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A unified exposition is given of the known exact results for the scattering from random two­
phase isotropic media with a smooth interface. For the bulk-bulk scattering a new and simple 
derivation is given for the next to leading term (Porod-Kirste). The corresponding term for 
the film-film scattering is calculated. It is pointed out that from careful contrast matching 
experiments it may be possible to measure the average squared mean curvature (H 2 

) and the 
average Gaussian curvature (K). 

INTRODUCTION 

In this paper we study the scattering from a random 
two-phase medium. We do not assume a definite structure of 
the system. Rather our basic hypothesis is that there is some 
length 10 much longer than atomic distances, such that all 
the interfaces are flat on the scale of 10 , In this case a con­
tinuum description is adequate and the interface can be mod­
eled by a smooth surface S. Thus we deliberately exclude 
random structures that are fractal down to molecular di­
mensions. 1 For microemulsions, for example, a finite bend­
ing energy2,3 assures the existence of such a length. Other 
examples are furnished by colloidal aggregates of small par­
ticles.4 

Weare particularly interested in microemulsions and in 
extracting exact structural information from the scattering 
curves. For bicontinuous microemulsions, one is especially 
interested in geometric quantities like the mean curvature 
(H) and the Gaussian curvature (K). For symmetric mi­
croemulsions, where (H) = 0, one is also interested in 
(H2), which is proportional to the bending energy. While 
there has been some effort5 to determine the mean curvature 
(H), no methods are known to measure (K ) or (H 2 

), It will 
be shown in this paper, that in favorable cases it may be 
possible to obtain these quantities from neutron scattering. 

The paper is organized into two parts. In the first part 
the finite thickness of the interface is neglected. The results 
are then applied in the second part to realistic systems with a 
thin but finite interface. 

I. THE TWO-PHASE MEDIUM WITH AN INFINITELY THIN 
INTERFACE 

We shall give a new and concise derivation of the rela­
tions due to Porod6

,7 and Kirste and Porod8 and indicate a 
systematic procedure to obtain still higher terms in q - 2 . 
Analogous and mostly new results are obtained for the sur­
face-surface correlation function. We also show that the 
bulk correlation function can be expressed in terms of statis­
tical properties of the interface. 

A. Scattering intensity, correlation function, and large-q 
expansion 

Consider a two-phase medium in a volume V, let the 
volumes occupied by the two phases be V I and V 2' respec­
tively, and let S be the interface. Then 

V2 
I-q:>=­

V 
(1) 

are the volume fractions. Let ¢ (r) be the characteristic func­
tionofphase 1. ¢(r) is equal to I ifrEV I andOifrEV2. Then 
for a statistically homogeneous medium 

(¢(r» = q:>. 

The bulk correlation function defined by 

gbb (r) = (¢(r')¢(r' + r» 

(2) 

(3) 

depends only upon [r[ and tends to q:> 2 for [r[ .... 00 • 

[gbb (r) - q:>2 ]!q:>( 1- q:» is the normalized correlation 
function r introduced by Debye. 9

,10 

In the following we study various correlation functions 
g and their Fourier transforms 

X(q) = roc 41Tr sin qr g(r)dr. 
Jo qr 

(4) 

We are especially interested in the large-q behavior. Partially 
integrating, we find 

X(q) = 41T[q-2 1im (rg) - q- 4 1im (rg)" 
riO riO 

_q-5 LX> cosqr(rg)"'dr]. (5) 

If g(O) is finite andg" (r) is continuous, X(q) decays like the 
inverse fourth power of q (Porod6

,7 ): 

X(q) = - 81Tg'(0)q-4 + O(q-5). (6) 

A finite discontinuity of g" gives rise to additional oscillatory 
terms. Such a discontinuity presupposes a special geometri­
cal arrangement of the interface. II Monodisperse spheres 
belong to this class of surfaces, but any finite-size distribu­
tion washes out the discontinuity and restores (6). In the 
following we assume that rg is at least four times differentia­
ble for r> O. Then X (q) has the asymptotic expansion 

X(q) = 41T[q-2 1im (rg) - q- 4 lim (rg)" 
riO riO 

+q- 6 Iim (rg)""- ... ]. 
riO 

(7) 

B. The correlation tensor for the normals 

In this section we derive a relation between the correla­
tion function gbb and the correlation tensor Tij for the nor-
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4502 Max Teubner: Two-phase random media 

mals on the interface S. Tij is defined by 
Tij (r,r') == (n; (r)nj (r' )8s (r)8s (r'». 

