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Error Biases in Spoken Word Planning and Monitoring by Aphasic and
Nonaphasic Speakers: Comment on Rapp and Goldrick (2000)

Ardi Roelofs
Max Planck Institute for Psycholinguistics and F. C. Donders Centre for Cognitive Neuroimaging

B. Rapp and M. Goldrick (2000) claimed that the lexical and mixed error biases in picture naming by
aphasic and nonaphasic speakers argue against models that assume a feedforward-only relationship
between lexical items and their sounds in spoken word production. The author contests this claim by
showing that a feedforward-only model like WEAVER�� (W. J. M. Levelt, A. Roelofs, & A. S. Meyer,
1999b) exhibits the error biases in word planning and self-monitoring. Furthermore, it is argued that
extant feedback accounts of the error biases and relevant chronometric effects are incompatible.
WEAVER�� simulations with self-monitoring revealed that this model accounts for the chronometric
data, the error biases, and the influence of the impairment locus in aphasic speakers.

An important issue for cognitive psychology generally and for
psycholinguistics specifically is the extent to which cognitive
systems consist of autonomous components (e.g., Donders, 1868/
1969). To what degree is a large process split up as a hierarchy of
component processes that are as independent of one another as the
overall task allows? Recently, Rapp and Goldrick (2000) evaluated
a number of theoretical positions—differing along the autonomy–
interactivity dimension—on spoken word production, one of the
most highly practiced skills in humans. Conceptually driven spo-
ken word production obviously requires top-down feedforward
activation from concepts to lexical items and from lexical items to
their sounds. The question is whether activation cascades from
level to level and, most importantly, whether there exists
bottom-up production-internal feedback of activation. Recently,
Norris, McQueen, and Cutler (2000) argued that spoken word
comprehension proceeds in a strictly bottom-up feedforward fash-
ion from sounds to lexical items: “Feedback is never necessary” (p.
299). Can production also do without feedback, as maintained by
Levelt and colleagues (Levelt, Roelofs, & Meyer, 1999a, 1999b;
Levelt et al., 1991a, 1999b; Roelofs, 1997, 2003; Roelofs, Meyer,
& Levelt, 1996)?1

Rapp and Goldrick (2000) assessed five different theoretical
positions on spoken word production by examining their ability to
explain four sets of empirical findings concerning speech errors in

picture naming by aphasic and nonaphasic speakers. The findings
are (a) a lexical error bias and (b) a mixed error bias, both observed
with normal speakers; (c) a pattern of only semantic errors in the
absence of form errors arising from either a “conceptual” (patient
K.E.) or a “postconceptual” (patients P.W. and R.G.B.) locus of
damage in aphasia; and (d) differential effects of form relatedness
according to the impairment locus—the presence of the mixed
error bias with postconceptual damage and its absence with con-
ceptual damage. To help evaluate the theoretical positions, Rapp
and Goldrick studied the effects of manipulating interaction pa-
rameters in simulations of five specific connectionist models that
were supposed to represent the full theoretical spectrum. Rapp and
Goldrick concluded that the error data from picture naming (i.e.,
findings a, b, and d, above) and their simulation results refute
models that assume a feedforward-only relationship between lex-
ical items and their sounds and that their analyses favor a
restricted-interaction account (RIA). This account is exemplified
by the RIA model of Rapp and Goldrick, which is illustrated in
Figure 1.

The RIA model assumes that spoken word planning is achieved
through spreading activation and selection from a network with
four layers of nodes representing lexical concepts, semantic fea-
tures, lexical items, and speech segments. The nodes are bidirec-
tionally connected except for the semantic feature nodes and the
lexical nodes, which makes planning in the model “restricted”
interactive. At each selection point (except for segment selection),
the most active node is selected by introducing external activation.

