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The problem of state determination of quantum systems by the prob- 
ability distributions of some observables is considered. In particular, 
we review a question already asked by W. Pauli, namely, the deter- 
mination of pure states of spinless particles by the distributions of 
position and momentum. In this context we give a new example of 
two wave functions differing by a piecewise constant phase having 
the same position and momentum distributions. The Pauli problem 
is investigated also under incorporation of special types of the Hamil- 
tonian. Moreover, in case of spin-1 systems with three-dimensional 
Hilbert space, it is shown that the probabilities for the values of six 
suitably chosen spin components determine their state. 
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1. I N T R O D U C T I O N  

In his famous articles of 1933 and 1958 in the Encyclopedia of 
Physics, W. Pauli [1] asked the question whether the wave function 
of spinless particles is determined up to a constant phase factor by the 
corresponding position and momentum probability density. He wrote 
that this problem had not been investigated yet. Meanwhile, the 
question has been treated in some papers and answered negatively 
by easy counter-examples [2-7], However, these results seem to be 
not very well known. One aim of our paper is to review the work 
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done on the Pauli problem and a second one to put it into a more 
general context. 

Consider conventional quantum mechanics without superselec- 
tion rules, where the density operators W in Hilbert space H repre- 
sent the states of quantum systems (W = W*, W >_ O, tr  W = 1). 
The observables are usually described by the self-adjoint operators 
in H or, equivalently, by the corresponding spectral measures which 
are projection-valued measures defined on the Borel sets of the real 
line R. More generally, an observable taking values in R W is describ- 
ed by a projection'--valued measure B ~ E(B) ,  where B is a Bore1 
set of R N and E(B)  an orthogonal projection in H. Such a measure 
has the properties 

(i) E ( ¢ ) = 0 ,  E ( R  g ) = l ,  

CO O0 

(ii) E ( U B j ) = y ~ E ( B j )  for B j N B k = O  
j = l  j = l  

(j # k ) ,  

the infinite sum being understood as strong limit of partial sums. (It 
turns out that  the concept of projection-valued measures is based on 
a restrictive view of quantum measurement.  The sufficiently general 
concept of positive-operator-valued measures will briefly be discussed 
in Section 4.) The probability that  a measurement of the observable 
E performed on systems in state W yields values in a Borel set B is 

PEw(B ) := t r W E ( B )  . (1.1) 

B --~ PE(B) is a probability measure on the Borel sets of R N, which 
we call the probability distribution of the observable E in the state W. 

The extreme points of the convex set of all density operators are 
the one-dimensional projections, i.e., the pure states correspond to 
the projections [¢ > <  %bl resp. to the unit vectors %b E H. From 
Eq. (1.1), it follows that  

P~(B) := PI~><¢I (B)=  < ¢ ] E ( B ) ¢  > . (1.2) 

Remember that  two unit vectors differing by a phase factor e ;a, 
a E R,  represent the same state. 

Let M be a set of observables where we do not suppose that  
each projection-valued measure is defined on the same R y.  For a 
given state W, M yields a set of probability measures Pw ~. It may 
happen that  any two different states always give rise to different 
sets of probability distributions. In this case, an arbitrary state W 
is uniquely determined by the distributions Pw E of all observables 
E e M, i.e. PEwl(B ) = PE2(B ) for every E e M and for all Borel 
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sets B of the corresponding ItN implies the equality of the two states 
W1 and W2. 

For example, let M be the set of the spectral measures of all 
one-dimensional projection operators PC := I¢ > <  ¢1, ¢ E H, 
I[¢[I = 1, and assume that  all these observables have the same prob- 
ability distributions in the two states W1 and W2. The spectral 
measure of PC has just the value PC for any Borel set of R that  con- 
tains the number 1, but not 0. According to (1.1), we obtain for such 
Borel sets 

tr  w,P  = tr  

Hence, < ¢1W1¢ > = < ¢1W2¢ > holds for all unit vectors ¢ E H, 
and the probability distributions of all observables of M in any state 
determine this state uniquely. 

