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The availability of low-cost microprocessor chips with effi- 
cient instruction sets for specific numerical tasks (signal pro- 
cessors) has been exploited for building a versatile multipro- 
cessor system, consisting of a host minicomputer augmented 
by a number of joint processors. The host provides a multi- 
user-multitasking environment and manages system re- 
sources and task scheduling. User applications can call upon 
one or more joint processors for parallel execution of ade- 
quately partitioned, computationally intensive numeric opera- 
tions. Each joint processor has sufficient local memory for 
storing procedures and data and has access to regions in host 
memory for shared data. Kernel processes in the host and in 
the joint processors provide the necessary mechanism for ini- 
tialization and synchronization of the distributed parallel exe- 
cution of procedures. 
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Modern VLSI technology is leading to a rapid evo- 
lution of multiprocessor architectures. The classical 
organization of  a computer, based on a single CPU 
with a homogeneous instruction set for all opera- 
tions, is changing to a cooperative organization 
with specialized functional resources. By increasing 
the number of replicated processors a very large 
amount of  processing power can be associated with 
a single application at very low cost. All this re- 
quires a corresponding evolution in algorithms, 
programming languages and tools. The program- 
mer must be able to recognize the opportunities for 
a particular matching between the requirements of 
his application and the available functionalities of  
the processing elements. The software instruments 
for incorporating the available resources in his ap- 
plication must be flexible to optimize the matching. 

The present report describes a small parallel pro- 
cessor system designed for laboratory applications 
in which a ten- to hundredfold faster execution of  
particular subtasks can be achieved as compared to 
conventional implementations on the host mini- 
computer. Speedups of  this magnitude are due only 
partly to parailelization. A major part is due to the 
execution speed of modern VLSI signal processors. 
Typical applications for which this development is 
intended include recognition and discrimination in 
pattern analysis, data compression and feature ex- 
traction, solution of inverse problems by direct 
transform methods or by iterative optimization, dy- 
namic systems simulation etc. Applications of  this 
kind are often found in experimental situations re- 
quiring a close coupling between data acquisition 
and data analysis. 

I. Hardware Organization and Software Environ- 
ment 

It was our main purpose to provide an experimental 
development system that allows the evaluation of 
partitioning strategies for distributing and synchro- 
nizing concurrent computations without requiring 
many changes or additions to an available operat- 
ing system or to the programming languages sup- 
ported by its compilers. A prototype was imple- 
mented using a DEC PDPII /73 with RSXI IM 
PLUS as the supporting host and eight TI TMS 

32020 signal processors [1] as joint processors. Each 
joint processor is mounted on an individual circuit 
board together with 256 kb of local memory. The 
board contains a small set of  status, control and ad- 
dress registers mapped to a Q-Bus I/O-space. They 
are used to exchange command and interrupt codes 
between host and joint processor and to enable 
memory access from the host processor to joint pro- 
cessor local memory locations and vice versa. 

The choice of 16-bit host and joint processor 
architectures is not a serious limitation for an exper- 
imental system. The TMS 32020 was one of  the 
most advanced signal processors available when 
this project was started. Its architecture is well 
adapted for numeric computations and also for 
processing data streams from sensors in real-time 
applications. The PDP! 1/73 as a host was compati- 
ble with an existing network of laboratory comput- 
ers. It offers a well designed operating system with 
support for many development services but still pro- 
viding simplicity for its adaptation. The limitation of  
host programs to an instruction virtual address 
space of 64 kb is less convenient. A considerable a- 
mount ofthis space is taken up for addressing the run- 
time routine library of  the programming language. 
In DEC F O RTRA N  77 under RSXI IMPLUS the 
address limitation is somewhat less restricted as far 
as data space is concerned. This F O RTRA N  imple- 
mentation [2] allows for the declaration of one or 
more large-sized VIRTUAL ARRAY's,  accessed 
via the address remapping mechanisms of  the ope- 
rating system in a manner which is transparent to 
the programmer. Almost the whole available physi- 
cal address space can thereby be made accessible to 
the host program for data storage shared with joint 
processors. We have therefore used F O RTRA N  as 
the main language for the host processor in our ap- 
plications. F O R T R A N  remains to be a language of  
choice for scientific computations. 