1 Rapp and Goldrick (2000, p. 463) incorrectly listed the models pro-
posed by Roelofs (1992, 1997) as “discrete feedforward” models holding
that only selected lexical items (lemmas) activate their speech segments.
Rather, Roelofs (1992) proposed an interactive model for lexical selection
only, and Roelofs (1997) proposed a feedforward cascading model for
word-form encoding only. In these articles, no claim was made concerning
a discrete or cascading relation between lexical selection and word-form
encoding—this was done in Levelt et al. (1999b).
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Word planning begins by giving each of the semantic feature
nodes corresponding to a target concept a jolt of activation. After
a fixed number of time steps, the most highly activated concept
node is selected by jolting its semantic feature nodes. After another
fixed time interval, the most highly activated lexical node is
selected by giving it a jolt of activation. Finally, the most highly
activated segment nodes are selected after a set number of time
steps.

The aim of this commentary is to show that feedforward-only
models should not be dismissed on the basis of Rapp and Gold-
rick’s (2000) analyses. I argue that the specific feedforward mod-
els that Rapp and Goldrick evaluated do not represent the class of
feedforward models as a whole. In the next two sections (Lexical
Bias and Mixed Error Bias), it is argued that existing models
within this class such as WEAVER�� (Levelt et al., 1999a,
1999b; Roelofs, 1992, 1996, 1997, 2003) exhibit the error biases
both production internally and in feedback that is speech compre-
hension based and that supports a speaker’s self-monitoring of
speech planning and production. Feedback through the compre-
hension system has been part of feedforward production models
since the early 1980s (Levelt, 1983). Furthermore, although Rapp
and Goldrick did not use production latency data in evaluating the
models, they referred to chronometric evidence for production-
internal feedback reported elsewhere, in particular, the “mixed
distractor” latency effect observed by Damian and Martin (1999)
and Starreveld and La Heij (1995, 1996). In the Latency Effect of
Mixed Distractors section, it is argued, however, that Rapp and
Goldrick’s production-internal feedback account of the error bi-
ases is incompatible with a production-internal feedback account
of the chronometric findings. In the Accounting for Both the Error
and Latency Findings section, I report results from WEAVER��
simulations that included self-monitoring, demonstrating that this
model accounts not only for the chronometric data but also for the
error biases and the influence of impairment locus in brain-
damaged individuals. In the Cohort Effects on the Speech Error
Biases section, it is shown that WEAVER��’s predictions con-
cerning certain monitoring effects on speech errors are empirically
supported.

During conversation, speakers not only talk but they also listen
to their interlocutors’ speech and monitor their own speech for

errors (and often repair them). Although the interplay among
speaking words, listening, and self-monitoring stands at the heart
of spoken conversation, it is often neglected in models of language
use. The interplay is also ignored by Rapp and Goldrick (2000). I
conclude that it is important for theoretical analyses of spoken
word production to take the relationship among speech production,
comprehension, and self-monitoring into account—even for the
naming of single pictured objects.

Lexical Bias

Lexical bias is the finding that form errors create real words
rather than nonwords with a frequency that is higher than would be
expected by chance (e.g., Dell & Reich, 1981). Most form errors
are nonword errors, but word outcomes tend to be statistically
overrepresented. For example, in planning to say “cat,” the error
“hat” (a word in English) is more likely than the error “zat” (not a
word in English). A lexical bias in speech errors is not always
observed. Whereas Dell and Reich (1981) and Nooteboom (in
press) found a strong lexical bias in their corpora of errors in
spontaneous speech, Garrett (1976) and Del Viso, Igoa, and
Garcia-Albea (1991) found no such effect and Stemberger (1985)
found only a weak effect. In an analysis of the errors in picture
naming of 15 aphasic speakers, Nickels and Howard (1995) found
no evidence for lexical bias.

On the feedback account of lexical bias that Rapp and Goldrick
(2000) favored (see Figure 1), form-related errors arise either
because an incorrect lexical item was selected (e.g., hat instead of
cat) and then properly encoded (yielding the malapropism “hat”)
or because the correct lexical item was selected (cat) but then the
segments were misselected (e.g., /h/ for /k/, also yielding “hat”).
The error bias is assumed to be due to activation spreading from
shared segment nodes to lexical nodes (e.g., from the /æ/ node
activated by the target cat back to cat and the competitors calf,
cap, and hat) and from these lexical nodes to other segment nodes
(i.e., from hat to /h/). This does not happen for nonwords because
there are no lexical nodes for such items in the network (i.e., there
is no node zat to activate /z/). Because of the activation feedback
in planning to say “cat,” hat has a higher probability of becoming
erroneously selected than a word that is unrelated in form. In

