
North-Holland 305
M icroprocessing and M icroprogramming 26 (1989/90) 305-317

An Experimental Multiprocessor System for
Distributed Parallel Computations

L. De Maeyer, A. Di Nicola, R. Maetche,
C. yon der Malsburg and L. Wiskott
Max- Planck- Institute for Biophysical Chemistry,
D - 3400 Gottingen, F.R. Germany

The availability of low-cost microprocessor chips with effi-
cient instruction sets for specific numerical tasks (signal pro-
cessors) has been exploited for building a versatile multipro-
cessor system, consisting of a host minicomputer augmented
by a number of joint processors. The host provides a multi-
user-multitasking environment and manages system re-
sources and task scheduling. User applications can call upon
one or more joint processors for parallel execution of ade-
quately partitioned, computationally intensive numeric opera-
tions. Each joint processor has sufficient local memory for
storing procedures and data and has access to regions in host
memory for shared data. Kernel processes in the host and in
the joint processors provide the necessary mechanism for ini-
tialization and synchronization of the distributed parallel exe-
cution of procedures.

Keywords: Multiprocessor, Parallel programming, Shared
memory, Signal processor, Remote procedure call.

Submitted: October 1988
Revised: 13 March 1 989
Accepted: 16 October 1989

Leo De Maeye r (1927) obtained
the Dr. Sc. degree in physical chem-
istry in 1954 at the University of
Leuven, Belgium. Since 1965 he is
scientific member of the Max-
Planck-Gesellschaft and director of
the Department of Experimental
Methods at the Max-Planck-lnsti-
tute of Biophysical Chemistry in
Goettingen. He is also teaching at
the University of Leuven where he
founded the Laboratory of Chemical
and Biological Dynamics in 1970.

From 1978 to 1981 he was head of the EMBL Instrumenta-
tion Division in Heidelberg.
One of his main interests is the development and introduction
of tools and techniques in the acquisition and evaluation of
data in experimental natural sciences.

Chr ie toph yon der Ma lsburg (1942) started out as a phys-
icist, studying at the Universities of Goettingen, Muenchen
and Heidelberg. He received his Diploma and Ph.D. from the

University of Heidelberg, based on experimental work in nu-
clear physics and elementary particle physics, respectively. As
part of his work he spent 3 years in CERN. He then converted
to neurobiology, which he pursued in the Department of
Neurobiology at the Max-Planck-lnstitute for Biophysical
Chemistry in Goettingen.
His interest is focussed on processes of organization in the
nervous system, in both the developing and in the working
brain. He is now in the University of Southern California,
where he has a double appointment in the Department for
Computerscience and in the Section for Neurobiology.

Roland Maetche (1958) is an
electronics technician in the Depart-
ment of Experimental Methods of
the Max-Planck-lnstitute for Bio-
physical Chemistry in Goettingen.
In the present study he developed
and tested the operating system
components and did the system in-
tegration, including the FORTRAN
interface and a library of graphics
routines for the joint processors.

Ange lo Di Nico la (1948) received
the Diploma in electrical engineer-
ing at the Technisch Instituut
H. Hart in Hasselt, Belgium. He has
been with the Max-Planck-lnstitute
for Biophysical Chemistry since
1972. As head of a development
team he is involved with hardware
for instruments, data acquisition
systems and computers in the De-
partment of Experimental Methods.
He designed and tested the joint-
processor hardware used in the
present project.

Laurenz Wisko t t (1964) collabo-
rated in this project as an under-
graduate student in physics at the
University of Goettingen. He pro-
grammed the neural network appli-
cation and developed the automatic
segmentation routines for distribut-
ing parallel processes over joint pro-
cessors from a FORTRAN environ-
ment. He is presently a graduate
student in theoretical physics at the
University of Osnabrueck

306 L. De Maeyer eta/. / Experimental Multiprocessor System

Modern VLSI technology is leading to a rapid evo-
lution of multiprocessor architectures. The classical
organization of a computer, based on a single CPU
with a homogeneous instruction set for all opera-
tions, is changing to a cooperative organization
with specialized functional resources. By increasing
the number of replicated processors a very large
amount of processing power can be associated with
a single application at very low cost. All this re-
quires a corresponding evolution in algorithms,
programming languages and tools. The program-
mer must be able to recognize the opportunities for
a particular matching between the requirements of
his application and the available functionalities of
the processing elements. The software instruments
for incorporating the available resources in his ap-
plication must be flexible to optimize the matching.

The present report describes a small parallel pro-
cessor system designed for laboratory applications
in which a ten- to hundredfold faster execution of
particular subtasks can be achieved as compared to
conventional implementations on the host mini-
computer. Speedups of this magnitude are due only
partly to parailelization. A major part is due to the
execution speed of modern VLSI signal processors.
Typical applications for which this development is
intended include recognition and discrimination in
pattern analysis, data compression and feature ex-
traction, solution of inverse problems by direct
transform methods or by iterative optimization, dy-
namic systems simulation etc. Applications of this
kind are often found in experimental situations re-
quiring a close coupling between data acquisition
and data analysis.

