.e., many alternative struc- 
tures are near relatives that can interchange rapidly 
by "slippage" of several bonding pairs or by single 
base pairing changes. 

A brief discussion of the detailed set of thermo- 
dynamic parameters used in the following calcula- 
tions is necessary here, although the major import 
of this work is independent of the detailed empiri- 
cal parameter determination process. The tempera- 
ture-dependent data of Borer" collected in 1M 
NaCl near 25"C, giving enthalpy and entropy con- 
tributions for various sequence-dependent 2 : loops 
with u = 0 (stacked pairs), were collated with the 
Salser" collection of loop entropies and free ener- 
gies of stacked pairs to fill out a complete set of 
temperature-dependent  parameter^.'^ The en- 
tropies of bulge loops have been corrected accord- 
ing to the subsequent revision.20 This Borer- 

Salser-Tinoco data was recently subject to a major 
extension and review by experiments in the vicinity 
of 37"C.21*22 This data, the Turner compilation, 
like the one above, is incomplete but contains fur- 
ther and corrected parameters. In what follows, 
one of these two data sets has been used. 

One further refinement is necessary, in order to 
make proper use of the empirical thermodynamic 
parameters. Stems of length one, which occur as 
separate states in the above, actually should be 
lumped with the free chain states, i.e., disallowed 
in the partition function calculation. This is both 
because the oligonucleotide studies do not clearly 
distinguish these states in the optical measure- 
ments and because the loop entropy factors are not 
designed to correctly weight these states, becoming 
accurate only for stems of length greater than one 
base pair. Actually, this correction is straightfor- 
ward with the introduction of an additionally re- 
stricted partition function Q:', which sums the 
weights of all states on the segment [z, j ]  with 
base pairs ( i ,  j )  and ( i  + 1, j - 1). Then Q& may 
be used in the recursion to obtain further base pair 
stacking, but otherwise 4:' must be used. In the 
interests of clarity we omitted this detail from the 
presentation of sections two and three above, al- 
though it is included in the computations pre- 
sented. 

The predictions of optimal structures have been 
reported to be not very sensitive to small changes 
in the thermodynamic  parameter^.^^ For the trans- 
fer RNA for the amino acid phenylalanine from E .  
coli we show the comparison of the Salser-Tinoco 
data with the Turner data, extrapolated to 25"C, 
by displaying the box matrices of binding probabil- 
ities in Figures 1 and 2, respectively. While there is 
a significant difference in the optimal structure, 
the ensemble of structures has only minor weight- 
ing differences. Transfer RNA has been a testing 
ground for structural prediction because of its es- 
tablished common tertiary structure. The thermo- 
dynamic parameters have been tested on samples 
of 100 or more tRNA sequences where the failure 
to predict the common cloverleaf structure for all 
the sequences should expose any weaknesses in the 
thermodynamic parameterization. The original 
data compiled by Salserl* predicts 67% in the cor- 
rect conformation and the more recent turner com- 
pilation21 82%. It is consequently still of interest to 
examine the equilibrium ensemble of structures 
predicted by the present method for tRNA in a 
case where the optimal structure is noncruciform. 
A full analysis for all presently available tRNAs is 
beyond the scope of the present paper but would 
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Figure 2. The box matrix for tRNA as in Figure 1, but using thermodynamic 
parameters from the Turner compilation extrapolated to 25°C. 

provide an immediate application of the present 
method. In the box matrices, illustrated in Figures 
1 and 2, i t  should be noted that, although the 
optimal structure predicted is not cruciform, the 
cruciform structure occurs with a moderate proba- 
bility in the equilibrium ensemble. The strong, 
near end-to-end binding may be seen in the top 
right corner and the correct hairpins occur near the 
diagonal ( i  = j ) .  

As in the case of tRNA, the 5s ribosomal RNA 
family has been predicted to possess a common 
secondary structure.24 Application of an optimal 
folding algorithm has predicted 68% in the agreed 
consensus c~nformation.~~ The box matrix for the 
E .  coli 5s RNA is displayed in Figure 3. It  reveals 
the consensus structure24 as dominant with a sig- 
nificant alternative for the first (upper) hairpin 
near the diagonal. The suggested kinetic equilib- 
rium between these two ~OI-IIIS~* is seen to actually 
involve a wider ensemble of related structures. 
There are now more than 500 5s tRNA sequences26 
and the secondary structure is utilized in the se- 

quence comparisons and evolutionary studies. Since 
the box matrix gives rather complete information 
about the structural biases in the sequence, we 
expect a box matrix analysis of this entire family 
to be useful in characterizing the important struc- 
tural features of the molecule and in arriving a t  an 
independent measure of evolutionary distance be- 
tween the parent organisms. In the fifth section a 
calculated melting curve for this molecule is com- 
pared with experiment. 