Figure 1. Illustration of the speech production network of the restricted-interaction account model (Rapp &
Goldrick, 2000). The network has four layers of nodes, which are bidirectionally connected except for the
semantic feature nodes and the lexical nodes.
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addition, because there is no lexical node for zat, there is no chance
that this item is selected. Furthermore, because of the lexical
support for indirectly activated segments like /h/ in planning to say
“cat,” it is more likely that /h/ is erroneously selected (yielding the
error “hat”) than that /z/ is selected (yielding the error “zat”). By
contrast, a feedforward-only speech production model has no
backward links between segment nodes and lexical nodes that
could give rise to such segmental influences on lexical selection
and lexical influences on segment selection.

Contrary to what the feedback account implies, however, the
lexical error bias is not an automatic effect, as already suggested
by the seminal study of Baars, Motley, and MacKay (1975). In
RIA, activation automatically spreads back from segment nodes to
lexical nodes. However, when all the target and filler items in an
error-elicitation experiment are nonwords, word slips do not ex-
ceed chance. Only when some words are included in the experi-
ment as filler items does the lexical error bias appear (Baars et al.,
1975). Similarly, lexical influences on segment processing in
speech comprehension depend on the exact experimental context
(see Norris et al., 2000, for a review). The effect of filler context
should not occur with automatic feedback of activation. Therefore,
Levelt (1983, 1989) and Levelt et al. (1999b), among others, have
argued that lexical bias in speech production is not due to
production-internal activation feedback but that the bias is at least
partly due to self-monitoring of speech planning by speakers.
When an experimental task exclusively deals with nonwords,
speakers do not bother to attend to the lexical status of their speech
plan (as they normally often do, apparently), and lexical bias does
not arise. Similarly, Norris et al. (2000) assumed that when the use
of lexical knowledge by listeners is not encouraged, lexical effects
on segment processing in speech comprehension do not arise,
accounting for the observation that lexical effects are dependent on
the exact experimental situation rather than mandatory.

Rapp and Goldrick (2000) rejected a self-monitoring account of
speech error biases by arguing that “not only does it require
seemingly needless reduplication of information, but because the
specific nature of the mechanism has remained unclear, the pro-
posal is overly powerful” (p. 468). This critique may hold for
certain monitoring proposals in the literature (see Postma, 2000,
for a recent review) but certainly not for all. In particular, Levelt
(1983, 1989) proposed that self-monitoring of speech planning and
production is achieved through the speaker’s speech comprehen-
sion system. Of course, self-monitoring is not equivalent to speech
comprehension; it requires some additional cognitive operations.
For example, lexical selection errors may be detected by verifying
whether the “lemma” of the word recognized in inner speech
corresponds to the lexical concept prepared for production, which
is an operation specific to self-monitoring. Nevertheless, proper-
ties of the speech comprehension system, as assessed by compre-
hension research, independently constrain what the monitor can
do. Self-monitoring via the speech comprehension system does
away with the critique of “needless reduplication of information.”

The assumption of comprehension-based self-monitoring has
also been adopted for WEAVER�� (Levelt et al., 1999b). The
idea of self-monitoring through the speech comprehension sys-
tem is in agreement with the results from functional brain
imaging studies, which suggest that self-monitoring and speech
comprehension are served by the same neural structures (e.g.,
McGuire, Silbersweig, & Frith, 1996). Recently, Hartsuiker and

Kolk (2001) extended and formalized Levelt’s (1989)
comprehension-based theory of self-monitoring and repair as a
computational model. Simulations showed that there was a
good fit between the monitoring–repair model and empirical
data concerning the distribution of time intervals between mak-
ing an error and interrupting articulation, the distribution of
intervals between interruption and making the repair, and the
effect of speech rate on these intervals.