I. Hardware Organization and Software Environ-
ment

It was our main purpose to provide an experimental
development system that allows the evaluation of
partitioning strategies for distributing and synchro-
nizing concurrent computations without requiring
many changes or additions to an available operat-
ing system or to the programming languages sup-
ported by its compilers. A prototype was imple-
mented using a DEC PDPII /73 with RSXI IM
PLUS as the supporting host and eight TI TMS

32020 signal processors [1] as joint processors. Each
joint processor is mounted on an individual circuit
board together with 256 kb of local memory. The
board contains a small set of status, control and ad-
dress registers mapped to a Q-Bus I/O-space. They
are used to exchange command and interrupt codes
between host and joint processor and to enable
memory access from the host processor to joint pro-
cessor local memory locations and vice versa.

The choice of 16-bit host and joint processor
architectures is not a serious limitation for an exper-
imental system. The TMS 32020 was one of the
most advanced signal processors available when
this project was started. Its architecture is well
adapted for numeric computations and also for
processing data streams from sensors in real-time
applications. The PDP! 1/73 as a host was compati-
ble with an existing network of laboratory comput-
ers. It offers a well designed operating system with
support for many development services but still pro-
viding simplicity for its adaptation. The limitation of
host programs to an instruction virtual address
space of 64 kb is less convenient. A considerable a-
mount ofthis space is taken up for addressing the run-
time routine library of the programming language.
In DEC F O RTRA N 77 under RSXI IMPLUS the
address limitation is somewhat less restricted as far
as data space is concerned. This F O RTRA N imple-
mentation [2] allows for the declaration of one or
more large-sized VIRTUAL ARRAY's, accessed
via the address remapping mechanisms of the ope-
rating system in a manner which is transparent to
the programmer. Almost the whole available physi-
cal address space can thereby be made accessible to
the host program for data storage shared with joint
processors. We have therefore used F O RTRA N as
the main language for the host processor in our ap-
plications. F O R T R A N remains to be a language of
choice for scientific computations.

A more serious limitation of our experimental
system is the use of the LSI I 1 Q-Bus [3] as a single
common bus for access from all processors, includ-
ing the host, to shared memory. The host processor
even must use this bus for fetching instructions and
for communicating with disk, terminals and net-
work devices. As a result, the Q-Bus becomes a
bottleneck during exchange of large amounts of
data between shared and local memory. We can ex-

L. De Maeyer et al. / Experimental Multiprocessor System 307

(

f

SHARED
DATA SPACE

LOCAL
DATA SPACE

USER
FORTRAN
PROGRAM

FORTRAN SUPPORT
ROUTINES FOR
JOINT PROCESSORS

JPSUB

FORTRAN RUNTIME
LIBRARY

t 4kb to i 2Mb

]

t 64kb

64kb

MANAGER

LOADABLE ~> 128kb
PROCEDURES

PORTBLOCK
~> 128kb

LOCAL
DATASPACE

)

I

ES

ES

OPERATING
SYSTEM
KERNEL

JPDRIVER

QUEUED MESSAGES

ES

ES

J

]
Fig. 1. Communication between host and joint processors takes place via JPDRIVER, which can access all joint processor
memory locations via hardware registers. Procedures in joint processors can start DMA transfers between shared and local

memory. The PORTBLOCK is a reserved communication region.

308 L. De Maeyer et al. / Experimental Multiprocessor System

pect real speed improvements from our system only
for applications that involve numerically intensive
transformations or numerous iterations on the local
data sets once they have been loaded from shared
memory. The system is less suited for applications
requiring fine-grained data exchange between sever-
al processors. An additional communication chan-
nel is provided by the serial link implemented in the
TMS 32020 architecture. This feature has not been
used in present applications.

2. Host-joint Processor Communication

In our implementation joint processors are re-
sources managed by the host operating system in
more or less the same way as I/O devices or com-
munication lines. User programs must explicitly re-
quest the allocation of the required number of co-
processors and assign logical numbers for their
identification. All communication between host
programs and their allocated joint processors are
handled by a common device driver, incorporated
in the operating system kernel. The standard set of
operating system calls is used for communication
with the driver. The necessary calls are encapsulat-
ed in a set of F O R T R A N callable subroutines. The
driver process loads a small supervisor kernel (man-
ager) in each joint processor. This kernel provides
facilities for communication with the driver and
maintains a list of numerical and non-numerical
procedures which a joint processor can execute as a
service for host programs. Among these procedures
are basic ones, e.g. for downloading additional pro-
cedures and entering them in the list, for deleting
procedures that may be overwritten, or for message
or data transfer etc.