A more serious limitation of  our experimental 
system is the use of  the LSI I 1 Q-Bus [3] as a single 
common bus for access from all processors, includ- 
ing the host, to shared memory. The host processor 
even must use this bus for fetching instructions and 
for communicating with disk, terminals and net- 
work devices. As a result, the Q-Bus becomes a 
bottleneck during exchange of large amounts of  
data between shared and local memory. We can ex- 
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Fig. 1. Communication between host and joint processors takes place via JPDRIVER, which can access all joint processor 
memory locations via hardware registers. Procedures in joint processors can start DMA transfers between shared and local 

memory. The PORTBLOCK is a reserved communication region. 
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pect real speed improvements from our system only 
for applications that involve numerically intensive 
transformations or numerous iterations on the local 
data sets once they have been loaded from shared 
memory. The system is less suited for applications 
requiring fine-grained data exchange between sever- 
al processors. An additional communication chan- 
nel is provided by the serial link implemented in the 
TMS 32020 architecture. This feature has not been 
used in present applications. 

2. Host-joint Processor Communication 

In our implementation joint processors are re- 
sources managed by the host operating system in 
more or less the same way as I/O devices or com- 
munication lines. User programs must explicitly re- 
quest the allocation of  the required number of  co- 
processors and assign logical numbers for their 
identification. All communication between host 
programs and their allocated joint processors are 
handled by a common device driver, incorporated 
in the operating system kernel. The standard set of  
operating system calls is used for communication 
with the driver. The necessary calls are encapsulat- 
ed in a set of  F O R T R A N  callable subroutines. The 
driver process loads a small supervisor kernel (man- 
ager) in each joint processor. This kernel provides 
facilities for communication with the driver and 
maintains a list of  numerical and non-numerical 
procedures which a joint processor can execute as a 
service for host programs. Among these procedures 
are basic ones, e.g. for downloading additional pro- 
cedures and entering them in the list, for deleting 
procedures that may be overwritten, or for message 
or data transfer etc. 

A joint processor can be regarded as a server for 
more or less complex procedures upon sets of  data. 
Procedure names and parameters identifying the 
data set on which they must execute are passed in 
messages for each joint processor. These messages 
have a short standard format, containing essentially 
the parameters transmitted by the FORTRAN host 
program via a standardized reprocedure call CALL 
JPSUB (processor-id, procedure-name, shared- 
workspace, workspace-size, parameter-buffer, time- 
out, sync-flag) in which the last argument is a logi- 

cai variable. If this variable is TRUE,  further mes- 
sages to the joint processor are rejected by the 
driver until the manager acknowledges completion 
of  the procedure. A host program using this call for 
executing a named procedure in a joint processor 
does not need to wait for completion of the proce- 
dure or even the transmission of  the message. As 
soon as the driver has received the message, control 
returns to the host program, which can continue 
with other operations or send another message to 
the same or to different joint processors. Program 
and data storage areas in host and joint processor 
memories involved in communication between a 
host user task and the procedures that it invokes in 
joint processors are indicated in Fig. 1. 
The driver maintains a queue of  messages for each 
joint processor. Upon termination of  a procedure in 
a joint processor an interrupt to the host from the 
processor's manager signals the driver that the pro- 
cessor is ready to accept the next message. The 
driver then copies a message from the queue into a 
designated area (portblock) of  the processor's data 
memory and interrupts the manager, indicating that 
a new procedure is to be started. End status infor- 
mation about the terminated process is available in 
the processor status register. Before copying a new 
message into the processor's portblock, the driver 
makes this information available to the intermedi- 
ate routine JPSUB. This routine maintains a count 
of  messages and provides an entry that returns the 
number of the last terminated procedure and its ter- 
mination status. This information is useful for test- 
ing and debugging new procedures during program 
development. 

On top of  this communication mechanism a num- 
ber of other auxiliary host routines is available for 
supporting segmentation of  data structures, distri- 
buted procedure execution, requesting processor 
status information or waiting for completion of 
critical procedures. 

Procedures running in joint processors must be 
programmed and compiled separately from the 
main program running in the host. Different pro- 
gramming languages most appropriate for the joint 
processor type may be used for this purpose. These 
programs normally operate only on data in local 
joint processor memory. The joint processor kernel 
provides basic procedures for transferring data be- 
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tween local and host memory. User application 

programs in host and joint processors therefore do 
not need to have compile-time information on 
where the data structures operated upon will reside 
in each others memory. Parameters are mostly 
passed by value. Offset pointers in data structures 
copied from shared to local memory can be passed 
in this manner. Some parameters (e.g. routine iden- 
tifications) are passed by name. The joint processor 
kernel then retrieves the routine address from its 
procedure namelist. 

