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In a recent paper, Hyde et al. (1) explored the sensitivity of the EPR spectra of 
square-planar Cu*+ complexes to variations of the spin-Hamiltonian parameters by 
simulation of spectra both at the rigid limit and under a range of rotational correla- 
tion times. The purpose of this sensitivity analysis was to establish criteria for the 
optimum determination of the various parameters by simulation. The paper raised 
various questions, the central of which regards the conventional strategy of minimiz- 
ing the sum of squares (or absolute value) of the deviation between the experimental 
and simulated spectra throughout the entire anisotropic lineshape. This difficulty 
arose because of the, at first surprising, result that the same region of the spectrum 
displayed maximum sensitivity to the parameters corresponding both to the parallel 
and to the perpendicular orientation of the magnetic field with respect to the prin- 
cipal axis. 

A somewhat analogous problem to that considered in Ref. ( 1) is the analysis of the 
sensitivity of STEPR spectra to anisotropic motion. This was addressed previously 
by determining those regions of the spectrum that displayed optimum discrimination 
between axial and off-axial motion (2). In the present paper the same approach is 
employed to sensitivity analysis in conventional EPR. A simple analytical axial 
model is considered, which contains the essential features of anisotropic powder pat- 
terns, and this is used to define the spectral regions with optimum discrimination 
between the different spin-Hamiltonian parameters. 

The general spectral intensity distribution for a sample with an orientational distri- 
bution, y( Q), is 

l(6) = p( iI)- dfJ/d6, 111 
where 6 is the spectral scan parameter, either magnetic field or RF frequency. For 
an axially symmetric system; p(Q). dQ = sin t3. do (0 < 0 < 7r/2), assuming the 
orientational distribution to be isotropic. The angular dependence of the resonance 
position is assumed to be 

6 = (a,, - 6,)cos% + 61, [21 

where 6,, , 6, are the line positions corresponding to the magnetic field oriented paral- 
lel or perpendicular to the principal axis, respectively. This approximation is valid 

357 0022-2364/90 $3.00 
Copyright 0 1990 by Academic Press, Inc. 
All rights of reproduction in any form resewed. 



358 NOTES 

for non-Zeeman splittings in high field, assuming the Zeeman anisotropy to be small, 
and also for Zeeman splittings with small anisotropy in frequency-swept experiments 
(e.g., 3’P NMR chemical-shift anisotropies, 2H NMR quadrupole splittings, spin label 
EPR) . The resulting normalized lineshape, neglecting line broadening, is 

06) = 4 [(a,, - 61x6 - s,)l- 112 131 

which is valid for the range 6L < 6 d 6,, . The first derivative display is correspondingly 

dI/d& = -$I(S).(S - 6J’. [41 

Sensitivity to spin-Hamiltonian parameters. First the sensitivities, dI/d&, of the 
absorption lineshape to changes in the parameters, 6i, will be considered: 

dl/d&,, = +(6).(6,, - 6J’ 151 
dI/dsl = $1(S)+,, - 6,))‘[1 + (6,, - a,)/(6 - a,)]. [61 

These equations directly reflect the sensitivities of the non-Zeeman splittings (e.g., 
hyperfine or quadrupole) or of the chemical-shift anisotropy. A treatment of g-value 
sensitivity in field-swept EPR experiments will be given later. 

The results derived from Eqs. [ 5 ] and [ 61 are presented in Fig. 1. From this it is 
clear that the sensitivity not only to the a1 parameter but also to the 6,, parameter 
diverges at 6 = 61, corresponding to the singularity in the lineshape for the perpendic- 
ular orientations to the magnetic field. This can be seen to be a general result, valid 
also for the case of finite linewidths: regions of large discontinuities in the spectrum 
will tend to dominate the absolute sensitivities to changes in most, if not all, parame- 
ters. This was certainly found to be the case in Ref. (I) for the perpendicular and 
overshoot regions in the EPR spectra of Cu2+ square-planar complexes. This swamp- 
ing effect can be attenuated somewhat, if the fractional sensitivity, ( 1 /I)dI/dai, is 
considered. For 6,, this function remains constant throughout the spectrum, rather 
than peaking in the perpendicular region. Clearly, however, the crucial quantity is 
the degree of discrimination, R( 6) = -( dI/d6,,)/( dI/d6,), between the sensitivities 
to the parallel and perpendicular parameters. This is given in Fig. 1 B and is analogous 
to the axial/off-axial discrimination ratio introduced previously for the analysis of 
anisotropic rotation in STEPR spectra (2). Figure 1 B demonstrates a very high de- 
gree of discrimination (infinite in this idealized case) in the sensitivity to the 6L pa- 
rameter in the perpendicular region. The highest degree of discrimination for a,, is in 
the parallel region, and therefore this latter region should be used for determining 
a,,, despite the fact that the absolute sensitivity to this parameter is greatest in the 
perpendicular region. 