A joint processor can be regarded as a server for
more or less complex procedures upon sets of data.
Procedure names and parameters identifying the
data set on which they must execute are passed in
messages for each joint processor. These messages
have a short standard format, containing essentially
the parameters transmitted by the FORTRAN host
program via a standardized reprocedure call CALL
JPSUB (processor-id, procedure-name, shared-
workspace, workspace-size, parameter-buffer, time-
out, sync-flag) in which the last argument is a logi-

cai variable. If this variable is TRUE, further mes-
sages to the joint processor are rejected by the
driver until the manager acknowledges completion
of the procedure. A host program using this call for
executing a named procedure in a joint processor
does not need to wait for completion of the proce-
dure or even the transmission of the message. As
soon as the driver has received the message, control
returns to the host program, which can continue
with other operations or send another message to
the same or to different joint processors. Program
and data storage areas in host and joint processor
memories involved in communication between a
host user task and the procedures that it invokes in
joint processors are indicated in Fig. 1.
The driver maintains a queue of messages for each
joint processor. Upon termination of a procedure in
a joint processor an interrupt to the host from the
processor's manager signals the driver that the pro-
cessor is ready to accept the next message. The
driver then copies a message from the queue into a
designated area (portblock) of the processor's data
memory and interrupts the manager, indicating that
a new procedure is to be started. End status infor-
mation about the terminated process is available in
the processor status register. Before copying a new
message into the processor's portblock, the driver
makes this information available to the intermedi-
ate routine JPSUB. This routine maintains a count
of messages and provides an entry that returns the
number of the last terminated procedure and its ter-
mination status. This information is useful for test-
ing and debugging new procedures during program
development.

On top of this communication mechanism a num-
ber of other auxiliary host routines is available for
supporting segmentation of data structures, distri-
buted procedure execution, requesting processor
status information or waiting for completion of
critical procedures.

Procedures running in joint processors must be
programmed and compiled separately from the
main program running in the host. Different pro-
gramming languages most appropriate for the joint
processor type may be used for this purpose. These
programs normally operate only on data in local
joint processor memory. The joint processor kernel
provides basic procedures for transferring data be-

L. De Maeyer et al. / Experimental Multiprocessor System 309

tween local and host memory. User application

programs in host and joint processors therefore do
not need to have compile-time information on
where the data structures operated upon will reside
in each others memory. Parameters are mostly
passed by value. Offset pointers in data structures
copied from shared to local memory can be passed
in this manner. Some parameters (e.g. routine iden-
tifications) are passed by name. The joint processor
kernel then retrieves the routine address from its
procedure namelist.

Two classes of joint processor routines may be
distinguished: (i) MANAGER-procedures , which
are part of the manager kernel, (ii) LOADABLE-
procedures, supplying a repertoire of useful numeri-
cal or other operations. Both classes of procedures
are called by the same communication protocol
(JPSUB and JPDRIVER). Manager procedures
cannot be deleted from the name list; they provide
basic mechanisms for loading and unloading data
or programs and for iterating the execution of se-
quences of procedures. Loadable procedures are ar-
bitrary procedures needed for a particular applica-
tion. The host program loads these procedures
according to its needs. The joint processor manager
kernel maintains the list of names and entry ad-
dresses of loaded procedures.

A user task can allocate joint processors for its
exclusive use or for shared use with other user tasks.
In the latter case successive remote procedure calls
to a processor are not guaranteed to come from the
same user. User tasks should therefore not rely on
data left in the processor's memory after termina-
tion of a procedure. When used on a shared basis
each individual procedure must copy the result of
its operation back to the allocated workspace in
host memory before terminating. When a processor
is allocated to a user task on an exlusive basis, the
sequence of messages received by the processor is
that of their issuing by the user task. In this case it
is possible to use a chaining procedure that will ac-
cept a sequence of portblock messages that are en-
tered in a list. Execution of the procedures named in
these messages is delayed until an execution com-
mand message is received. The chained sequence
may be repeated a specified number of times or until
a condition is true before termination is announced
by an interrupt to the host. Chaining is an efficient

mechanism for iterations. It enables to formulate a
complex operation in terms of simpler procedures
and to execute these in sequence without overhead
of interrupts and repeated message passing.

In the family of TMS 320 signal processors data
addresses and program addresses form two separate
sets. Paged and indexed data addressing is well sup-
ported by the TMS 320 architecture. It is not diffi-
cult to write all loadable procedures in such a way
that they operate on run-time-relocatable data.

3. Data Segmentation Descriptors

When a number of joint processors is used to oper-
ate in an SIMD-similar fashion, a segmentation of
data structures is required. It is a simple matter to
have every joint processor execute an identical se-
quence of identical procedures. The data segments,
however, assigned to each processor must reside in
different, identifiable workspaces in host memory.
From there the data are copied to identical regions
in each joint processor data memory, so that identi-
cal programs accessing a given storage location in
different local processor memories will operate on
different segments of the data structure. Data seg-
mentation by automatic vectorizing compilers is
usually based on the index range of array variables
explicitly named in parallelisable DO loops [4-6].
Our approach is not based on an extended interpre-
tation of DO loops or similar language constructs,
although this could be implemented in the form of a
precompiler. Instead, we have designed a procedur-
al segmentation scheme and a naming convention
for data segments residing or created in different
processors.