Now let M consist only of the one-dimensional projection opera- 
tors P¢~ corresponding to a complete orthonormal system {¢,}ven. 
This example fails for state determination even if one considers only 
pure states. In fact, by insertion of W := PC = I¢ > <  ¢1 into 
tr W P ¢  and replacement of Pc by P¢~ we see that only the moduli of 
the coefficients a~ in ¢ = ~.~1 a.¢~ are determined by the probabil- 
ity distributions of the observables of M. The set M = {Pc. Iv E N} 
is equivalent to a set which consists of a single observable given by a 
self-adjoint operator A with spectral representation A = ~ = 1  )~P¢~ 
(A~ # A, for v ¢ , ) .  

From the physical point of view, state determination as describ- 
ed is interesting only if the set M consists of only finitely many 
observables. For reasons of simplicity, we restrict our investigations 
to pure states, so that  the problems treated in this paper are of the 
following type. Given a finite set {El, E 2 , . . . ,  En} of observables, do 
the probability distributions B E, --* P ;  (B) determine the pure state 

uniquely? More precisely, if Ei Ej PC, (B) = P;2 (B) is fulfilled for every 
j = 1, 2, ..., n and for all Borel sets B of the corresponding R N, where 
¢1,¢2 E H are unit vectors, does then ¢2 = e'~¢1, a E It ,  hold true? 

Let us discuss the physical meaning of our investigations. Sys- 
tems in an arbitrary state W represent a statistical ensemble and are 
the result of a preparation procedure performed on the systems. In 
particular, it is possible to produce arbitrarily (but finitely!) many 
systems of a given state. The measurement of an observable E on 
many systems of an ensemble W yields the probability distribution 
Pw E in physical approximation. Hence, if the finitely many observ- 
ables El, E 2 , . . . ,  E,~ determine pure states, then an unknown pure 
state can approximately be determined experimentally, namely, by 
the measurement of the distributions P ~ .  

We emphasize that we consider the determination of an arbitrary 
given state by measurements and not the preparation of a certain 
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state by measurements. Roughly speaking, the latter preparative 
measurements (as described in an idealized manner by yon Neu- 
mann's projection postulate) concern states after measurement 
whereas our considerations concern states before measurement. 

In Section 2, we review the work done on the Pauli problem 
and add a new counter-example involving two wave functions dif- 
fering by a piecewise constant phase. It is shown that for free par- 
ticles, harmonic oscillators, and particles moving in an attractive 
Coulomb potential, even the probability distributions of position, 
momentum, and energy are not sufficient to determine pure states 
uniquely. In Section 3 we review the already known result that  states 
of spin-½ systems with two-dimensional Hilbert space are determin- 
ed by the probabilities for the measuring values of three orthogo- 
hal spin components. Moreover, we investigate spin-1 systems with 
three-dimensional Hilbert space and show that their pure states can 
be determined by six suitably chosen spin components. Finally, in 
Section 4 we give some remarks concerning observables represented 
by positive-operator-valued measures. 

2. C O U N T E R - E X A M P L E S  F O R  S T A T E  D E T E R -  
M I N A T I O N  B Y  P O S I T I O N s  M O M E N T U M ,  A N D  
H A M I L T O N I A N  

Let us consider spinless particles with the space L2(R 3) of square- 
integrable functions as its Hilbert space H. The three-dimensional 
position observable is described by the projection-valued measure 
E Q defined on the Borel sets B of R 3 by 

EQ(B)¢ := X , ¢  , (2.1) 

where ¢ e L~(R 3) and Xs(x):= 1 ifx e B and Xs(x):= 0 otherwise. 
The three-dimensional momentum observable E P is given by 

EP(B) :-- F-1EQ(B)F , (2.2) 

where F is the unitary operator of Fourier transformation in L2(R3). 
According to Eq. (1.2), we obtain 