This relation is easily obtained from the formula 

V¢J(r) = - n(r)8s (r), 

(8) 

(9) 

where 8s is the 8 function concentrated on S. Using (9), we 
obtain from (3) 

and 

agbb -(r) = - (¢J(r')n; (r' + r)8s (r' + r» ax; 
= - (¢J(r' - r)n;(r')8s(r'» (10) 

a2g 
__ b_b (r) = - (nj(r' - r)8, (r' - r)n;(r')8, (r'», 
ax;axj 

and we find the simple result 

a2gbb T..= ---. 
'J ax;ax

j 

For an isotropic medium we obtain 

Tr T = - g;b (r) - ~g;'b (r), 
r 

C. Surface-surface and surface-bulk correlation 
functions 

(11) 

(12) 

(13) 

(14) 

Let 8~ (r) be the characteristic function for a thin sheet 
~ of uniform thickness E approximating S. For small E, 

E - 1 8~ is an approximation to {js. Then 

limE- 1(8:(r»==(8,(r» =~. 
EJO V 

(15) 

We define the surface-surface correlation function by 

gss (r) == lim E- 2(8: (r' )8~ (r' + r» 
EJO 

== (8, (r')8s (r' + r». (16) 

gss is the correlation function for the mass concentrated on S. 
It determines the scattering from the interface which we 
study in Sec. II. For large r we have 

lim gss (r) = (S IV)2 (17) 
r_ co 

An equivalent definition is the following: Let EP: (r,r') be the 
conditional probability, that r' is located in the sheet ~ pro­
vided r is on S. Then 

gs .. (r,r') = ~ limp: (r,r'). (18) 
V EJO 

For very small r the surface is locally fiat, and P: is just the 
circumference of a circle divided by the surface of a sphere 
with the same radius r. Therefore 

gss(r) = ~ . ..!.. + OCr). 
V 2r 

(19) 

The next term is calculated in Sec. I E. 
The surface-bulk correlation function is defined by 

gsb(r) = (¢J(r')8s(r' + r». 

For large r we have 

lim gsb (r) = ~ 
r-oo V 

and, since the surface is locally fiat, 

1 S 
gsb(O) =--. 

2 V 

(20) 

(21) 

(22) 

For a symmetric medium (which implies lP = 112) 
gsb (r) == (1I2)(S IV) identically. 

D. An integral representation for the correlation 
functions 

We now construct a representation for the correlation 
functions that will be very useful in the next section where we 
study the correlation functions for small r. 

We start withgss andp: (r,r'). Let r be a point on Sand 
consider the sphere about r with radius Ir' - rl. It intersects 
S in a certain curve Cr" (this curve may consist of several 
pieces). Let FE be that part of the sphere's surface, that is 
common to ~ , and let lEE I be its area. Then, by definition of 
P:, we have 

(23) 

FE consists of one or several narrow bands on the sphere. 
These bands have the curve Cr" at their center, and their 
width w at a typical point r'ECr " is given by 

E 
W=---, 

Irxn'l 
where n' is the unit normal on Sat r', and 

r - r' 

Ir-r'l 
If Cr,r' is parametrized by arclength s', lEE I is given by 

1 ds' 
IFEI=E -IAX'I' C,.r r n 

(24) 

(25) 

(26) 

Setting (18), (23), and (26) together, we obtain the desired 
representation for gss 

, S 1 (f dS') 
g, .. (r,r ) = V 41Tlr _ r'I 2 JC,.r Irxn'l . 