Two classes of  joint processor routines may be 
distinguished: (i) MANAGER-procedures ,  which 
are part of the manager kernel, (ii) LOADABLE- 
procedures, supplying a repertoire of  useful numeri- 
cal or other operations. Both classes of procedures 
are called by the same communication protocol 
(JPSUB and JPDRIVER).  Manager procedures 
cannot be deleted from the name list; they provide 
basic mechanisms for loading and unloading data 
or programs and for iterating the execution of  se- 
quences of  procedures. Loadable procedures are ar- 
bitrary procedures needed for a particular applica- 
tion. The host program loads these procedures 
according to its needs. The joint processor manager 
kernel maintains the list of  names and entry ad- 
dresses of  loaded procedures. 

A user task can allocate joint processors for its 
exclusive use or for shared use with other user tasks. 
In the latter case successive remote procedure calls 
to a processor are not guaranteed to come from the 
same user. User tasks should therefore not rely on 
data left in the processor's memory after termina- 
tion of  a procedure. When used on a shared basis 
each individual procedure must copy the result of  
its operation back to the allocated workspace in 
host memory before terminating. When a processor 
is allocated to a user task on an exlusive basis, the 
sequence of  messages received by the processor is 
that of their issuing by the user task. In this case it 
is possible to use a chaining procedure that will ac- 
cept a sequence of  portblock messages that are en- 
tered in a list. Execution of  the procedures named in 
these messages is delayed until an execution com- 
mand message is received. The chained sequence 
may be repeated a specified number of times or until 
a condition is true before termination is announced 
by an interrupt to the host. Chaining is an efficient 

mechanism for iterations. It enables to formulate a 
complex operation in terms of  simpler procedures 
and to execute these in sequence without overhead 
of  interrupts and repeated message passing. 

In the family of  TMS 320 signal processors data 
addresses and program addresses form two separate 
sets. Paged and indexed data addressing is well sup- 
ported by the TMS 320 architecture. It is not diffi- 
cult to write all loadable procedures in such a way 
that they operate on run-time-relocatable data. 

3. Data Segmentation Descriptors 

When a number of joint processors is used to oper- 
ate in an SIMD-similar fashion, a segmentation of 
data structures is required. It is a simple matter to 
have every joint processor execute an identical se- 
quence of identical procedures. The data segments, 
however, assigned to each processor must reside in 
different, identifiable workspaces in host memory. 
From there the data are copied to identical regions 
in each joint processor data memory, so that identi- 
cal programs accessing a given storage location in 
different local processor memories will operate on 
different segments of the data structure. Data seg- 
mentation by automatic vectorizing compilers is 
usually based on the index range of  array variables 
explicitly named in parallelisable DO loops [4-6]. 
Our approach is not based on an extended interpre- 
tation of DO loops or similar language constructs, 
although this could be implemented in the form of  a 
precompiler. Instead, we have designed a procedur- 
al segmentation scheme and a naming convention 
for data segments residing or created in different 
processors. 

A data structure which is to be distributed over 
several processors will, in general, have an internal 
organization that cannot be arbitrarily segmented. 
In the assignment of  a distributed operation on a 
two-dimensional array, for example, it is often re- 
quired to allocate each individual processor to a 
complete subset of  rows (or columns). It will not al- 
ways be possible to divide the total number of rows 
(or columns) into subsets of equal size. This prob- 
lem has been solved by maintaining a set of  segmen- 
tation descriptors for each distributed variable. 
They contain information on the distribution of  
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subdomains of  a data structure in shared and local 
memories and on the allocation of  processors. 

A data structure that is to be subdivided and dis- 
tributed over several joint processors (or that is to 
be composed from results obtained from several 
processors) will be associated temporarily with 
more than one name. One is the genuine FOR- 
T R A N  variable name, under which the structure is 
identified for its use in normal F O R T R A N  assign- 
ment or I/O list statements. This name refers to the 
complete, unsegmented structure, defined by the 
usual F O R T R A N  type and dimension declarations. 