E~ P,~ (B) = < ¢IEQ(B)¢ > = t¢(x)l~dZx 

and 

sP f s  (B) = < ¢ IEP(B)¢  > = < F¢IEQ(B)Fg,  > = l( (k)12d3k 



Determination of Quantum States 157 

for the position and momentum probabilities, ¢ := F¢ .  The observa- 
bles E Q and E P do not correspond to self-adjoint operators, but their 
marginal observables do. For instance, b ~ E ql (b) := EQ(b x R x It)  
where b is a Borel set of R is just the spectral measure of the operator 
Q1 of the first position coordinate, (Ql¢)(x) := xl¢(x).  

Now we present some counter-exaznples which show that a pure 
state ¢ E L2(R3), ]]¢1] = 1, is in general not uniquely determined by 
the probability distributions of position and momentum resp. by its 
position probability density ]¢ [2 and momentum probability density 
I¢12. To that end, let ¢ be a wave function fulfilling the conditions 

(i) Re ¢ and Im ¢ axe linearly independent, 

(ii) ¢ is either even, i.e. ¢(x) = ¢ ( - x )  for all x • R a, 
or  odd ,  i.e. ¢ ( z )  = - ¢ ( - x ) .  

Define ¢1 := ¢ and ¢2 := ei~¢ where fl • t t  and the bar denotes 
complex conjugation. Then, according to (i), the wave functions ¢1 
and ¢2 are inequivalent, i.e. ¢2 5¢ eia¢l for every a • R. From 
their definition it follows that [¢112 = 1¢212 and ¢2(k) = e ~ ¢ l ( - k )  
for all k • R 3. By condition (ii), the latter equality implies ¢2(k) 

= -t-elZ¢l(k ) and I¢1] 2 = 1¢212. Hence, we have constructed a whole 
class of counter-examples. 

The same counter-example was given by V. Bargmann some 
40 years ago and published in the book of H. Reichenbach [2]. As far 
as the authors of this paper know, it was the first counter-example 
concerning state determination by position and momentum that ap- 
peared the literature. In 1968, W. Gale et al. [3] gave a counter- 
example which is a special case of our general one, namely 

¢1(x) := R(r)Ytm(0, ¢ ) ,  (2.3) 

¢2(z) := ¢) ,  (2.4) 
where r,0,¢ are the polar coordinates of the point x, Ylm the spherical 
harmonics, R is any real-valued suitably normalized radial function, 
and m ¢ 0. In fact, because of Y,~(0, ¢) = (-1)'Y,m(~ - 0, ¢ + ~), 
¢1 is an even or odd function, and ¢2 coincides with ¢1 up to a phase 
factor. 

In 1977, E. Prugoveaki [4] presented a counter-example which is 
slightly more general than ours, similar considerations also involving 
the Hamiltonian were done by A. Vogt [5] in the same year. In 
1978, J. V. Corbett and C. A. Hurst [6] presented a mathematically 
systematic paper on some aspects of the Pauli problem. The next 
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example is a special case of ours and was published by B. Z. Moroz 
in 1983 [7]. Let 

¢ 1 ( x )  : =  f ( r ) ~  ~(~1 , 

¢2(x) := f ( r ) e  -O(r) , 

where f and g are real-valued functions, the latter one being not con- 

stant,  and r = ]]xl] = ~/x~ + x~ + x~. This example shows tha t  even 
the distr ibutions of position, momen tum,  and the three components  
of angular  m o m e n t u m  do not determine pure states. Fur ther  inter- 
esting information can be found in an article of H.-W. Wiesbrock 
from 1987 [8]. 