Planning and Self-Monitoring in WEAVER��

WEAVER�� (Word Encoding by Activation and VERifica-
tion; Roelofs, 1992, 1997; see Levelt et al., 1999b, for a recent
review) is a computationally implemented model of spoken word
production. It implements word planning as a staged process,
moving from conceptual preparation (including the conceptual
identification of a pictured object in picture naming) via lemma
retrieval (recovering the word as a syntactic entity, including its
syntactic properties, crucial for the use of the word in phrases and
sentences) to word-form encoding, as illustrated in Figure 2.
Unlike RIA, WEAVER�� assumes two different lexical levels,
namely levels of lemmas and morphemes (the latter representa-
tions are involved in word-form encoding), but this is not crucial
for present purposes (see Levelt et al., 1999b, and Roelofs, Meyer,
& Levelt, 1998, for a theoretical and empirical motivation of the
distinction). Comprehending spoken words traverses from word-
form perception to lemma retrieval and conceptual identification.
In the model, concepts and lemmas are shared between production
and comprehension, whereas there are separate input and output
representations of word forms. Consequently, the flow of infor-
mation between the conceptual and the lemma stratum is bidirec-

Figure 2. The flow of information in the WEAVER�� model during
object naming. After lemma retrieval, spoken word planning happens in a
strictly feedforward fashion, with feedback occurring only via the speech
comprehension system. Internal monitoring includes feeding the rightward
incrementally constructed phonological word back into the speech com-
prehension system, whereas external monitoring involves listening to the
pronunciation of the word.
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tional (Roelofs, 1992),2 whereas it is unidirectional between lem-
mas and forms as well as within the form strata themselves
(top-down for production and bottom-up for comprehension). Af-
ter lemma retrieval in production, spoken word planning is a
strictly feedforward process (Roelofs, 1997).

Following Levelt (1983, 1989), the model assumes two self-
monitoring routes, an internal and an external one, both operating
via the speech comprehension system. The external route involves
listening to self-produced overt speech, whereas the internal route
(which is assumed to be responsible for the error biases) includes
monitoring the speech plan by feeding a rightward incrementally
generated phonological word back into the speech comprehension
system (Levelt et al., 1999b). A phonological word representation
specifies the syllables and, for polysyllabic words, the stress pat-
tern across syllables. So, even in extant feedforward speech pro-
duction models, there exists feedback of activation from sounds to
lexical items (see Levelt et al., 1999a, 1999b, for an extensive
discussion of this point), except that the feedback engages the
speech comprehension system rather than the production system
itself.

On the account of monitoring via the speech comprehension
system, there is no “needless reduplication of information” (Rapp
& Goldrick, 2000, p. 468). The form representations in speech
production differ from those in speech comprehension, but this is
not needless because it serves speech production and comprehen-
sion functions. Furthermore, the reduplication is supported by
empirical evidence. For example, it explains dissociations between
production and comprehension capabilities in aphasia (e.g., Dell,
Schwartz, Martin, Saffran, & Gagnon, 1997; Nickels & Howard,
1995). Under the assumption that speech production and compre-
hension are accomplished via the same word-form network, net-
work models—including RIA—exhibit a strong correlation be-
tween speech production and comprehension accuracy in aphasia
(as assessed in computer simulations by Dell et al., 1997, and
Nickels & Howard, 1995, for an RIA-type model), which is
empirically not supported by form errors. Thus, Rapp and Goldrick
(2000) also need to make the assumption of separate word-form
representations serving speech production and speech comprehen-
sion for their model. In addition, because RIA has no backward
links between lexical items and their meaning (i.e., semantic
feature nodes), the model needs to duplicate lexical nodes for
production and comprehension and to include backward links
between one set of lexical nodes and the semantic feature nodes to
achieve speech comprehension. In contrast, WEAVER�� does
not reduplicate lemmas for production and comprehension
purposes.