The second name refers to data segments operated 
upon by a joint processor. The regions that these 
segments occupy in local processor memory are 
identified by an operand name. Together with the 
logical unit number  identifying a joint processor, 
the operand name forms a pointer tuple used to ac- 
cess three segment descriptors, associating the oper- 

and with the individual segments of  a data struc- 
ture: 

SIZ (proc-id, op-name) contains the length of  

the segment, 
A D R  (proc-id, op-name) contains the virtual ad- 

dress of  an operand region for the segment 
in the local data memory,  

OFS (proc-id, op-name) contains the offset 
(index) of  the first element of  the segment 
from the origin of  an associated data struc- 
ture in host memory.  

The association between an operand name and a 

F O R T R A N  variable is not necessarily unique or 
permanent: the operand descriptors do not contain 
references to the absolute location of  a F O R T R A N  
variable in host memory.  At different times the 
same F O R T R A N  variable may be associated with 
different segment descriptors, corresponding to a 

different operand name. The same operand name 
and segment descriptors can also be used with dif- 
ferent F O R T R A N  variables if they have the same 
data structure. The actual association between a 
F O R T R A N  variable and a set of  segment descrip- 
tors is established when the F O R T R A N  name of  
the variable is used for the argument "shared- 
workspace'" in the subroutine JPSUB, and the seg- 
ment descriptors SIZ, A D R  and OFS are used as 
argument resp. parameters when JPSUB refers to 

manager or Ioadable routines that access host mem- 
ory. 

Segment descriptors are generated by a FOR- 
T R A N  subroutine CRESEG (proc-range, op- 
name, elem-len, el-num, offset). The argument proc- 
range specifies a number of  joint processors to 

which operand segments will be assigned, op-name 
designates a variable of  type integer whose name 
the programmer  will use as a generic name for the 

operands defined by the segment descriptor. 
CRESEG supplies an integer value to this name, 

later used to access the created descriptor set. elem- 
len is the length (in word units) of  an element of  this 
operand. This must be specified by the calling pro- 
gram. It may represent the array length of  a matrix 
column, a fixed record length, the length of an n-tu- 

pie or other smallest element of  the data structure 
that should not be subdivided by segmentation, el- 
num is the maximum number of  elements into 
which a structure can be divided. It will usually in- 
dicate the number of  rows in a matrix, the number 
of  records or tuples, etc., to be distributed for a par- 
allel operation. The last argument enables the pro- 

grammer to specify the segmentation of a subdo- 
main of a data structure, starting at an offset from 

its origin. If  el-num cannot be distributed evenly 
over the given range of  processes, CRESEG will put 
a larger number of  elements in the segments as- 
signed to the processors with lower unit numbers in 
the range. CRESEG initializes the SIZ, A D R  and 
OFS descriptors. SIZ is calculated from elem-len 
and the number of  elements in the segment assigned 
to a processor. I f  k is the number of  processors in 
the specified range, the segment size assigned to 
processor i(i = 1 to k) is 

SIZ(i, op-name) = elem-len (el-num/k + I) for i ~< 
el-num (mod k) 

= elem-len (el-num/k) for i > el- 
num (mod k). 

The virtual address in local data memory of pro- 

cessor i for the operand region designated by op- 
name is 

j = o p - n a m e  - 1 

ADR(i,op-name) = ~ SIZ(ij).  
. / = l  

ADR is calculated incrementally, depending on the 
number of different operand names and their seg- 
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ment sizes already defined and assigned to a proces- 
sor. The operand names are essentially needed to 
create and designate separate regions in local data 
memory of a processor. OFS is also calculated in- 
crementally, starting with the offset argument speci- 
fied in the subroutine call, and augmented accord- 
ing to the size of the segment of elements on which 
consecutive processors in the range will operate. 

j = i - 1  

OFS(i,op-name) = offset + Z SIZ(j,op-name). 
j = O  

The argument el-num has a special meaning 
when it is given the value zero or one. el-num = 0 
signifies that no segmentation takes place but a re- 
gion of  SIZ = elem-len is reserved in the local data 
space of  each processor. All processors have the 
same OFS value for the associated operand name. 
This enables one to load an identical data segment 
into all processors. When el-num = I the operand 
region is reserved only in the lowest processor in the 
range. 

offset 
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Fig. 2. Mapping segments of a data structure in shared memory to operand regions in joint processor local memories. 
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Although this allocation scheme for segmented 
operands in local processor memories may seem 
rather complicated, its implementation is efficient 
and its use is rather simple. The five arguments to 
CRESEG is all the programmer has to supply. An 
operand name for data segments residing in local 
processor memory must be supplied at compile- 
time and initialized to zero. The values for all other 
arguments can be defined at run-time, allowing a 
program to operate with array structures whose di- 
mensions are unknown at compile-time. The map- 
ping of  shared memory segments to operand re- 
gions in joint processors is shown in Fig. 2. 