(27) 

For very smallir - r'l the surface is fiat, Irxn'l = 1, Cr" is 
a circle, and we recover (19) as we should. The analogous 
expression for the tensor Tis 

, S 1 ( 1 nj(r') ,) Tij (r,r ) = - n; (r) ds . 
V 41Tlr - r'I 2 C,.r Irxn'l 

(28) 

In particular, 

S 

V41Tlr - r'I 2 

X (f r'n(~)r'~(r') dS'), 
JC,.r Irxn I 

(29) 

This relation has been obtained previously by a rigorous but 
somewhat complicated analysis by Ciccariello et al. 12 For 
Ir - r'I-O, r·n and r'n' both converge to zero. This yields 
immediately8 
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(30) 

Similarly, since non' - 1 for Ir - r'I-O it follows from (13) 
and the remark after (27) that 9 

g~b(O) = _l.~. (31) 
4 V 

Differentiating the surface-bulk correlation function gsb 
and using (9), we obtain 

g;b(lr - r'l) = (t5s (r)ron(r')t5s (r'», (32) 

where n points into phase 2. The corresponding representa­
tion is 

, (I 'I) S 1 ( ( ron' d') (33) 
gsb r - r = V 41Tlr _ r'I2 Jc, .... Irxn'l s . 

E. Small-r expansion of the correlation functions 

The next term in the small-r expansion of gbb' namely 
g;b (0), has been determined by Kirste and Porod8 by a rath­
er complicated analysis. We will utilize the representation 
(29) to obtain a concise derivation of this result. Further­
more, we will obtain the corresponding term for the surface 
correlation function gss (r). 

To do this we need the curve Cr" which is the intersec­
tion of Swith the sphere of radius Ir - r'l about r. We trans­
late the origin to r, and rotate the coordinates to represent 
the surface locally by 

kl 2 k2 2 • .3 z=-x +-y +O(r), (34) 
2 2 

where k I and k 2 are the two principal curvatures. The nor­
mal is 

[
kIX] 

n(r)=(1+kix2+k~y2)-1/2 ~~ , (35) 

and one finds easily 

Irxn'l = 1.(x2 + y2) II2[ 1 + O(r')]. 
r 

(36) 

It is convenient to introduce cylindrical coordinates. Then 
the projection of the curve C O,r onto the x-y plane is given by 

x = p(rp)cos rp, y = p(rp)sin rp (37) 

with 

p2(rp) = ~ _ !r4(kl cos2 rp + k2 sin2 rp)2 + OCr). (38) 

The arclength s is given by 

ds = (X'2 + y,2 + Z,2) 112 drp, (39) 

where the prime denotes differentiation with respect to rp. 
Sincep'(rp) = O(r), we have 

X'2 + y'2 = p2 + p,2 = p2 + 0(r6). (40) 

Since 

z' = ~(k2 - kl )cos rp sin rp + OCr), (41 ) 

we have 

ds=p(1 +~~(kl -k2)2cos2rpsin2rp +O(r»drp, (42) 

and therefore 

Inserting into (27), we obtain 

gss(r) =~[l.+~«kl -k2)2) +O(~)]. (44) 
V 2r 32 

Similarly, using 

ron(O)r'n(r) = - !~(kl cos2 rp + k2 sin2 rp)2 + OCr), 
(45) 

we find 

( ronCO) ron(r) ds = _ !!...r(2.k 2 + 2.k 2 + l.k k ) 
Jco., Irxnl 2 8 I 8 2 4! 2 , 

(46) 

and therefore 

g;b(O) =~_I-(3(kn +3(kD +2(k!k2», (47) 
V64 

which is the result of Kirste and Porod.8 

Finally, for the surface-bulk correlation function we 
find!3 

(48) 

In principle, it is straightforward to determine by this meth­
od still higher coefficients in the small-r expansion. How­
ever, these higher terms [corresponding to q - 8 and higher 
terms in the expansion of i(q)] are probably impossible to 
determine experimentally. Furthermore, they depend upon 
third-order derivatives of the surface which have no simple 
geometrical meaning. Finally, the small-r expansion prob­
ably does not, in general, converge, and is only asymptotic. 
An explicit example of random two-phase structures with 
nonanalytic correlation function is the structure introduced 
by Cahn 14 in the context of spinodal decomposition. The 
correlation function of this model has been calculated by 
Berk l5 and Teubner.!6 It is nonanalytic at the origin. 