A data structure which is to be distributed over
several processors will, in general, have an internal
organization that cannot be arbitrarily segmented.
In the assignment of a distributed operation on a
two-dimensional array, for example, it is often re-
quired to allocate each individual processor to a
complete subset of rows (or columns). It will not al-
ways be possible to divide the total number of rows
(or columns) into subsets of equal size. This prob-
lem has been solved by maintaining a set of segmen-
tation descriptors for each distributed variable.
They contain information on the distribution of

310 L. De Maeyer et al. / Experimental Multiprocessor System

subdomains of a data structure in shared and local
memories and on the allocation of processors.

A data structure that is to be subdivided and dis-
tributed over several joint processors (or that is to
be composed from results obtained from several
processors) will be associated temporarily with
more than one name. One is the genuine FOR-
T R A N variable name, under which the structure is
identified for its use in normal F O R T R A N assign-
ment or I/O list statements. This name refers to the
complete, unsegmented structure, defined by the
usual F O R T R A N type and dimension declarations.

The second name refers to data segments operated
upon by a joint processor. The regions that these
segments occupy in local processor memory are
identified by an operand name. Together with the
logical unit number identifying a joint processor,
the operand name forms a pointer tuple used to ac-
cess three segment descriptors, associating the oper-

and with the individual segments of a data struc-
ture:

SIZ (proc-id, op-name) contains the length of

the segment,
A D R (proc-id, op-name) contains the virtual ad-

dress of an operand region for the segment
in the local data memory,

OFS (proc-id, op-name) contains the offset
(index) of the first element of the segment
from the origin of an associated data struc-
ture in host memory.

The association between an operand name and a

F O R T R A N variable is not necessarily unique or
permanent: the operand descriptors do not contain
references to the absolute location of a F O R T R A N
variable in host memory. At different times the
same F O R T R A N variable may be associated with
different segment descriptors, corresponding to a

different operand name. The same operand name
and segment descriptors can also be used with dif-
ferent F O R T R A N variables if they have the same
data structure. The actual association between a
F O R T R A N variable and a set of segment descrip-
tors is established when the F O R T R A N name of
the variable is used for the argument "shared-
workspace'" in the subroutine JPSUB, and the seg-
ment descriptors SIZ, A D R and OFS are used as
argument resp. parameters when JPSUB refers to

manager or Ioadable routines that access host mem-
ory.

Segment descriptors are generated by a FOR-
T R A N subroutine CRESEG (proc-range, op-
name, elem-len, el-num, offset). The argument proc-
range specifies a number of joint processors to

which operand segments will be assigned, op-name
designates a variable of type integer whose name
the programmer will use as a generic name for the

operands defined by the segment descriptor.
CRESEG supplies an integer value to this name,

later used to access the created descriptor set. elem-
len is the length (in word units) of an element of this
operand. This must be specified by the calling pro-
gram. It may represent the array length of a matrix
column, a fixed record length, the length of an n-tu-

pie or other smallest element of the data structure
that should not be subdivided by segmentation, el-
num is the maximum number of elements into
which a structure can be divided. It will usually in-
dicate the number of rows in a matrix, the number
of records or tuples, etc., to be distributed for a par-
allel operation. The last argument enables the pro-

grammer to specify the segmentation of a subdo-
main of a data structure, starting at an offset from

its origin. If el-num cannot be distributed evenly
over the given range of processes, CRESEG will put
a larger number of elements in the segments as-
signed to the processors with lower unit numbers in
the range. CRESEG initializes the SIZ, A D R and
OFS descriptors. SIZ is calculated from elem-len
and the number of elements in the segment assigned
to a processor. I f k is the number of processors in
the specified range, the segment size assigned to
processor i(i = 1 to k) is

SIZ(i, op-name) = elem-len (el-num/k + I) for i ~<
el-num (mod k)

= elem-len (el-num/k) for i > el-
num (mod k).

The virtual address in local data memory of pro-

cessor i for the operand region designated by op-
name is

j = o p - n a m e - 1

ADR(i,op-name) = ~ SIZ(ij).
. / = l

ADR is calculated incrementally, depending on the
number of different operand names and their seg-

L. De Maeyer et al. / Experimental Multiprocessor System 311

ment sizes already defined and assigned to a proces-
sor. The operand names are essentially needed to
create and designate separate regions in local data
memory of a processor. OFS is also calculated in-
crementally, starting with the offset argument speci-
fied in the subroutine call, and augmented accord-
ing to the size of the segment of elements on which
consecutive processors in the range will operate.

j = i - 1

OFS(i,op-name) = offset + Z SIZ(j,op-name).
j = O

The argument el-num has a special meaning
when it is given the value zero or one. el-num = 0
signifies that no segmentation takes place but a re-
gion of SIZ = elem-len is reserved in the local data
space of each processor. All processors have the
same OFS value for the associated operand name.
This enables one to load an identical data segment
into all processors. When el-num = I the operand
region is reserved only in the lowest processor in the
range.