WEAVER�� implements a number of specific claims about
how the spoken word production and comprehension networks are
related, as shown in Figure 3. To account for interference and
facilitation effects from auditorily presented distractor words on
picture-naming latencies, Roelofs (1992, 1997; Roelofs et al.,
1996) assumed that information activated in a speech comprehen-
sion network activates compatible segment, morpheme, and
lemma representations in the production network (see also Levelt
et al., 1999b). For example, lemmas activated by spoken distrac-
tors compete with lemmas activated by a pictured object for
selection in picture naming, leading to interference. For conve-
nience, Figure 3 shows segment and lexical form nodes in the
comprehension network (following McClelland & Elman, 1986;

Norris, 1994), but this is not critical (see Lahiri & Marslen-Wilson,
1991, for a model of speech comprehension that has no such
segments). Covert self-monitoring involves feeding over time the
rightward incrementally constructed phonological word represen-
tation from speech production into the speech comprehension
system (Levelt et al., 1999b).

One of the key observations from the research on spoken word
recognition is that as speech unfolds, multiple word candidates
become partially activated and compete for selection. For example,
the speech fragment /kæ/ activates a cohort of words including cat,
calf, captain, and captive (e.g., Marslen-Wilson & Welsh, 1978;
Zwitserlood, 1989). The multiple activation concerns not only the
forms but also the syntactic properties and meanings of the words.
Computationally implemented models of spoken word recogni-
tion, such as Shortlist (Norris, 1994) and TRACE (McClelland &
Elman, 1986), all instantiate this insight in one form or another.
WEAVER�� assumes that both external and internal speech
activate such “cohorts” of word candidates.

Lexical Error Bias in WEAVER��

A lexical error bias arises within WEAVER�� in three ways.
First, the bias occurs when speakers use lexicality as one of their
monitoring criteria, as suggested by Levelt and colleagues (Levelt,
1989; Levelt et al., 1999b); clearly, lexicality is only a superficial
criterion. According to models of spoken word recognition (e.g.,
McClelland & Elman, 1986; Norris, 1994), word candidates be-
come active and compete for recognition as their onset segments
are activated. When mismatch occurs, words become deactivated,
until a single candidate stands out from the rest and is thereby
recognized. The latter will happen for words but not for nonwords.
Therefore, word errors meet the lexicality criterion and pass,
whereas nonword errors will be detected on this basis.3

On this view of activation and competition in spoken word
recognition and production, the speed and accuracy of confirming
the lexical status of a perceived spoken word during planning to
speak a word should be lower when the production and recognition
targets are similar, compared with when they are not. This predic-

2 WEAVER�� has backward links from lexical items (i.e., lemmas) to
their meaning, implied by the assumption that lemmas and lexical concepts
are shared between speech production and comprehension. Furthermore,
activation cascades from meanings to lexical items in the model. In
contrast, Rapp and Goldrick (2000) applied the discreteness and cascading
assumptions to all lexical levels of the speech production system in their
simulations.

3 Nooteboom (in press) argued against this account on the basis of the
observation that although spontaneous speech errors showed a strong
lexical bias in his error corpus, there was no evidence that upon actually
making errors, nonword errors were more often corrected than real-word
errors. However, using a lexicality criterion in internal monitoring does not
imply that overt nonword errors are more often repaired than real-word
errors (cf. Levelt, 1989). First, self-monitoring is attention demanding.
Therefore, it is unlikely that speakers can attend simultaneously to all
aspects of their speech and at the same time equally well to their internal
and external speech. Instead, monitoring internal speech (yielding the error
bias) may have as a result that external speech can be monitored less well
(causing the absence of a repair bias). Second, even if speakers would
detect all errors in their external speech, they may not bother to correct
each and every error.
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tion has been confirmed in a study by Levelt et al. (1991b), who
combined picture naming with auditory lexical decision. Partici-
pants were asked to name pictured objects, and on some critical
trials, they had to make a lexical decision by means of a keypress
to an auditory probe presented shortly after picture onset. Thus, the
speakers had to monitor for the lexical status of spoken probes
while preparing to speak the name of the object. Compared with
unrelated word probes, monitoring responses were slower and
more error prone for word probes that were semantically related,
phonologically related, or even identical to the picture name.
Levelt et al. (1991b) showed that there was a good fit between a
mathematical model implementing the claims about the effect of
similarity on competition in spoken word recognition and produc-
tion and the empirically observed lexical decision latencies.