The process of  subdivision and the use of the seg- 
mentation descriptors for managing areas in joint 
processor memories in which segments of  host vari- 
ables can reside are made as much as possible trans- 
parent to the user. Specialized languages [7,8] or 
specialized compilers for existing languages [9,10] 
may be designed that hide these aspects of paralleli- 
zation from the application programmer. We have 
not followed this approach because of its inflexibi- 
lity, requiring very rigid specifications of the new 
language constructs. At the present stage we prefer 
to provide a library of auxiliary routines for the 
supported languages and compilers. Segmentation 
descriptors created by procedures called at run-time 
may be changed dynamically whereas compile-time 
segmentation is static. 

The programmer can avoid explicitly referencing 
the segment descriptors by making use of already 
available library subroutines. Fig. 3 shows a 
F O R T R A N  program for segmented vector × ma- 
trix multiplication. 

The value 1017 for RANGE indicates that oper- 
and spaces for MATSEG,  VECIN, VECOUT have 
to be reserved in processors 10 to 17. The four last 
subroutine calls invoke library routines that make 
use of  JPSUB and segment descriptors for starting 
execution of  processor routines with corresponding 
names. LOADD and STORED are managing rou- 
tines that transfer data between host and local 
memory and thereby associate the segmented oper- 
and with a host F O R T R A N  variable. The FOR- 
TRAN subroutine VMULM starts the distributed 
execution of a loadable matrix multiplication pro- 
cedure. It was loaded by calling the library routine 
INIPRG with arguments indicating a filename 

VMULM.MPO,  containing the program image in 
binary format, and a name 'VMULM'  under which 

the loaded routine is entered in the namelist. The 
local operand names MATSEG, VECIN, VEC- 
OUT enable the host-library subroutine VMULM 
to access the segmentation descriptors and to com- 
municate to the local routine VMULM in each joint 
processor the location and size of its local operands. 
All but the last four program lines are initializations 
to be executed only once in a larger program. 
In this example the number of elements is not an in- 
teger multiple of the number of  processors. Proces- 
sors 10 to 13 will generate 13 elements of  the result 
vector while processors 14 to 17 will generate 12. 
The descriptors created by CRESEG are not visible 
for the programmer. They are passed between 
CRESEG and other library routines (e.g. 
VMULM) in a COMMON array. 
For MIMD applications the segmentation proce- 
dure is not always required, but even in this case the 
possibility to control the allocation of  local data 
memory for host-identifiable operands in a rather 
simple manner is very useful. 

4. A Neural Network Application 

The system has been used in several applications. 
One is the simulation of  a particular neural network 
model, which is capable of  translation-invariant 
pattern recognition. This application can be formal- 
ized in an algorithm in which matrix and vector op- 
erations are dominant. The joint processors are 
mainly used for the iterated updating of a vector 
representing the activities of  a large set of neurons. 
In the model the connections between neurons form 
a sparse matrix of zeroes and ones. In the imple- 
mented efficient updating algorithm the coefficients 
of this m × m matrix are numbered from I to m 2, 
and the ordinal number of  the coefficients which are 
different from zero are listed in a linear array. The 
signal activity emitted by a neuron along a connec- 
tion is proportional to its own activity. A linear 
function of the total (summed) signal strength arriv- 
ing at a neuron from all its connections, modified by 
a (negative) normalizing term that depends on the 
activity of all neurons in the network, is added to 
the actual activity of the receiving neuron for deter- 
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VIRTUAL HOSTVE(150), HOSTMA(IO0,150) 