offset

SEGMENT1OF
SEGMENTED FORTRAN
VARIABLE

SEGMENT2

SEGMENT 3 I SIZ(3,op-name)

SEGMENTi

SEGMENT i+1

SEGMENTi*2

SEGMENT K

• address of shared FORTRAN variable

OFS(1 ,op-,name) = offsel

OFS(2,op~name) = offset + SIZ(1,op-~arr~)

TO JOINT PROCESSOR 1

TO JOINT PROCESSOR 2

~- TO JOINT PROCESSOR 3

ADR(i,o.p-name)

ADR(i,op~lame+ 1 }

MANAGER

PROCEDURE NAME LIST

PROCEDURE X

PROCEDURE Y

PORTBLOCK

MANAGER VARIABLES

TEMPORARY VARIABLES

OPERAND REGION
FOR OP~IAM E

OPERAND REGION

FOR NEXT OP~NAME

jo~n! processor
program space

io~nt processor
data space

Fig. 2. Mapping segments of a data structure in shared memory to operand regions in joint processor local memories.

312 L. De Maeyer et aL / Experimental Multiprocessor System

Although this allocation scheme for segmented
operands in local processor memories may seem
rather complicated, its implementation is efficient
and its use is rather simple. The five arguments to
CRESEG is all the programmer has to supply. An
operand name for data segments residing in local
processor memory must be supplied at compile-
time and initialized to zero. The values for all other
arguments can be defined at run-time, allowing a
program to operate with array structures whose di-
mensions are unknown at compile-time. The map-
ping of shared memory segments to operand re-
gions in joint processors is shown in Fig. 2.

The process of subdivision and the use of the seg-
mentation descriptors for managing areas in joint
processor memories in which segments of host vari-
ables can reside are made as much as possible trans-
parent to the user. Specialized languages [7,8] or
specialized compilers for existing languages [9,10]
may be designed that hide these aspects of paralleli-
zation from the application programmer. We have
not followed this approach because of its inflexibi-
lity, requiring very rigid specifications of the new
language constructs. At the present stage we prefer
to provide a library of auxiliary routines for the
supported languages and compilers. Segmentation
descriptors created by procedures called at run-time
may be changed dynamically whereas compile-time
segmentation is static.

The programmer can avoid explicitly referencing
the segment descriptors by making use of already
available library subroutines. Fig. 3 shows a
F O R T R A N program for segmented vector × ma-
trix multiplication.

The value 1017 for RANGE indicates that oper-
and spaces for MATSEG, VECIN, VECOUT have
to be reserved in processors 10 to 17. The four last
subroutine calls invoke library routines that make
use of JPSUB and segment descriptors for starting
execution of processor routines with corresponding
names. LOADD and STORED are managing rou-
tines that transfer data between host and local
memory and thereby associate the segmented oper-
and with a host F O R T R A N variable. The FOR-
TRAN subroutine VMULM starts the distributed
execution of a loadable matrix multiplication pro-
cedure. It was loaded by calling the library routine
INIPRG with arguments indicating a filename

VMULM.MPO, containing the program image in
binary format, and a name 'VMULM' under which

the loaded routine is entered in the namelist. The
local operand names MATSEG, VECIN, VEC-
OUT enable the host-library subroutine VMULM
to access the segmentation descriptors and to com-
municate to the local routine VMULM in each joint
processor the location and size of its local operands.
All but the last four program lines are initializations
to be executed only once in a larger program.
In this example the number of elements is not an in-
teger multiple of the number of processors. Proces-
sors 10 to 13 will generate 13 elements of the result
vector while processors 14 to 17 will generate 12.
The descriptors created by CRESEG are not visible
for the programmer. They are passed between
CRESEG and other library routines (e.g.
VMULM) in a COMMON array.
For MIMD applications the segmentation proce-
dure is not always required, but even in this case the
possibility to control the allocation of local data
memory for host-identifiable operands in a rather
simple manner is very useful.

4. A Neural Network Application

The system has been used in several applications.
One is the simulation of a particular neural network
model, which is capable of translation-invariant
pattern recognition. This application can be formal-
ized in an algorithm in which matrix and vector op-
erations are dominant. The joint processors are
mainly used for the iterated updating of a vector
representing the activities of a large set of neurons.
In the model the connections between neurons form
a sparse matrix of zeroes and ones. In the imple-
mented efficient updating algorithm the coefficients
of this m × m matrix are numbered from I to m 2,
and the ordinal number of the coefficients which are
different from zero are listed in a linear array. The
signal activity emitted by a neuron along a connec-
tion is proportional to its own activity. A linear
function of the total (summed) signal strength arriv-
ing at a neuron from all its connections, modified by
a (negative) normalizing term that depends on the
activity of all neurons in the network, is added to
the actual activity of the receiving neuron for deter-