Second, lexical bias arises during self-monitoring in WEAVER��
when some of the form-related errors are due to morpheme or
lemma selection failures (i.e., if they are malapropisms) rather than
segment selection failures. RIA also allows for lexical bias in
segment selection and for malapropisms, except that the errors are
due to production-internal feedback rather than to self-monitoring,
as is the case in WEAVER��. As Levelt et al. (1999a) put it,

A malapropism may occur when a speaker can generate only an
incomplete form representation of the intended word (as in a TOT
[tip-of-the-tongue state]). This incomplete form is fed back to the
conceptual system via the comprehension system, which leads to the
activation of several lemmas that are phonologically related to the
target. These lemmas typically will be semantically unrelated to the
target. If one of the form-related lemmas of the appropriate grammat-
ical category is selected, a malapropism will occur. (p. 64)

On this view, interactivity is a result of trouble shooting rather than
the source of the error.

Third, lexical bias occurs in WEAVER�� during the access of
motor programs for syllables (i.e., syllable program nodes in the
WEAVER�� network). Comprehension-based feedback for self-
monitoring activates compatible morpheme representations in the
production network, which activate corresponding segment and
syllable program nodes (in WEAVER��, activation cascades
through the form network; see also Footnote 1). Consequently, the
loop favors the selection of syllable program nodes that correspond
to words. The production system retrieves the syllable program
nodes at the same time the segments are going through the internal
loop, and the spreading of activation from production nodes to

Figure 3. Illustration of the speech production and comprehension networks of the WEAVER�� model.
Lexical concept nodes (e.g., CAT(X)) make up a conceptual stratum; lemma nodes (e.g., cat) and syntactic
property nodes (e.g., N � noun) make up a syntactic stratum; and morpheme (e.g., �cat�), segment (e.g., /k/),
and syllable program nodes (e.g., [kæt]) make up a form stratum. The form stratum differentiates between speech
production and comprehension, whereas the syntactic and conceptual strata are shared.
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comprehension nodes back to production nodes takes time. How-
ever, program node retrieval latencies are variable and vary with
speaking rate. As a result, in case of long retrieval latencies or slow
speaking rate, it is possible that activation may have cycled
through the comprehension system before a syllable program node
is selected, which gives room for the lexical influence. Thus, one
expects that lexical bias occurs only with slow speaking rate, when
there is sufficient time for activation to cycle through the compre-
hension system, which has been confirmed empirically (Dell,
1986). Note that in a context that does not encourage self-
monitoring (i.e., feeding the phonological word back into the
comprehension system, which is presumed to be under a speaker’s
control) and the use of lexical knowledge, such as the all-nonwords
condition of Baars et al. (1975), a lexical error bias should not
occur, in agreement with the empirical findings.

In conclusion, in a model without backward links from segments
to lexical items such as WEAVER��, there are several factors
that give rise to a tendency to produce word over nonword errors
at a higher rate than would be predicted by chance.

Mixed Error Bias

When the word cat is intended by a speaker, the substitution of
calf for cat is more likely than the substitution of dog for cat if
error opportunities are taken into account (Dell & Reich, 1981;
Martin, Gagnon, Schwartz, Dell, & Saffran, 1996). The error bias
is often called the phonological facilitation of semantic substitu-
tions or the mixed error effect because the erroneous words (e.g.,
calf for cat) share both semantic and phonological properties with
the target word. On the feedback account (Dell & Reich, 1981),
implemented in RIA, the mixed error bias happens because of
production-internal activation feedback from segment nodes to
lexical nodes. Semantic substitution errors may arise as failures in
lexical node selection (Dell & Reich, 1981). The word calf shares
segments with the target cat. Therefore, in planning to say “cat,”
the lexical node of calf receives feedback from these shared
segments (i.e., /k/ and /æ/), whereas the lexical node of dog does
not (see Figure 1). Consequently, the lexical node of calf has a
higher level of activation than the lexical node of dog (assuming
that calves and dogs are equally catlike, conceptually), and calf is
more likely than dog to be involved in a lexical node selection
error resulting in a word substitution.