F. Test for smoothness 

In deriving our main results (44) and (47) we have 
assumed that the surface is sufficiently regular and possesses 
no singularities. These results, as well as ( 48), are only valid 
for surfaces that are everywhere regular. 17 It is interesting 
that this assumption of regularity can be tested experimen­
tally.16,18,19 For smooth surfaces we have 

(49) 

and 

g;b(O) = O. (50) 

In q space these relations are equivalent to 

100 

[q2Xss (q) - 21T~ ]dq = 0 (51) 

and to 

100 

(q4Xbb - 21T~)dq = O. (52) 
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While (51) and (52) clearly are necessary for regularity, 
each one alone is also sufficient; it has in fact been 
provedl6

,20 that the left side ofEq. (51) [Eq. (52)] is always 
positive [negative] for surfaces with edges or contact points. 

II. THE TWO-PHASE MEDIUM WITH A THIN INTERFACE 

We now study the scattering from a two-phase medium 
with a thin but finite interface composed of a third compo­
nent. We have in mind a microemulsion consisting of do­
mains of water and oil separated by an amphiphilic layer of 
constant thickness d. As in Sec. I we do not make any as­
sumptions about the structure of the system, except that the 
system is statistically homogeneous and isotropic, and that 
the interface is smooth. Later we will also assume that the 
thickness of the interface is small compared to the local radi­
us of curvature. We assume that the scattering length densi­
ties of the water and the oil are constant in the respective 
volumes; the scattering length density nf of the film, how­
ever, may vary in the direction normal to the film. 

A. Geometry of the surfactant film 

Let S WF and S OF be the water-film and oil-film inter­
faces, respectively. We assume that S WF and S OF are parallel 
surfaces of constant distance d. If S is the surface situated 
halfway between, S WF' and S OF can be represented as 

SWF = {r - ~ n(r):rES}, (53a) 

SOF = {r + ~ n(r):rES}. (53b) 

Here n is the unit normal on S pointing from water to oil. It 
can be shown21 that the area of the surface element on S WF 
and S OF is given by 

dSWF = (1 + dH + ~2 K )dS, 

dSOF = (1 - dH + ~2 K )dS, 

(54a) 

(54b) 

where His the mean and K the Gaussian curvature21 ofS. H 
and K can be expressed in terms of the principal curvatures 
introduced in Sec. I E: 

H=!(k 1 +k2), 

K= k 1 k 2 • 

(55) 

(56) 

Any point in the interior of the film can be uniquely 
represented as r + pn(r)where uS and Ipl,;;; (d 12)-{r,p} 
constitutes a natural curvilinear system of coordinates for 
the film, and it can be shown that the volume element in 
these coordinates is21 

dV = (1 - 2Hp + Kp2)dp dS. (57) 

B. The scattering intensity 

Let Vw , Vo , and Vf be the volumes occupied by the 
water, the oil, and the interfacial film, respectively, and let 
n w' no, and n f be the corresponding scattering length densi­
ties. nw and no are constants while nf may depend upon the 
position in the film. Then the scattering intensity is given by 

i(q) = J..(12W), 
V 

where the amplitude 2{ is 

2{(q) = nw r e
iq

·
r dr + no r e

iq
·
r dr'l Jvw Jvo 

+ r n~iq'r dr. 
JVf 

(58) 

(59) 

Since a constant background does not contribute to the scat­
tering, we can eliminate the first or the second term and 
obtain 

+ r (nf - no )eiq
'
r dr. Jv, (60) 

Squaring and averaging, we find that i(q) is a sum of three 
terms 

i(q) = iww(q) + iff(q) + 2iwf (q)· 

The first term is 

iww (q) = (nw - no )2Xww (q), 

where 

(61) 

(62) 

(63) 

and ¢Jw is the characteristic function of the water phase. The 
second term is due to the film alone 

where 

2{f(q) = r (nf - no )eiq
'
r dr, 

J"J 
and the third term is the cross-correlation term 

C. Scattering by the water phase 

(64) 

(65) 

Obviously, iww (q) is the scattering from a hypothetical 
two-phase medium, where the second phase is composed of 
oil and the surfactant film (it corresponds to a situation 
where the scattering length densities of the oil and the film 
are matched): 

-1'" _2 sin qr X ww (q) - 41Trgww (r)::=.:Lcir, 
o qr 

where 

(67) 

gww(r) = (¢Jw(r')¢Jw(r' + r». 