L. De Maeyer et aL / Experimen~l Multiprocessor S ~ m

VIRTUAL HOSTVE(150), HOSTMA(IO0,150)

INTEGER HOSTVE, HOSTMA

INTEGER MATSEG, VECIN, VECOUT

INTEGER RANGE, ELLEN, ELNUM, OFFSET
DATA MATSEG, VECIN, VECOUT/O,O,O

! define operand names

! initialize operand name value

313

RANGE = 1017 ! use processors 10 to 17

OFFSET = 0 ! no offset in vector or matrix data

! structure

ELLEN • 100 m input vector is lon 8 data structure

ELNUM = 0 ! all processors must receive full

! vector

CALL CEESEG (RANGE, VECIN, ELLEN, ELNUM, OFFSET) ! create segment

! descriptors for full vector in each

! processor
ELLEN = 1 ! elements of output vector are

ELNUM = 100 ! divided over processors
CALL CKESEG (RANGE, VECOUT, ELLEN, ELNUM, OFFSET) ! create segment

! descriptors for dividing vector over
! processors

ELLEN = 100 ! matrix contains columns of 100

! integers
ELNUM = 100 ! 100 columns can be divided over

! coprocessors
CALL C~ESEG (RANGE, MATSEG, ELLEN, ELNUM, OFFSET) ! create segment

! descriptors for divlding sets of
} columns over coprocessors

CALL INIPRG (RANGE, 'VMULM.MPO', ~VMULM', ERR) ! load all processors .ith

! loadable procedure from disk file

! and enter procedure name VMULM in
! namelist

CALL LOADD (RANGE, HOSTVE, VECIN, ERR) ! load HOSTVE in operand space VECIN
CALL LOADD (RANGE, HOSTMA, MATSEG, ERR) ! load data segments from HOSTMA in

! operand space for MATSEG (sets of
) matrix columns)

CALL VMULM (RANGE. MATSEG, VECIN, VECOUT, FIXPNT, ERR) ! Execute matrix

! multiplication procedure in
! coprocessors

CALL STORED (RANGE, VECOUT, HOSTVE, ERR) ! replace original HOSTVE data by

! combined segments from operand space
! VECOUT

Fig. 3. FORTRAN program for segmented vector x matrix multiplication.

314 L. De Maeyer et al. / Experimental Multiprocessor System

mining its activity in the next iteration. The deter-
mination involves an amplifying, piecewise linear,
updating function setting the next activity equal to
a maximum value when the argument exceeds an
upper treshold, or equal to zero when it drops
below a lower treshold.

The neural system simulated here is based on the
representation of images and objects by labeled
graphs. Recognition is done by graph matching
[ll]. The system consists of subnetworks which
form an image domain (affected by image data) and
an object domain (containing stored objects). The
image domain is formed by a two-dimensional sheet
of neurons, a rectangular lattice of points. Each
point is occupied by a complement of feature specif-
ic cells (50 feature types in our simulations).
Neurons in neighbouring points of the lattice are
connected to each other (there being 8 neighbours
to a point), irrespective of feature type. A concrete
image is formed by the selection of one neuron (fea-
ture) for each lattice point in the image plane.

The object domain is also formed by two-dimen-
sional lattice sheets of neurons, one sheet per object.
Each object network can best be viewed as a copy of

a concrete image seen earlier (the storage process is
not modeled here). Thus, each point in the lattice of
an object network is occupied by a neuron with a
particular feature type. The distribution of features
over the lattice represents the structure of the ob-
ject. Neurons in neighbouring lattice points are con-
nected with each other. In our simulation, the ob-
jects stored in the object domain (and later
presented in the image) were random distributions
of feature types. Neural connections between the
image domain and the object domain are feature
preserving. Thus, two cells in the two substructures
are connected precisely when they are of the same
feature type, irrespective of position.

The process of recognition makes use of the fact
that a familiar (i.e. stored) object appearing in the
image is isomorphic to one of the stored objects, in
the sense that it contains the same feature types in
the same topological arrangement. Basic to the pro-
cess of recognition is the tendency of the networks
in the image and in the object domain to activate
local clusters of neurons. In our simulations, dy-
namic parameters were set such as to favour clus-
ters of 3 x 3 active neurons. The image domain

J

J
J

J

JJ

Image I I Oblect 1

J
J

f J
i

j I

J J

J J
J

J

J

J

J

~t 2

Fig. 4. Appearance of a feature type (e.g. feature 33) in the image excites all neurons of the same feature type in the object planes.

An excited neuron in the object plane is connected to (excites) all its 8 neighbours. There is a common suppression proport ional

to the activity in the objects. Only clusters of neurons with feature types matching those of the image wil l survive suppression.