The mixed error effect is not strong evidence for feedback. Rapp
and Goldrick (2000) showed that the effect occurs at the segment
rather than at the lexical level in a feedforward-only cascading
version of their model. The mixed error effect is then a semantic
effect on phonological errors rather than a phonological effect on
semantic substitution errors. Similarly, Levelt et al. (1999b) argued
that the mixed error effect occurs in WEAVER�� when errone-
ously both a target and a coactivated intruder are selected in lemma
retrieval. In a cascading model, activation automatically spreads
from one level to the other, whereas in a discrete multiple-output
model, the word-form activation is restricted to the selected items.
The mixed error bias occurs in WEAVER�� because the form of
a target like cat primes the form of an intruder like calf but not of
an intruder like dog. Of course, calf will also prime cat, but when
only a target gets “signaling activation” (cf. Dell, 1986), cat will
prime calf more than vice versa (in RIA, nodes are selected by
giving them a jolt of activation, whereas in WEAVER��, selec-

tion and providing signaling activation to a target are different
operations). Therefore, calf has a higher chance than dog to be
produced instead of cat. The assumption of multiple output under-
lying certain speech errors is independently motivated by the
occurrence of blends, like a speaker’s merging of the near syn-
onyms close and near into the error “clear.” Levelt et al. (1999b;
cf. Roelofs, 1992) argued that blends reflect a speaker’s indeci-
siveness: Two lemmas are selected as targets because they are
equally appropriate in the context of use. The two forms may
combine, yielding a blend (no error occurs when one of the forms
is encoded slower than the other or is filtered out through self-
monitoring). Dell and Reich (1981) observed the mixed error bias
also for blends. Thus, contrary to what Rapp and Goldrick claimed,
the mixed error effect in normal speakers can be accounted for by
models such as WEAVER��.

Levelt et al. (1999b) argued that a mixed error bias is also
intrinsic to self-monitoring. Monitoring is attention demanding
and not faultless. It has been estimated that speakers miss about
50% of their errors (Levelt, 1989). As indicated, the probability of
detecting an error should be greater when target and error differ
greatly than when they are similar. In planning to say “cat” and
monitoring through the speech comprehension system, the lemma
of the target cat is in the speech comprehension cohort of an error
like calf (when its form is fed back through comprehension),
whereas the lemma of the target cat is not in the speech compre-
hension cohort of the error dog. Furthermore, the mismatch be-
tween target (cat) and error is apparent at the beginning of a word
like dog but only later for a cohort member like calf. Conse-
quently, if the lemma of calf is erroneously selected for the concept
CAT(X), there is a higher chance that the error remains undetected
during self-monitoring than when the lemma of dog is erroneously
selected: a mixed error bias in self-monitoring.

In conclusion, in a feedforward model like WEAVER��, there
are several factors that give rise to a tendency to produce mixed
errors at a higher rate than would be expected by chance. Thus, the
claim of Rapp and Goldrick (2000) that the mixed error bias argues
against models like WEAVER�� is not warranted.

Latency Effect of Mixed Distractors

Although Rapp and Goldrick (2000) did not use latency data in
their evaluation of the five theoretical positions, they referred to a
number of chronometric studies that, according to them, “provide
support for cascading activation and/or feedback” (p. 469). Most
relevant for the issue of feedback are the latency data and theo-
retical analyses of Damian and Martin (1999) and Starreveld and
La Heij (1995, 1996). Their studies showed that presenting mixed
items as distractors in picture naming yields a naming latency
benefit compared with distractors that are semantically related
only, which yield interference compared with semantically unre-
lated distractors. The phonological reduction of semantic interfer-
ence has been taken as evidence for production-internal feedback.
However, Rapp and Goldrick’s feedback account of the error
biases appears to be incompatible with a feedback account of the
chronometric findings. According to the feedback account of the
error biases exemplified by RIA, mixed items yield more compe-
tition in lexical selection than items that are semantically related
only, because of the production-internal activation feedback from
segment nodes to lexical nodes during the planning of a word.
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Consequently, mixed items are involved in a larger number of
speech errors. However, exactly opposite to this, the production
latency measurements have shown a latency benefit from mixed
items, which suggests that production-internal activation feedback
gives rise to less competition in lexical selection between a target
and a mixed item than between a target and an item that is
semantically related only.