Sensitivity to orderparameter. As an example of sensitivity to a dynamic parameter 
governing the spectral lineshape, the time-average angular order parameter will be 
considered. In the case of motional narrowing of limited amplitude, the spectral ex- 
trema, &, are related to the molecular order parameter, S, by 

a,,-6,= A6.S [71 

6L=60-(1/3)A6.S, [81 
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where A6 is the rigid limit value of 6,, - al, and a0 = (6,, + 26,)/3. Hence, from Eq. 
131, 

I(6)= ~[ALS(~-6,+A&S/3)]-“* t91 

and 

dI/dS=-+I(6)(6-6,+2A36.S/3)/[S(6-6,+A6.S/3)]. [lOI 
These equations are valid for the range - A6. S/ 3 < (6 - 6,) G +2A6. S/ 3. The sensi- 
tivity diverges for S = 0, as expected, and also diverges at 6 = a1 (see Fig. 2) as found 
for the other parameters. The implication here is clear: the spin-Hamiltonian parame- 
ters must be determined independently with a high degree of accuracy, if the sensitiv- 
ity in the perpendicular region of the spectrum is to be used to yield best accuracy in 
determining the dynamic parameters. 

Equation [ lo] may also be used to determine the sensitivity to the conjugate spin- 
Hamiltonian parameter set, A6 and &,, and the corresponding dependence on S: 

dI/dAcY = -iI(S)(S - 13~ + 2As.S/3)/[A6(6 - So + As.S/3)] 1111 
dI/d& = f1(6)(6 - 6,, + A&.S/3))‘. [I21 

Again both sensitivities diverge for S = 0 and at 6 = 6, (see Fig. 2). The discrimination 
ratio, given by R’(6) = -(dl/dA6)/(dI/d&), is best for A6 at 6 = a,,, and best for &, 
at 6 = a1 (see Fig. 2). For S = 0, the ratio of the discrimination between the parameter 
sensitivities at the extrema is constant: R’( 6,,)/R’( 6,) = 4. However, for S = 0, R’ is 
zero for all values of 6 and the spectrum is sensitive only to &,, as is expected. 

Sensitivity to g values. In EPR, the angular dependence of the g value for an axial 
system is given by 

g = (gficos*O + g: sin*(J) 112. 1131 

In a field-swept experiment, the resonance position is then given by 

6 = [(S,2 - 6~*)cos*fl+ rq*]-“*, [I41 

where a,,, 6, are the resonance field positions corresponding to the magnetic field 
oriented parallel or perpendicular to the principal axis, respectively. Therefore the 
lineshape for an unoriented sample is, from Eq. [ 11, 

I(6) = [(a,* - s;*)(s-2 - 6;*)]-lw3. iI51 

The corresponding sensitivities are 

dl/ds,, = I(S)C?,~(S,* - 6y2)-’ [I61 
dI/d6, = -I(c?)~;~ [(S,* - a;*)-’ + (S-* - c?;~)-‘] [I71 

and the sensitivities to the g values are given by an additional multiplicative factor, 

dI/dgi = (dZ/d6i)(dsi/dgi), iI81 
where d&/dg, = -hv/gf/?. The results obtained from Eqs. [16] and [17] are not 
qualitatively different from those obtained previously from Eqs. [ 5 ] and [ 6 1. Again 
the sensitivity to 6,, as well as to a1 diverges at 6 = al, and dI/da,, has the same field 
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FIG. I. Parameter sensitivity, dZ( 6)/d1$, as a function of spectral position for an axial powder pattern 
lineshape in absorption. The dimensionless scan parameter is c = (6 - 6,)/(6,, ~ 6,); i.e., c = 0 for 6 = 6, 
and c = 1 for 6 = 6,,. (A) -dZ(6)/d6,, (full line), and dZ(6)/d8, (dashed line), where the ordinate has 
units of i (6,, ~ 6,) -‘. The intensity distribution in absorption, Z( 6)) is identical to dZ( &)/da,, , except that 
the ordinate units are (6,, - ~3,)~‘. (B) Discrimination ratio, R = -(dZ/d8,,)/(dZ/d&,). 