Our interest in RNA folding actually arose in 
the study of self-replicating RNAs and the struc- 
tural modification of replication rates for related 
sequences in the “quasispecies” of RNA,27 which is 
found under specific chemical conditions in vitro. 
Work is in progress to identify common features of 
the known self-replicating RNAs for the Qp viral 
enzyme complex. The midivariant MDV-1 is such 
an RNA whose sequence evolution has been stud- 
ied in vitro2* and whose secondary structure is still 
of intere~t.~’ The box matrix in Figure 4 reveals 
that both the structure in which the ends of the 
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Figure 3. The box matrix for the Drosophila melanogaster 5.9 RNA equilibrium 
ensemble of binding probabilities using the Turner compilation at 25OC, but otherwise as 
described in the caption to Figure 1. 

molecule are bound to one another and a structure 
consisting entirely of hairpin loops are significant 
in equilibrium. Intermediate are a spectrum of 
structures involving multiple loops, which compete 
to shorten some of the hairpin stems. The latter 
are in many cases seen to be not just a single 
substructure but a rather diffuse ensemble of slip- 
page and single base pair transition related struc- 
tures. 

Finally, the self-splicing Tetrahymena IVS in- 
tervening sequence ( N  = 414) was investigated be- 
cause of its biological interest, because it has been 
the object of several optimal structure prediction 
studies,20> 30*31 and because of the abundant cleav- 
age data available.32 The latter allows a correlation 
with the binding probabilities predicted in the 
equilibrium ensemble to be made. The pair binding 
probabilities are displayed in the box matrix of 
Figure 5. We see that some parts of the secondary 

structure are much more specifically determined 
than others and that the entire array of possibili- 
ties is not unmanageable. A comparison of the 
equilibrium binding probabilities P, on either side 
of cleavage sites, calculated from Eq. (25), with the 
strengths of cleavage by double-(CV) and single- 
(Tl, T2, Sl) strand specific cleavage enzymes, yields 
a high correlation, as shown in Table I. We do not 
mean to suggest that the real structure is a mixture 
of all structures in the equilibrium ensemble-the 
equilibration time is likely to be much too long for 
this and tertiary effects may further bias the en- 
semble toward a specific structure-although it is 
certainly not a single structure as often suggested. 
Rather, we wish to argue here that the most infor- 
mation that can be extracted from the thermody- 
namic parameters about the binding properties of 
individual bases in the sequence is summarized in 
the binding probabilities. 
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Figure 4. The box matrix for MDV-1, the midivariant RNA, which is self-replicating in 
the presence of the QP viral replicase in uitro, using the Turner compilation at 25°C. 
Details of the representation are the same as for Figure 1. 

Although the implementation of our algorithm 
is not yet highly optimized, the computation times 
on a VAX 8650 are reported for the various lengths 
of RNA discussed above. These times are 1.2, 3.8, 
17.3, and 85 min for molecules of length 76, 120, 
220, and 414, respectively, and represent the com- 
bined computation time for the partition function, 
for the pair binding probabilities, and for the opti- 
mal folding comparison, which is displayed in the 
lower half of the box matrix. One can see the 
characteristic N 3  behavior, with the additive con- 
stant somewhat masked by page-faulting problems 
for the longer sequences. We expect a reduction by 
a further factor of five to be achievable with the 
same hardware. 

THE PARTITION FUNCTION TEMPERATURE 
DEPENDENCE AND MELTING 

Since the overwhelming majority of configurations 
are in the unfolded state, as reflected by the large 
entropy loss associated with base pairing and loop 
formation, the high temperature ensemble is un- 
folded and, according to our chosen reference point 
for the entropy of zero for an unfolded chain, the 
partition function must decrease toward one a t  
high temperature. Differential scanning calorime- 
try is a widely used tool for investigating the 
melting of b i~polymers .~~ The extraction of a series 
of two-state transitions from the temperature- 
dependent specific heat profile is used to gain 
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Figure 5. The box matrix for the self-splicing rRNA intervening sequence from 
Tetrahymena. The extreme compression of the picture has obscured the sequence and 
numbering, but the ensemble of structures remains highly restricted to specific bindings 
even for sequences of this length ( N  = 414). Details of the representation are the same as 
for Figure 1 but using the Turner compilation at 25OC. 

structural information.34* 36 Here the experimental 
profile for the ribosomal 5s RNA from E .  ~ o l i ~ ~  
are compared with the partition function calcu- 
lated as a function of temperature. The specific 
heat Cp is derivable from the partition function uia 
the effective Gibbs free energy of the ensemble G 
and the enthalpy H37 