For large q we employ (7) in connection with (31) and 
( 47) to obtain 

Xww(q) =21T~[q-4+q-6(~ (H2) - ~ (K»)] 

(68) 

where k 1 and k 2 have been replaced by H andK. This is valid 
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for q so large that the film appears nearly flat on this scale. 
Quantitatively, we may define a correlation length 5s by 

5s=«ki+kD)-1I2. (69) 

Then (68) is an asymptotic expansion in (q5s ) -2. 

D. Scattering by the film 

iff(q) is the scattering intensity of a system where the 
scattering length densities of the water and the oil have been 
matched, and only the film scatters. Using (57), the ampli­
tude is written as 

f
d12 i m:

f 
= [nf(p) - no] eiq'(r + pn) 

- d/2 S 

x (1 - 2Hp + Kp2)dp dS. (70) 

Now we employ our assumption that the thickness of the 
film is small compared to the correlation length 5s' 

d 
-~1. 
5s 

Then (70) can be replaced by 

f
d12 i m:

f 
= An (p) eiq'(r + pa) dp dS, 

-d/2 S 

where 

An(p) =nf(p) - no· 

Averaging, we find 

1 fd/2 fd/2 
iff(q) = - dpI dP2 An(PI )An(P2) 

V -d/2 -d/2 

Now we note that a good approximation to this is 

f

d/2 fd/2 
iff(q) = dpI dP2 An(PI )An(P2) 

-d12 -d12 

Indeed, for qd ~ 1 both expressions reduce to 

(71) 

(72) 

(73) 

iff(q) = d 2(An)}Xss(q), (76) 

where 

1 fd12 
(An)f=- An(p)dp 

d -d12 
(77) 

and 

xss(q) = 417'~gss(r) dr. -i'" sinlqlr 
o Iqlr 

(78) 

On the other hand, for qd ~ 1 we have q5s ~ 1 and the film is 
effectively flat on this scale. Then 

Irl -r2 +Plnl -P2 n21 = [~+ (PI -P2)2r12, 
(79) 

and (75) is generally valid. 
Let us take a closer look at the two regimes qd~ 1, 

qd~ 1. 

1.qd~1 

In this region the interface is infinitely thin. Experimen­
tally, it is the region of the scattering peak.22 Equation (78) 
contains information about the average size and shape of the 
water-oil domains. For large q, while remaining in this re­
gime, we can employ (7) and (44) to obtain 

X,,(q) =21T~[q-2_q-4(~ (H2) - ~ (K»)] 

+ O(q-6). 

This is valid for 

d~q-I~5s' 

2. qd~1 

(80) 

(81) 

In this regime the film is flat and we find by partial 
integration and using (19), that the innerintegral in (75) is 

(82) 

Therefore, 13 

. S -2 fd/2 fd12 
lff(q) = 217'-:::<1 dpI dP2 An(PI )An(P2) 

V -d/2 -d12 

(83) 

For q -> 0, while remaining in this regime, we recover the first 
term in (80) as we should. 

E. The cross term Iwf 

In the symmetric case iwf is very small and, in general, 
an upper bound is given by the Schwarz inequality 

liwf(q)l< [iww(q)iff(q)] 112. (84) 

Ifit can be measured l3 by contrast matching, it yields valu­
able information about the structure of the system. 

1. qd~1 

For the flat film, and where terms of the order dis are 
neglected, iwf has been calculated by Auvray,13 

iwf(q) = - (nw -no)21T~lql-3 

Xfd/2 An(p)sinlql (p + d 12)dp. 
-d12 

In the range d~q-I ~5s> 

iwf(q) = - (nw - no )217'~lql- 2 
V 

f

d12 
X -d12 (p+dI2)An(p)dp. 

2.qd~1 

Here the thickness of the film is negligible and 

iwf(q) = d(nw - no)(An)fXws(q) 

with 

(85) 

(86) 

(87) 
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(88) 

where again terms of order dis. and qd have been neglected. 
Ford«q-', 

Xw. (q) = 21T!...(H)q-4 (89) 
V 

(note that the sign of H depends upon the orientation of S. 
We have oriented S in such a way that it points from water to 
oil. Water spheres in oil then have H = - 1/R and oil 
spheres in water H = + 1/ R ). 