L. De Maeyer et al. / Experimental Multiprocessor System 31 5

spontaneously forms a sequence of such clusters,
which play the role of shifting focal attention.
When a particular focus is active, the connections
from the image to the object domain activate in the
latter all those neurons which happen to have fea-
ture types which are contained in the focus. This is
indicated schematically in Fig. 4. Dynamics in the
object domain then takes over and selects a subset
of those neurons receiving afferent excitation. If a
familiar object is presented, there are two kinds of
excited neurons: those which form a local focus in
the correct object in the correct neighbourhood lo-
cations, and neurons scattered randomly over all
objects and locations. Dynamical exchange of exci-
tation between neighbouring neurons, and an ex-
change of global inhibition between all neurons in
the object domain, stabilize the focus and switch off
the scattered neurons. In this way, the correct posi-
tion in the correct object can be identified with fair
confidence (if the object presented is familiar, to be
sure). This identification is completely independent
of the position of the object in image space. After a
fairly short sequence of such focal identifications
the identity of the correct object can be reliably de-
termined, e.g. by integrating the total activity at-
tracted into each object network.

In our implementation of the system described
the image plane was handled in the host machine
and in each of the joint processors one object was
stored. Our program can handle up to 32,768
neurons in the object domain. This is not an abso-
lute limit, but a practical value beyond which not
much new is learned about the behaviour of the
model in function of its internal parameters. Each
of 8 joint processors handles a subnet of max. 4k
neurons with 8 neighbourhood connections per
neuron. The connection topology is determined by
a subroutine in the host program. The connection
topology is the same for all subnets and there are no
connections between neurons of different subnets in
the present version of the algorithm. The latter
property makes the configuration of parallel joint
processor extremely suitable for this application,
which is designed to identify the stored object, if
any, in which the combination of features activating
a 3 x 3 square in the image net is represented.

Developing this application required the pro-
gramming of a number of matrix and vector proce-

dures running in the TMS 32030 joint processors.
This has led to a library of assembler-written TMS
320 routines, adapted to the manager kernel and the
calling and segmentation conventions indicated
above. The procedures provided by this library are
application-independent, they can be used for many
purposes as a standard routine library for a number
of mathematical operations. The C-compiler [12]
for the TMS 320C25 was not yet available when our
development started. Using C will make it easier to
extend this library, perhaps with a slight loss in per-
formance due to the less optimized code generated
by the compiler.

5. Shared Joint Processor Applications

Joint processors may relieve the host processor by
simultaneously supporting several user tasks. An
application of this kind was also developed. Here a
single joint TMS 32020 processor is used as a
graphics processor creating bit-maps in host memo-
ry. Bit-map data are generated in distinct work-
spaces according to vector lists or image data sup-
plied by the calling programs. These calls can come
from different host tasks, each identifying its allo-
cated workspaces for bit-maps and vector lists in
the call. The joint processor is shared by the differ-
ent programs since there remain no relevant data in
local memory after processing a list. Once finished,
the bit-maps are sent to different printers and plot-
ters by the host tasks. The whole system is used as a
print- and plotserver receiving print- and plot-files
from an ethernet LAN. Each device is under control
of a separate task, calling upon the joint processor
for graphics support if needed. Printers and plotters
are relatively slow devices. Although the TMS
32020 is not conceived primarily for graphics opera-
tions and lacks the usual primitive instructions
found in graphic coprocessors, it is fast enough to
keep in step with the mechanical devices. Dithering
algorithms for rendering monochrome and color
images are easily supported by this processor. Most
large size ink-jet or thermotransfer color plotters re-
quire separate bitmapped data for different colors.
The corresponding vector translation and color-
map dithering can be distributed over several joint
processors. The communication mechanisms for

31 6 L. De Maeyer et al. / Experimental Multiprocessor System

joint processors described above can be applied to
special graphics or image processors as well as to
signal processors.

6. Performance Gain

Performance of a multiprocessor system is meas-
ured in terms of speedup ratio, referring to the exe-
cution time of a program as a function of the
number of processors assigned to it. In our system
data must be copied from host memory to local
memory before local program execution. Results
must be copied back to host memory. This is not es-
sentially different from cached operation, where the
shared memory accesses occur more random, how-
ever. Also, the host driver program must access the
processor-associated registers and load the port-
block. An additional overhead is caused by calling
the intermediate routines and the driver via the
operating system. It is obvious that a considerable
excess data traffic is involved over the classical sin-
gle-processor execution of a program. As long as
the execution part of locally executed procedures is
long compared to the time needed to load and un-
load the data, however, a respectable performance
gain is nevertheless achievable. It is advantageous
to use the chaining facility for different consecutive
operations and iterations. The total execution time
of a program can be estimated by the following for-

mula:

t = ct + fin + 7s + 6(s/n).

Here n /> ! is the number of joint processors over
which a program is distributed, s represents a meas-
ure of the size of the problem, e.g. the complexity of
the underlying algorithm. ~ represents parts of the
FO RTR AN host program that are independent of
n and s, e.g. initializations, interactive or file I/O etc.
fin denotes the time needed for host processor com-
munication, loading programs, starting procedures,
initialization of segment descriptors and transfer of
parameter data that are independent of the problem
size. The term 7s includes parts of the host program
related to problem size, e.g. initialization of varia-
bles for the joint processors and transfers of data
segments to and from a joint processor. This
transfer overhead must be taken into account for

only one joint processor in favorable cases since for
the other processors these transfers are taking place
during local program execution of the processor
that first finished loading its data segments. The last
term 6(s/n) represents the parallel execution of the
procedures started in local processors, ct, fl, 7 and
are factors that will be different for each problem,
but may be determined from known hardware and
software latencies, instruction execution times etc.,
or obtained from measurements.