G =  - k T h Q  

dH c = -  
dT 

where the derivatives are at  constant pressure since 
the empirical parameterization used to construct 
the partition function was also established at  con- 
stant pressure. For E .  coli 5s RNA, the calculated 
specific heat as a function of temperature is com- 
pared with the differential scanning calorimetry 
curve% in Figure 6. The restriction of the partition 
function to states involving no stems of length one, 
as discussed above, is necessary if there is a large 
initiation factor in addition to the apparent change 
in loop entropy once the stem is longer, and leads 
to the prediction of the right order of magnitude 
for the heat capacity. Further corrections, such as 
the temperature-dependent enthalpy arising from 
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Table I Cleavage v s  Binding Probabilities" 

i c, c, c3 P, P , + l  i c, c, c, P, P,+ I 

8 
9 

12 
13 
14 
17 
18 
19 
20 
21 
22 
23 
25 
26 
27 
36 
38 
41 
42 
43 
44 
45 
47 
49 
53 
54 
64 
65 
67 
68 
72 
73 
74 
75 
76 
77 
88 
89 
97 
98 

102 
103 
117 
118 
127 
128 
144 
145 

s1 
s 1  
cv 
cv 
cv 
t2 
t2 
s 1  
sl 
sl 
T1 
TI  
t l  
tl 
tl 
cv 
cv 
t2 
T2 
t2 
s1 
t2 
cv 
cv 
CV 
CV 
cv 
cv 
cv 
cv 
T2 
T1 
T2 
t2 
T2 
TI 
CV 
CV 
cv 
cv 
cv  
cv  
cv 
cv 
cv 
CV 
cv 
cv  

sl 
t2 
T2 
T2 

cv 

s1 
T1 

s 1  

s 1  

cv 

cv  
cv 

0.39 
0.038 
0.930 
0.962 
0.959 
0.942 
0.89 
0.936 
0.66 
0.36 
0.37 
0.40 
0.82 
0.937 
0.68 
0.984 
0.9992 
0.0001 
O.oo00 
O.oo00 
O.oo00 
O . m  
0.9998 
0.9992 
0.9938 
0.977 
0.9982 
0.9993 
0.9999 
0.9998 
0.0003 
0.11 
0.11 
0.015 
0.0008 
0.0006 
0.81 
0.82 
0.81 
0.9974 
0.982 
0.965 
0.89 
0.88 
0.9997 
1 .m 
0.9992 
0.9999 

0.038 
0.56 
0.962 
0.959 
0.942 
0.89 
0.936 
0.66 
0.36 
0.37 
0.40 
0..50 
0.937 
0.68 
0.29 
0.9998 
1 .m 
O.oo00 
O.oo00 
O.oo00 
O.oo00 
0.0001 
1 .m 
0.9998 
0.977 
0.9982 
0.9993 
0.9992 
0.9998 
O.OOO8 
0.11 
0.11 
0.015 
0.oooFI 
0.o006 
0.0003 
0.82 
0.82 
0.9974 
0.9978 
0.965 
0.12 
0.88 
0.86 
1 .m 
1 .m 
0.9999 
0.9972 

169 T1 
192 cv 
193 cv  
230 CV 
231 CV 
237 T2 
265 cv 
266 cv  
269 t2 
272 tl 
282 CV 
284 c v  
287 'I2 
288 T1 '1'2 
296 CV 
310 CV 
317 CV 
319 CV 
324 T2 
325 T2 
343 cv 
347 'I2 
348 CV 'I'2 
349 T1 
351 c v  
353 cv  
354 cv  
371 cv  
377 cv  
378 CV 
379 cv 
380 cv  

386 T2 
387 T2 
390 cv 
396 cv  
397 cv  
398 CV 
399 cv 
401 CV 
402 CV 
408 tl  
409 cv  
410 cv  
411 c v  
412 cv  
413 cv  

385 ~2 

0.0003 0.0003 
0.9938 1.oooo 
1.oooo l.oO(w) 

0.9994 0.9994 
0.9994 0.9999 
0 . m  O . m  
0.985 0.988 
0.988 0.951 
O.Oo90 0.054 
0.927 0.063 
0.985 0.987 
0.987 0.9945 
0.0091 0.0080 
0.0080 0.013 
0.988 0.965 
0.54 0.77 
0.61 0.984 
0.88 0.9999 
0.23 0.23 
0.23 0.0085 
0.909 0.9980 
0.0001 0 . m  
0.oooo O . m  
0 . m  o.Ooo1 
O.OOO1 0.0017 
0.980 0.9965 
0.9965 0.9963 
0.9998 0.9996 
0.035 0.90 
0.90 0.9950 
0.9950 0.9979 
0.9979 0.9945 
0.015 0.0024 
0.0024 0.0024 
0.0024 0.80 
0.989 0.9981 
0.967 0.9928 
0.9928 0.9990 
0.9990 0.9988 
0.9988 0.968 
0.9920 0.964 
0.964 0.67 
0.52 0.51 
0.51 0.088 
0.088 0.29 
0.29 0.46 
0.46 0.55 
0.55 0.40 