3. Possibility of measuring (H) 

In the region d « q - I « Ss the two expressions (86) and 
(89) are superimposed and 

iw/(q) = (nw - no )21T-f' [q-4(H) (an)/ - q- 2d -1 

fd12 ] 
X -d/2 (p + d 12)an(p)dp . (90) 

The first term can be discriminated from the second in the 
region 

(
I(H)I)1I2 

q« -- . 
d 

(91) 

4. Structure and i wf 

We have already obtained, in terms ofiw/(q), a criterion 
for perfect water-oil symmetry. Defining a dimensionless 
function v by 

v(q) 
[iww(q)iff(q)] 112' 

this criterion was simply 

v(q) =0 

(92) 

(93) 

(here and in the following we concentrate on the region 
qd « I). From Schwarz's inequality (84) 

Iv(q)I<1 (94) 

for all q. Consider now a system composed of mono disperse 
water spheres in oil. Then the fluctuations of water and oil 
are perfectly correlated, and 

v(q)=1. 

Similarly, for monodisperse oil spheres in water 

v(q) = - 1. 

(95) 

(96) 

These relations are only valid, if the particles are mono­
disperse spheres. For monodisperse particles of arbitrary 
shape only 

v(O) = ± I (97) 

survives. 
It is interesting to note that the condition v (q) = I is 

easily tested in neutron scattering experiments. In the region 
qd « I the intensity is given by 

i(q) = (nw -no)2xww +d 2(n/-no)2Xff 

(98) 

Forfixedq, iis a quadratic function ofthen j • Varying no, for 
example, yields a parabola with minimum 

. () = ( _ )2d2 Xww(q)Xff(q) - X;/(q) 
I mtn q nw no 

Xww(q) + d 2Xff(q) + 2dXw/(q) 
(99) 

Therefore, the minimal scattering intensity vanishes for 
those q for which v(q) = ± 1. The condition 

i min (q) «iff(q) (100) 

provides conclusive evidence that one of the phases is com­
posed of nearly monodisperse spheres. For spheres with a 
finite-size distribution u«R, v will be near ± I only for 
qu« 1. Near qu-I there is a crossover to the asymptotic 
behavior Ivl-1/qR for qu> 1. 

F. Possibility of measuring (1(2) and (K) 

We consider a system where the two relevant length 
scales Ss and d are widely separated. This is the case for 
microemulsions with long-chain surfactants, where d is of 
the order of I nm, while Ss 's of the order of several hundred 
nm can be achieved. It is the range d « q - 1 «Ss where rigor­
ous statements can be made independently of any model, and 
where the film is almost (but not quite) flat and its thickness 
negligible. In this region we have 

i(q) = iww + iff + 2iw/' (101) 

iww =21T~(nw _no)2[q-4+q-6(~ (H2) - ~ (K»)], 
(102) 

iff=21T~(an)}a'2[q-2_q-4(+(H2) - ~ (K»)], 
(103) 

(104) 

where the ratio of the neglected terms to the last terms writ­
ten down is (qSs) - 2. The Porod-Kirste term overwhelms 
the other contributions to q - 6 , if 

(105) 

On the other hand, (1/2) (H2) - (1/2) (K ) can be isolated 
only in the region 

I 
nw - no I d <- (106) 
(an)/ ~ S.· 

In neutron-scattering experiments, contrast variation is 
done by substituting protonated water or oil by the respec­
tively deuterated compounds. An experiment is meaningful 
only if the structure of the system is not modified by such a 
substitution. For the system considered, whered Is. _10- 2

, 

Inw - no I has only to be varied from 0 to a few percent to 
separate the three contributions i ww ' iff' iw/' Such a small 
contrast variation is unlikely to induce any significant 
changes in the structure. 

We conclude that it should be possible, in principle, to 
measure (H2 ) and (K ) separately utilizing the next to lead­
ing terms of iww and iff' This, however, requires an appropri­
ate system and very precise measurements. 
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