INTEGER HOSTVE, HOSTMA 

INTEGER MATSEG, VECIN, VECOUT 

INTEGER RANGE, ELLEN, ELNUM, OFFSET 
DATA MATSEG, VECIN, VECOUT/O,O,O 

! define operand names 

! initialize operand name value 

313 

RANGE = 1017 ! use processors 10 to 17 

OFFSET = 0 ! no offset in vector or matrix data 

! structure 

ELLEN • 100 m input vector is lon 8 data structure 

ELNUM = 0 ! all processors must receive full 

! vector 

CALL CEESEG (RANGE, VECIN, ELLEN, ELNUM, OFFSET) ! create segment 

! descriptors for full vector in each 

! processor 
ELLEN = 1 ! elements of output vector are 

ELNUM = 100 ! divided over processors 
CALL CKESEG (RANGE, VECOUT, ELLEN, ELNUM, OFFSET) ! create segment 

! descriptors for dividing vector over 
! processors 

ELLEN = 100 ! matrix contains columns of 100 

! integers 
ELNUM = 100 ! 100 columns can be divided over 

! coprocessors 
CALL C~ESEG (RANGE, MATSEG, ELLEN, ELNUM, OFFSET) ! create segment 

! descriptors for divlding sets of 
} columns over coprocessors 

CALL INIPRG (RANGE, 'VMULM.MPO', ~VMULM', ERR) ! load all processors .ith 

! loadable procedure from disk file 

! and enter procedure name VMULM in 
! namelist 

CALL LOADD (RANGE, HOSTVE, VECIN, ERR) ! load HOSTVE in operand space VECIN 
CALL LOADD (RANGE, HOSTMA, MATSEG, ERR) ! load data segments from HOSTMA in 

! operand space for MATSEG (sets of 
) matrix columns) 

CALL VMULM (RANGE. MATSEG, VECIN, VECOUT, FIXPNT, ERR) ! Execute matrix 

! multiplication procedure in 
! coprocessors 

CALL STORED (RANGE, VECOUT, HOSTVE, ERR) ! replace original HOSTVE data by 

! combined segments from operand space 
! VECOUT 

Fig. 3. FORTRAN program for segmented vector x matrix multiplication. 
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mining its activity in the next iteration. The deter- 
mination involves an amplifying, piecewise linear, 
updating function setting the next activity equal to 
a maximum value when the argument exceeds an 
upper treshold, or equal to zero when it drops 
below a lower treshold. 

The neural system simulated here is based on the 
representation of  images and objects by labeled 
graphs. Recognition is done by graph matching 
[ll]. The system consists of  subnetworks which 
form an image domain (affected by image data) and 
an object domain (containing stored objects). The 
image domain is formed by a two-dimensional sheet 
of  neurons, a rectangular lattice of  points. Each 
point is occupied by a complement of  feature specif- 
ic cells (50 feature types in our simulations). 
Neurons in neighbouring points of  the lattice are 
connected to each other (there being 8 neighbours 
to a point), irrespective of feature type. A concrete 
image is formed by the selection of  one neuron (fea- 
ture) for each lattice point in the image plane. 

The object domain is also formed by two-dimen- 
sional lattice sheets of  neurons, one sheet per object. 
Each object network can best be viewed as a copy of  

a concrete image seen earlier (the storage process is 
not modeled here). Thus, each point in the lattice of  
an object network is occupied by a neuron with a 
particular feature type. The distribution of  features 
over the lattice represents the structure of the ob- 
ject. Neurons in neighbouring lattice points are con- 
nected with each other. In our simulation, the ob- 
jects stored in the object domain (and later 
presented in the image) were random distributions 
of feature types. Neural connections between the 
image domain and the object domain are feature 
preserving. Thus, two cells in the two substructures 
are connected precisely when they are of the same 
feature type, irrespective of position. 

The process of  recognition makes use of  the fact 
that a familiar (i.e. stored) object appearing in the 
image is isomorphic to one of the stored objects, in 
the sense that it contains the same feature types in 
the same topological arrangement. Basic to the pro- 
cess of recognition is the tendency of  the networks 
in the image and in the object domain to activate 
local clusters of neurons. In our simulations, dy- 
namic parameters were set such as to favour clus- 
ters of 3 x 3 active neurons. The image domain 
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Fig. 4. Appearance of a feature type (e.g. feature 33) in the image excites all neurons of the same feature type in the object planes. 