The  following counter-example,  due to the authors,  consists of 
two wave functions differing by a piecewise constant  phase function. 
Namely, let ¢ e L2(R) be a function such tha t  f t ¢ ( x ) 1 2 d x  = ½ and 
¢(x) = 0 for x < 0 and x _> a, a :> 0. Define two wave functions on 
one-dimensional  configuration space by 

¢ 1 ( x ) : =  ¢(x + a ) + ¢ ( x )  - ¢(x - a ) ,  

¢ ~ ( x )  : =  ¢ ( x  + a)  - ¢ ( x )  - ¢ ( x  - a). 
Then  the corresponding position probabili ty densities are equal, the 
Fourier t ransforms are given by 

~1(]~)  : ( e  ika .3ff 1 - -  e - i k a ) ~ ( ~ g )  , 

¢ 2 ( k )  = (eik" - 1 - e - ~ k ~ ) ; ( k )  , 

and the m o m e n t u m  probability densities also coincide: 

I~l(k)] 2 = 1~2(k)l 2 = (1-4- 4sin 2 k a ) l ¢ ( k ) l  2 . 

Note tha t  ¢1 and ¢2 may  be real-valued wave functions. 
Next we investigate the problem of state determinat ion by the 

probabili ty distr ibutions of position, momen tum,  and energy. For 
free particles of mass m, the Hamil tonian can be defined as 

H := F - I [ I F ,  (2.5) 

where the mult ipl icat ion operator  H is given by 

_ .  IIkll ~ - 
( H ¢ ) ( k )  : =  2 m  ¢ ( k ) .  (2 .6 )  

Here IIk]l denotes the Euclidean norm of k e R 3, and ~ e L~(t t  3) 
is any element of the domain of H; the domains of the self-adjoint 
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operators H a n d / t  are obvious. From (2.5) and (2.6) it follows that 
the spectral m e a s u r e  E H of H is given by 

EH(b)  = F - 1 E Q ( h - I ( b ) ) F  = E P ( h - l ( b ) )  , (2.7) 

where b is a Borel set of R, E Q and E P are the projection-valued 
measures according to (2.1) and (2.2), h is the function k ---+ h (k )  
: =  ]lkll~/2.~ from R 3 into R, and h-i(~) := {k e R31h(k) e ~}. 
Equations (1.2) and (2.7) yield 

E- ]~ 15(k)12d3k P,~ (b) = < ¢ I E H ( b ) ¢  > = - ' (0  

for the probability that the energy of the free particles in state ¢ has 
a value in the set b, ¢ = F¢ .  Hence, if two states give rise to the 
same momentum probability density, they also give the same energy 

E~Z probability distribution P~ . Thus, the states of free particles are 
not determined by position, momentum, and energy. 

In the case of one-dimensional or (possibly inisotropic) three- 
dimensional harmonic oscillators, choose wave functions ¢1 = ¢ and 
¢2 = e/~¢ with ¢ satisfying the conditions (i) and (ii). Since the 
eigenfunctions of harmonic oscillators are essentially real-valued, 
the probability distributions of E o, E P, and E H coincide in both 
states. If an observable is represented by a self-adjoint operator 
having a complete orthonormal system of real-valued eigenfunctions, 
then position, momentum, and this observable do generally not de- 
termine pure states. 

Finally, look at the eigenfunctions Cnl,~ and ¢,~l,-m of hydrogen 
atom electrons. These eigenfunctions are of the form (2.3) and (2.4). 
For m ¢ 0, they yield the same position and momentum probability 
density and the same energy, but they differ with respect to the an- 
gular momentum. 

3. S T A T E  D E T E R M I N A T I O N  OF S P I N  S Y S T E M S  

In this section we discuss the state determination of spin-} and 
spin-1 systems where the Hilbert space is two- resp. three-dimen- 
sional. We first show that the states of spin-} systems are deter- 
mined by the probability distributions of three mutually orthogonal 
spin components. 