dependence as the absorption lineshape. The discrimination ratio, R = (dI/d.g,)/ 
(dI/dg,), is zero at 6 = 6L and has its greatest value at 6 = 6,, (cf. Fig. 1B). These 
general conclusions are also not materially altered if the anisotropy of the transition 
probability is taken into account via an additional factor, 6 2 ( 6-2 + 6 i2), in Eq. [ 15 1. 
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FIG. 2. Sensitivity to order parameter and dependence of spin-Hamiltonian parameter sensitivity on 
order parameter for an axial powder pattern in absorption. The dimensionless scan parameter is u’ = (6 
- &)/(S.S); i.e., o’ = -l/3 for 6 = 6, and u’ = 2/3 for 6 = 6,,. Full line: dl(&)/dSin units of AK’s-‘, 
and -dl(6)/dA6 in units of AS-*S-‘. Long dashed line: dZ( 6)/d&, in units of AKzY2. Short dashed line: 
discrimination ratio, R’ = -(dZ/dA6)/(dZ/d&), in units of( 1/3)S. 

Derivative displays. From Eq. [ 41, the sensitivities in the first derivative display are 
given by 

d2Z/d&h,, = -i(dZ/d6,,)(6 - a,)-’ [I91 

d2Z/d6d6, = -i(dZ/d6,)(6 - ~3,)~’ - iZ(6).(6 - 6J2. [201 
Clearly the sensitivities in the derivative display vary differently throughout the spec- 
trum from those in absorption. They diverge even more steeply in the perpendicular 
region. This will be a general result: taking the derivative will bias the sensitivities 
even further in the direction of those regions of the spectrum which display the largest 
discontinuities. The sensitivity to 6, is even greater, relative to that to 6,, , than in the 
absorption display. Correspondingly, the discrimination ratio, (&Z/d&Z6,,)/( d*Z/ 
dada,), is reduced relative to that in absorption, by a factor ( 1 + u)/( 3 + u), using 
the nomenclature of Fig. 1. 

In summary, the results of the analysis of a simple axial lineshape given here suggest 
the following generalizations. The parameter sensitivity in magnetic resonance spec- 
tra from unoriented samples exhibiting anisotropy is dominated by those regions of 
the spectrum which display the largest intensity. This effect is accentuated in deriva- 
tive displays by the accompanying discontinuities or large gradients in the spectral 
lineshape. The sensitivity is greatest for those parameters which determine the posi- 
tion of the major spectral peaks or discontinuities. The commonly employed practice 
of minimizing the sum of squares (or absolute value) of the deviations between exper- 
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imental and simulated spectra will therefore determine these parameters with high 
accuracy, but give a poor level of discrimination for those parameters which deter- 
mine the line positions in regions of the spectrum with lower intensity. This situation 
will not be improved by considering either the autocorrelation [proportional to 
I( a).( dI/d6)] or the cross-correlation [proportional to I( 6). (dl/d&)] integrals. 
Other strategies are therefore indicated. Consideration of the fractional deviations 
[proportional to ( 1 /I)( dI/dai)] will improve things somewhat, but this will demand 
high SINratio in the low intensity regions and some cut off intensity must be defined 
to prevent numerical instabilities. Alternatively, individual regions of the spectrum 
could be considered separately, as proposed in Ref. (I), which again points to the 
necessity of collecting data with high SINratio in all regions of the spectrum. A more 
general approach is to adopt some numerical optimization procedure and first to 
scale the fitting parameters so as to endow them with comparable sensitivities, i.e., 
such that a fixed change in any of the variables results in similar changes in the objec- 
tive function to be minimized (3). 
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