An excited neuron in the object plane is connected to (excites) all its 8 neighbours. There is a common suppression proport ional 

to the activity in the objects. Only clusters of neurons with feature types matching those of the image wil l  survive suppression. 
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spontaneously forms a sequence of such clusters, 
which play the role of shifting focal attention. 
When a particular focus is active, the connections 
from the image to the object domain activate in the 
latter all those neurons which happen to have fea- 
ture types which are contained in the focus. This is 
indicated schematically in Fig. 4. Dynamics in the 
object domain then takes over and selects a subset 
of those neurons receiving afferent excitation. If a 
familiar object is presented, there are two kinds of 
excited neurons: those which form a local focus in 
the correct object in the correct neighbourhood lo- 
cations, and neurons scattered randomly over all 
objects and locations. Dynamical exchange of exci- 
tation between neighbouring neurons, and an ex- 
change of global inhibition between all neurons in 
the object domain, stabilize the focus and switch off 
the scattered neurons. In this way, the correct posi- 
tion in the correct object can be identified with fair 
confidence (if the object presented is familiar, to be 
sure). This identification is completely independent 
of the position of the object in image space. After a 
fairly short sequence of such focal identifications 
the identity of the correct object can be reliably de- 
termined, e.g. by integrating the total activity at- 
tracted into each object network. 

In our implementation of the system described 
the image plane was handled in the host machine 
and in each of the joint processors one object was 
stored. Our program can handle up to 32,768 
neurons in the object domain. This is not an abso- 
lute limit, but a practical value beyond which not 
much new is learned about the behaviour of the 
model in function of its internal parameters. Each 
of 8 joint processors handles a subnet of max. 4k 
neurons with 8 neighbourhood connections per 
neuron. The connection topology is determined by 
a subroutine in the host program. The connection 
topology is the same for all subnets and there are no 
connections between neurons of different subnets in 
the present version of the algorithm. The latter 
property makes the configuration of parallel joint 
processor extremely suitable for this application, 
which is designed to identify the stored object, if 
any, in which the combination of features activating 
a 3 x 3 square in the image net is represented. 

Developing this application required the pro- 
gramming of a number of matrix and vector proce- 

dures running in the TMS 32030 joint processors. 
This has led to a library of assembler-written TMS 
320 routines, adapted to the manager kernel and the 
calling and segmentation conventions indicated 
above. The procedures provided by this library are 
application-independent, they can be used for many 
purposes as a standard routine library for a number 
of mathematical operations. The C-compiler [12] 
for the TMS 320C25 was not yet available when our 
development started. Using C will make it easier to 
extend this library, perhaps with a slight loss in per- 
formance due to the less optimized code generated 
by the compiler. 

5. Shared Joint Processor Applications 

Joint processors may relieve the host processor by 
simultaneously supporting several user tasks. An 
application of this kind was also developed. Here a 
single joint TMS 32020 processor is used as a 
graphics processor creating bit-maps in host memo- 
ry. Bit-map data are generated in distinct work- 
spaces according to vector lists or image data sup- 
plied by the calling programs. These calls can come 
from different host tasks, each identifying its allo- 
cated workspaces for bit-maps and vector lists in 
the call. The joint processor is shared by the differ- 
ent programs since there remain no relevant data in 
local memory after processing a list. Once finished, 
the bit-maps are sent to different printers and plot- 
ters by the host tasks. The whole system is used as a 
print- and plotserver receiving print- and plot-files 
from an ethernet LAN. Each device is under control 
of a separate task, calling upon the joint processor 
for graphics support if needed. Printers and plotters 
are relatively slow devices. Although the TMS 
32020 is not conceived primarily for graphics opera- 
tions and lacks the usual primitive instructions 
found in graphic coprocessors, it is fast enough to 
keep in step with the mechanical devices. Dithering 
algorithms for rendering monochrome and color 
images are easily supported by this processor. Most 
large size ink-jet or thermotransfer color plotters re- 
quire separate bitmapped data for different colors. 
The corresponding vector translation and color- 
map dithering can be distributed over several joint 
processors. The communication mechanisms for 
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joint processors described above can be applied to 
special graphics or image processors as well as to 
signal processors. 