Consider the operators of the three spin components with respect 
to the coordinate axes and denote the normalized eigenvectors corre- 
sponding to the eigenvalues m = -4-} by urn, v,,, and er~, respectively. 
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These eigenvectors are unique up to phase factors which are usually 
be chosen such that 

1 ~½ = ~(¢~ + ¢_~), 

1 
v½ = ~ ( ¢ ½  + i¢_½), 

1 
u_½ = ~(¢½- ¢_½), (3.1) 

1 
v_½ = ~ ( ¢ ½  - i¢_½). (3.2) 

Suppose now that the probabilities for the measuring values m of 
the spin components coincide in two states ¢1 and ¢2: 

< uml¢l > ]2 = I < uml~b2 > 12 , (3.3) 

< vm[¢l > 12 ---- I < v,~1¢2 > 12 , (3.4) 

< ¢m[¢1 > ]2 = l <  ¢ml¢2 > [2 (3.5) 

(m = -4-½). Equation (3.5)implies 

< ¢,~1¢2 > = ei== < ¢m1¢1 > , (3.6) 

where ~,~ E R. Setting U,n = U! in (3.3), inserting the expression 
2 

(3.1) for u½, and taking account of (3.6), it follows that 

½1 < ¢½1¢1 > 12 + ½l < ¢-~1¢, > 12 + Re(< ¢~]¢1 > <  ¢1i¢-~ >) 

= ½1 < ¢½1¢1 > 12 + ½1 < ~_~1¢1 > l ~ 

+ Re(exp(i(a½ - a _ ½ ) )  < ¢½[¢1 > <  ¢1[¢_½ >) 

If we assume < ¢½]¢1 > <  ¢1]¢_½ > # 0 and write this term as re iz 
(r, fi E R, r > 0), then the last equality yields 

cos(/3 + oe½ - a_½) = cos/3. (3.7) 

Modulo 2r~, this equation has two solutions for 3 !  - a z unless 
2 2 

/3 = 0. Now take Eq. (3.4) into account. By an analogous procedure 
involving (3.2) and (3.6), we obtain 

sin(/3 + o~½ - o~_½) = s i n ~ .  (3.8) 

Hence, by (3.7) and (3.8), ~_ = ~_~_ + 2rrk, k E Z. Thus, the unit 
2 2 

vectors ¢1 and ¢= differ only by a phase factor. This result is also 
true if < ¢½ ]¢1 > <  ¢11¢_½ > = 0. 
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The result just obtained can also be proved by the fact that  a 
density operator  W in two-dimensional Hilbert space has a repre- 
sentation W = ½(1 + w • a)  where 1 is the unit operator,  w E R 3 
with Euclidean Norm [Iwll < 1, and w-  a := ~la=l wlat .  Moreover, 
this shows that  three orthogonal spin-½ components determine even 
mixed states (cf. [19,21]). 

To determine the states of spin-1 systems, the consideration of 
more than three spin components is necessary. Let et, l = 1, 2,3, 
be the unit vectors with respect to the coordinate axes, n any unit 
vector in R 3, and St the et-component of 1-spin. The observable of 

3 spin n-component  is represented by the operator n • S := ~t=l  n tSl  
where n = ~ = 1  ntel. Denoting the normalized eigenvectors of n • S 
corresponding to the eigenvalues m = 1, 0 , - 1  by u~ and especially 
those of $3 by era, the former ones can be writ ten as 

- n 3  1 + n 3  ~'- / ' 

if n3 ~ :kl , 

n _=(1 ]n3[[ n --k in2)¢1 v~ln31¢o no - , / 2 ,  n3 ~ 1  

--Inn~](n 1 - -  in2)¢_1) , for n 3 # 0 ,  (3.9) 

1 U~ = V ~  ( (n  1 -[- irt2)¢1 -- (n  I -- in2)¢-1) , for n3 ---- 0 ,  

U n l  - ½~/l _ n~ (_n ,  + in2~ nl -- i n 2 ¢ _ l )  
-- 1-{-n3 V l - { - v f 2 ( ~ ° - -  l - - n 3  ' 

if n3 ¢ =1=1 . 