'A comparison of the equilibrium binding probabilities on either side of cleavage sites with the 
strengths of cleavage by double-(CV) and single-(Tl,'K?, Sl) strand specific cleavage enzymes taken 
from lief. 23. Lower-case enzyme entries (cv,tl ,  t2,sl)  refer to weak cleavage. The cleavage is 
between bases t and i -I 1 in the sequence, and the calculated binding probabilities P, and P,+,  for 
these positions are shown in the final columns. The consistency is excellent except at positions 348 
and 351 with double (single) strand specific cleavage by CV occurring strongly only where the bond 
piring probability is above (helow) 75% (3.591). 
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Temperature (K) 

Figure 6. The specific heat for the ensemble of equilibrium structures as a function of 
temperature calculated from the partition function uia Eq. (26) for the E .  coli 5s RNA of 
figure 3. The temperatures are in degrees Kelvin (K) and the specific heat in kilocalories 
per mole of RNA per degree. Peaks in the function correspond to structural phase 
transitions. The dashed line shows the experimental curve for the A form of 5s RNA?6 
The first peak is absent for the B form obtained by renaturing. The lower full curve is 
that predicted including all helices of length 1 and the upper curve is obtained by 
disallowing helical stems of length 1. The Turner compilation of thermodynamic 
parameters was used. 

stacking of bases to form single-stranded helices 
that compete with base pairing,38 are possible, but 
the major import of the present article is that a 
complete calculation is now attainable. Tertiary 
structures are clearly not necessarily implicated by 
cooperative melting, which is predicted on the ba- 
sis of secondary structure for this rnoiecuie. 

In summary, the specific heat reflects the occur- 
rence of any structural transitions as the tempera- 
ture increases. It is to be hoped that experiments 
on model compounds over a wider temperature 
range will make such predictions quantitatively 
more reliable. Since these calculations are possible, 
following the method presented here, we expect the 
experimental melting curves to now be more useful 
in the determinatior. of complex RNA secondary 
structures. A direct calculation of the fraction 0 of 
the bases that xre bonded ir, the equilibrium en- 
semble 2s a fcnLti3n of temperature would be use- 
ful for a ion-qarison with a,ptica! melting data and 
may be achieved by incans of derivation of the 
partition function with rcspect to  a common base 
pairing energy multiplier (cf. Refs. 39 and 40), t 

say, 

where N and Q are the length of sequence and 
partition function, respectively, as above. On the 
other hand, the simple technique of summing Pi is 
not reliable because of the correlations between the 
pairing of different bases. 

CONCLUSIONS 

The brief assortment of applications reported here 
are intended to reveal the predictive capabilities of 
the partition function approach that the present 
work has made computationally tractable. All pos- 
sible secondary structures are included in the cal- 
culation. The one major limitation is the restric- 
tion to pure secondary structures of the nonknot- 
ted type. This is neccssary for the problem to be 
amenable to dynamic programming. Future work 
must incorporate the probabilistic information de- 
livered by the box matrix into a more detailed 
tertiary structure analysis -using it to restrict the 
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search for an optimal structure. At  present the box 
matrix provides an important tool for the assess- 
ment of the reliability of optimal structure predic- 
tions on the basis of secondary structures, for the 
consideration of alternative structures, and for es- 
tablishing the sensitivity of the prediction to ther- 
modynamic parameters. It portrays the equilib- 
rium ensemble of structures and may assist in 
changing the heavy but misguided emphasis on 
single unique structures for biological macro- 
molecules. With some knowledge of kinetic rates, it 
allows the kinetic ensemble of structures that in- 
terchange within significant time periods to be 
discerned. Furthermore, the structural transitions 
with increasing temperature may be predicted and 
the melting of the ensemble followed uia the spe- 
cific heat. We hope that further structural experi- 
ments will be encouraged by the tractability of this 
sequence-specific calculation of the equilibrium en- 
semble of structures for this important class of 
informational macromolecules. 

The close relationship found in the present work 
between the structure superposed from the individ- 
ually most probable bindings, which may be di- 
rectly read from the box matrix, and the structure 
of minimum free energy (the most probable struc- 
ture in the ensemble) is encouraging for the appli- 
cation of the superposition hypothesis to protein 
folding.41 

The author wishes to acknowledge useful discussions 
with G. Bauer and with C. Biebricher concerning the 
representational tool employed, and the assistance of B. 
Lindemann in accessing a compilation of 5 s  RNA se- 
quences. K. Nieselt, G. Koch, and especially T. Kneser 
provided assistance with the TEX4' macro for convert- 
ing line printer output to the box matrices, and M. 
Meyer performed the photoreduction of the figures. The 
comments of one of the referees proved helpful. 
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