6. Performance Gain 

Performance of a multiprocessor system is meas- 
ured in terms of  speedup ratio, referring to the exe- 
cution time of a program as a function of the 
number of  processors assigned to it. In our system 
data must be copied from host memory to local 
memory before local program execution. Results 
must be copied back to host memory. This is not es- 
sentially different from cached operation, where the 
shared memory accesses occur more random, how- 
ever. Also, the host driver program must access the 
processor-associated registers and load the port- 
block. An additional overhead is caused by calling 
the intermediate routines and the driver via the 
operating system. It is obvious that a considerable 
excess data traffic is involved over the classical sin- 
gle-processor execution of  a program. As long as 
the execution part of locally executed procedures is 
long compared to the time needed to load and un- 
load the data, however, a respectable performance 
gain is nevertheless achievable. It is advantageous 
to use the chaining facility for different consecutive 
operations and iterations. The total execution time 
of a program can be estimated by the following for- 

mula: 

t = ct + fin + 7s + 6(s/n).  

Here n /> ! is the number of joint processors over 
which a program is distributed, s represents a meas- 
ure of  the size of the problem, e.g. the complexity of  
the underlying algorithm. ~ represents parts of the 
FO RTR AN host program that are independent of 
n and s, e.g. initializations, interactive or file I/O etc. 
fin denotes the time needed for host processor com- 
munication, loading programs, starting procedures, 
initialization of  segment descriptors and transfer of 
parameter data that are independent of  the problem 
size. The term 7s includes parts of the host program 
related to problem size, e.g. initialization of varia- 
bles for the joint processors and transfers of data 
segments to and from a joint processor. This 
transfer overhead must be taken into account for 

only one joint processor in favorable cases since for 
the other processors these transfers are taking place 
during local program execution of  the processor 
that first finished loading its data segments. The last 
term 6(s/n)  represents the parallel execution of the 
procedures started in local processors, ct, fl, 7 and 
are factors that will be different for each problem, 
but may be determined from known hardware and 
software latencies, instruction execution times etc., 
or obtained from measurements. 

This formula for the performance gain reflects 
the empirically verified fact that execution time will 
not monotonically decrease when the number of  
processors is increased indefinitely, but will reach a 
minimum for an optimum number of  processors. 
This optimum is reached when the extra communi- 
cation overhead exceeds the decrease in execution 
time by further distributing the problem over an ad- 
ditional joint processor. In our neuronal network 
application the optimum number of processors was 
between 4 and 8, depending on the selected size of  
the network. The calculated speedup as a function 
of n, based on measurements of the execution times 
of individual parts of  the program in a single pro- 
cessor, was in good agreement with the observed 
values. Compared to execution of the matrix algo- 
rithms on the PDPl l /73  without the use of joint 
processors, more than sixty times faster execution 
could be obtained with the optimum number of  
8 TMS 32020 processors. This large improvement 
is partly due, of course, to the short cycle time 
(200 nsec) and single cycle execution of  most in- 
structions on this processor type. 

7. Conclusions 

Our experimental multiprocessor system has clearly 
demonstrated that the advantages of parallel pro- 
cessing can be made available to an applications 
programmer even with rather simple tools added to 
the environment he is used to. 

Behind these tools it is necessary, however, to 
devise efficient and flexible communication mecha- 
nisms in hardware and operating software. Pro- 
gramming the applications-oriented routines for the 
joint processors in such a hierarchical scheme re- 
quires an additional effort. High-level languages for 
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joint processors with particularly well adapted in- 
struction repertoires for specialized functions (sig- 
nal processing, graphics, image processing, string 
manipulation etc.) are not readily available at pres- 
ent. It is to be expected, however, that specialized 
devices of all kind will very soon be incorporated in 
small to medium computer systems and greatly en- 
hance their capabilities by distributing a computa- 
tional task over several cooperating units. 

Managing the communication and the transport 
of data is one of the most important problems that 
must be solved to realize this goal. Classical bus sys- 
tems are soon a limiting factor determining the at- 
tainable performance gain. 

Fast caches or local data and program memories 
associated with each processor are important parts 
of the system architecture as cycle times of process- 
ing devices keep decreasing. There is a need for de- 
vices supporting parallel and unattended communi- 
cation between these memories. The serial link as 
implemented in the transputer processor [13,14] 
from INMOS Ltd. is an extremely well conceived 
solution to this problem. In multiprocessor systems, 
data transfer rates must be equivalent to processing 
rates and the start-up time for a transfer should be 
as short as possible. The time needed to design and 
realize the hard- and software for our experimental 
system has been short. Altogether the total effort 
did not exceed about six man-months each for 
hardware, operating system and applications devel- 
opment, showing that this is well within reach of a 
small research group. 
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