We show now that  the probability distributions of six suitably chosen 
spin components determine a pure state of spin-1 systems. Suppose 
two states ¢1 and ¢2 satisfy 

I <  u : l ¢ l  > I ~ = I <  u : l ¢ ~  > I ~ , (3.10) 

for m = 1 , 0 , - 1 ,  and n = el,  e:, e3 , ,~ (e l  + e : ) , ~ ( e l  + e 3 ) , ~ ( e ~  + e~). 
For n = e3, Eq. (3.10) implies 

< ¢m[¢2 > = eia'*am , (3.11) 

w h e r e a m  E R a n d a m  := < ¢m[¢1 >. If h i s  equal to one of the 
other five vectors, we insert the respective expression for u~ given by 
Eqs. (3.9) into (3.10) and take account of (3.11). After some short 
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c a l c u l a t i o n s ,  we  o b t a i n  

R e ( v / 2 a l ~ o  "~- V/2a0~]--1 71- a~-~_~) 

= Re(v~e i (~ , -~° )aa~oo  + x/~ei(~°-~- ')aoh-~_l + e~(~a-"-')a~52-~_~) , 

fo r  n = O ,  m = 1 ; (3 .12)  

R e  a,~-~-i = Re(ei( '~a-~-Dal~L]-~) ,  for  n = e~, m = 0 ; (3.].3) 

Re( iv /2a l~oo  + iv/2ao-5~_l + a{d~_l ) 

fo r  n = e2, m = 1 ; (3 .14)  

Real~-L-~_ x = Re(ei (~, -"-Daxh-~_l)  , for  n -- e2, rn = 0 ; (3 .15)  

R e ( ( 1  - i)al-~ + (1 - i)aoa_l - iala-1) 
= R e ( ( 1  - i)ei("a-c'°)al-d-do q- (1 - -  i)ei("°-'~-~)aoa-~ 

--iei(al-a-1)ai-ff~_l), fo r  n = ~ ( e l  + e2), m = 1~ (3 .16)  

1 Reia~a_l = Re( ie i (~-~- l )a lh-57-1) ,  for  n = ~ ( e ~  + e~), m = 0 ; 

(3.17) 

R e ( ( 2  + v~)a l~oo  + (2 - x/~)ao~-:7-1 + a1~5-~) 

= R e ( ( 2  + V'~)ei('~'-=°)a(5-So + (2 - v~)e'(~°-~-')aoa-1 
1 + ~(~,-~-')a~a-:i-_l), for n = ~ ( ~ 1  + ~ ) ,  m = 1 ; (3 .1s)  

Re(v~al~oo- v/2ao~--57-~ + alh-57-1) 

= Re(v~d(~l -~o)~ ,a -5_  v/%,(~o---,)~oa-=7_~ + ~'("1-~-~)~,a:7_~), 

~or . = ~ ( ~ 1  + ~3), "~ = 0 ; (3.19) 

R e ( i ( 2  + v/2)alh--So + i (2  - Y~)aoa--~-I + a1~-~-1) 

= Re( i (2  + v ~ ) ~  '("l-~°)a'~o + i(2 - v~)~ ' ("° - ° - ' )aoa:~  

+ ~i(~l-o-~)aia-~_~), for n = ~ ( ~  + ~3), m = 1 ; (3.2o) 
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Re( iv~a l~0  - iV~ao'5-~-i + al~'T-1) 

= Re(ix/~ei(~'-~°)al-ff5- ix/2e{(~°-~-a)aoffLT-1 + e i(~'-~-')a1~--~-1) , 
1 f o r .  = + e3), m = O. (3.21) 

The  corresponding equations for m = - 1 give no fur ther  information.  
From (3.12), (3.13), and (3.14) it follows tha t  

aaa-'o + aoa_a = ei(aa-'~°)al~oo + ei(a°-a-1)aoa_l (3.22) 

holds. Equat ions  (3.13) and (3.17) imply 

a l a _  1 = e i ( a l - a - 1 ) a l O l _ l  . (3.23) 