This formula for the performance gain reflects
the empirically verified fact that execution time will
not monotonically decrease when the number of
processors is increased indefinitely, but will reach a
minimum for an optimum number of processors.
This optimum is reached when the extra communi-
cation overhead exceeds the decrease in execution
time by further distributing the problem over an ad-
ditional joint processor. In our neuronal network
application the optimum number of processors was
between 4 and 8, depending on the selected size of
the network. The calculated speedup as a function
of n, based on measurements of the execution times
of individual parts of the program in a single pro-
cessor, was in good agreement with the observed
values. Compared to execution of the matrix algo-
rithms on the PDPl l /73 without the use of joint
processors, more than sixty times faster execution
could be obtained with the optimum number of
8 TMS 32020 processors. This large improvement
is partly due, of course, to the short cycle time
(200 nsec) and single cycle execution of most in-
structions on this processor type.

7. Conclusions

Our experimental multiprocessor system has clearly
demonstrated that the advantages of parallel pro-
cessing can be made available to an applications
programmer even with rather simple tools added to
the environment he is used to.

Behind these tools it is necessary, however, to
devise efficient and flexible communication mecha-
nisms in hardware and operating software. Pro-
gramming the applications-oriented routines for the
joint processors in such a hierarchical scheme re-
quires an additional effort. High-level languages for

L. De Maeyer et aL/ Experimental Multiprocessor System 317

joint processors with particularly well adapted in-
struction repertoires for specialized functions (sig-
nal processing, graphics, image processing, string
manipulation etc.) are not readily available at pres-
ent. It is to be expected, however, that specialized
devices of all kind will very soon be incorporated in
small to medium computer systems and greatly en-
hance their capabilities by distributing a computa-
tional task over several cooperating units.

Managing the communication and the transport
of data is one of the most important problems that
must be solved to realize this goal. Classical bus sys-
tems are soon a limiting factor determining the at-
tainable performance gain.

Fast caches or local data and program memories
associated with each processor are important parts
of the system architecture as cycle times of process-
ing devices keep decreasing. There is a need for de-
vices supporting parallel and unattended communi-
cation between these memories. The serial link as
implemented in the transputer processor [13,14]
from INMOS Ltd. is an extremely well conceived
solution to this problem. In multiprocessor systems,
data transfer rates must be equivalent to processing
rates and the start-up time for a transfer should be
as short as possible. The time needed to design and
realize the hard- and software for our experimental
system has been short. Altogether the total effort
did not exceed about six man-months each for
hardware, operating system and applications devel-
opment, showing that this is well within reach of a
small research group.

References

[1] TMS 32030 User's Guide, Texas Instruments Inc.,
(1985).

[2] PDP11FORTRAN 77 Language Reference Manual
AA-V193A-TK, Digital Equipment Corporation, (1983)

[3] MICRO/PDP11 Handbook, Digital Equipment Corpo-
ration, (1983).

[4] D.J. Kuck, A survey of parallel machine organization
and programming, ACM Comput. Surveys 9, (1977)
25-59.

[5] D. Padua, D. Kuck and D. Lawrie, High-speed multi-
processors and compilation techniques, IEEE Trans.
Comp. C29, (1980) 763-776.

[6] M. Wolfe, Multiprocessor synchronization for concur-
rent loops, IEEESoftware, (Jan. 1988) 34-42.

[7] G.R. Andrews and F.B. Schneider, Concepts and nota-
tions for concurrent programming, ACM Comput. Sur-
veys 15, (1) (1983).

[8] R.H Halstead, Parallel symbolic computing, Computer
19, (1986) 35-43.

[9] J.R. Allen and K. Kennedy, Automatic loop inter-
change, SlGPLANNotices 19, (1984) 233-245.

[10] S.P. Midkiff and D.A. Padua, Compiler algorithms for
synchronization, IEEE Trans. Comput. C36, (1987)
1485-1495.

[11] C. von der Malsburg, Pattern recognition in labeled
graph matching, NeuralNetworks 1, (1988) 141-148.

[12] TM 320C25 C Compiler Reference Guide, Texas Instru-
ments Inc., (1987).

[13] D. May, R. Shepherd and C. Keane, Communicating
process architecture: Transputers and Occam, in: Fu-
ture Parallel Computers, P. Treleaven, M. Vanneschi
(Eds), Lecture Notes in Computer Science (Springer
Verlag) 272, 35-81.

[14] The Transputer Family 1987, Product Information,
INMOS Ltd. Bristol, (1987).