Equat ions  (3.15) and (3.16) also give no further  information.  From 
(3.13), (3.19), and (3.21) we obtain 

a la -o  - a c e - 1  = e i ( a a - a ° ) a l ~ 0 0 -  e i ( a ° - a - 1 )  a o a - 1  (3.24) 

which also follows from (3.18) and (3.20) by means of (3.12), (3.13), 
and (3.14). We now have to distinguish three cases: 

Case 1: Two of the components  am of ¢1 are equal to zero. Then,  
according to Eq. (3.11), ¢1 and ¢2 differ only by a phase factor. 
Case 2: Exactly one am is zero. If aa = 0, then  (3.22) implies 
a0 = a_ l  modulo  2~r, and the states Ca and ¢2 are equivalent again. 
This  result is analogously obtained for the cases a0 = 0 and a-1 = 0, 
by (3.23) and (3.22), respectively. 
Case 3: All three components  am are not zero. Then  Eqs. (3.22) and 
(3.24) yield a l  = a0 and a0 = a-x modulo  27r. Hence, ¢2 = eia~bx 
where a := a t .  

Thus,  we have proved tha t  a pure  state of spin-1 systems is deter- 
mined  by the probabilities for six part icular  spin components .  

Finally, we observe that  the probabili ty distr ibutions of even less 
than  six spin components  are sufficient for the de terminat ion  of pure  
states of spin-1 systems. In Case 3, Eq. (3.23) was not used to ob- 
ta in  the result ¢2 = e i a ¢ l .  Hence, (3.17) is unnecessary in this case, 
and a state is de termined by the five spin components  corresponding 
t o  n 1 = el,e~,e3,~(ex + e3),,~(e~ + e3). Moreover, it can easily be 
shown tha t  under  the addit ional  assumpt ion aa ~ a_l the result can 
be concluded from (3.22) and (3.23), i.e. the four spin components  
with respect to n = em,e2,e3, ~ (ex + e2) are sufficient to determine the 
state. In Case 2, we have to choose only three suitable components ,  
and in Case 1 solely the observable $3 determines the state. In an 
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experimental procedure for state determination of spin-1 systems, 
one should measure the probability distribution of Sa first. The re- 
sult shows which case is present and induces a suitable choice of the 
other spin components to be measured. The actual state then can in 
principle be concluded from the measured probability distributions 
of all these observables. 

4.  C O N C L U D I N G  R E M A R K S  

We have shown that in general states of spinless particles are 
not determined by the distributions of some conventional observa- 
bles, whereas the distributions of suitable spin components determine 
states of spin systems. Of course, in this context there are other in- 
teresting questions we have not answered. Nevertheless, we finally 
look at another aspect of state determination. 

As already mentioned in the introduction, there are strong phys- 
ical reasons to replace the definition of a quantum mechanical ob- 
servable as a projection-valued measure B --* E(B)  as given in Sec- 
tion 1 by a more general one. Namely, an observable taking val- 
ues in R N can be described by a positive-operator-valued raeaaure 
B --* F(B)  having the properties (i) and (it) of Section 1 where 
B is a Borel set of R N and F(B)  a positive self-adjoint operator 
satisfying 0 _< F(B)  _< I (el., e.g., [9,10]). In particular, in this 
context it is possible to define observables that describe the approx- 
imate joint measurement of complementary observables such as po- 
sition and momentum [11-17] or two orthogonal spin -1 components 
[18-21]. Moreover, S. T. Ali, E. Prugove&i, F. E. Schroeck, Jr., and 
P. Busch [11,12,18-21] discussed observables describing such approx- 
imate joint measurements such that the probability distribution of 
only one observable determines even mixed states uniquely. 
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