Starreveld and La Heij (1995, 1996) conducted picture–word
interference studies with written distractor words. Participants had
to name pictured objects while simultaneously trying to ignore
distractor words superimposed on the pictures. Naming latency
was the main dependent variable of interest. The distractors
yielded semantic and form effects, and together the effects inter-
acted. Damian and Martin (1999) replicated these results using
spoken distractor words. For example, the naming of a picture of
a cat was interfered with by the semantically related distractor
DOG compared with the semantically unrelated distractor DOLL,
and the naming was facilitated by the phonologically related
distractor CAP relative to the phonologically unrelated distractor
DOLL. The semantic interference effect was smaller when target
and distractor were phonologically related (distractors CALF vs.
CAP) than when they were unrelated in form (distractors DOG vs.
DOLL): a phonological reduction of semantic interference or a
mixed distractor latency effect.

According to Damian and Martin (1999), the interaction be-
tween phonological and semantic relatedness suggests that
production-internal activation feedback from sounds to lexical
items exists. The claim is that, because of the production-internal
feedback of activation, mixed distractors yield less competition
and hence shorter latencies than distractors that are semantically
related only. However, Rapp and Goldrick’s (2000) claim is that,
because of the production-internal feedback of activation, mixed
items yield more competition and hence a larger number of errors
than items that are semantically related only. For example, in RIA,
the mixed error effect occurs because feedback of activation from
segment nodes to lexical nodes makes calf a stronger competitor
than dog in planning to say “cat,” which is exactly opposite to what
has been proposed to explain the latency effect of mixed distrac-
tors. The latency data suggest that calf is a weaker competitor than
dog in planning to say “cat.”

There is yet another problem for the claim that the chronometric
data provide support for production-internal feedback of activation
from segments to lexical items. In particular, the chronometric data
suggest that the reduction of semantic interference (observed with
distractor CALF in naming a cat) and the form effect (observed
with distractor CAP in naming a cat) do not inevitably go hand in
hand. On the production-internal feedback account, semantic and
form relatedness interact because activation of production seg-
ments spreads back to the level at which semantic effects arise,
namely the level of lexical selection. Therefore, a reduction of
semantic interference for mixed distractors should be observed
only in the context of facilitation from form-related distractors.
However, this is not supported empirically. Damian and Martin
(1999) presented the spoken distractors at three stimulus onset
asynchronies (SOAs). The onset of the spoken distractor was 150
ms before picture onset (SOA � �150 ms), simultaneously with
picture onset, or 150 ms after picture onset. They observed seman-
tic interference at the SOAs of �150 and 0 ms and form facilita-
tion at the SOAs of 0 and 150 ms. The mixed distractors yielded

no effect at SOA � �150 ms and facilitation at the later SOAs,
exactly like the distractors that were related in form only. Thus, the
reduction of semantic interference for mixed distractors was al-
ready observed at an SOA (i.e., SOA � �150 ms) at which there
was no pure form facilitation effect.4 The temporal dissociation
between the mixed semantic–phonological effect and the pure
phonological effect suggests that the effects arise at different
planning levels, namely the lemma and the word-form level, and
that the interaction is a perceptual cohort effect rather than one
that is due to production-internal activation feedback, as argued by
Roelofs et al. (1996).

Of course, Rapp and Goldrick (2000) could adopt the perceptual
cohort account of the mixed distractor latency effect proposed by
Roelofs et al. (1996). However, this would mean that the chrono-
metric findings are no longer taken as support for production-
internal feedback, contrary to what Rapp and Goldrick suggested
(p. 469). Moreover, it then needs to be shown that the latency
effects may arise because of perceptual cohorts (causing calf to be
a weaker competitor than dog in planning to say “cat”) in spite of
the presence of production-internal feedback (causing calf to be a
stronger competitor than dog in planning to say “cat”). Further-
more, if the perceptual cohort account is adopted to explain the
mixed distractor latency effect, the question comes up whether the
error biases may arise from perceptual cohorts (generated by
internal rather than external speech) too, which would make the
assumption of production-internal feedback superfluous. In the
next section, I demonstrate by means of WEAVER�� simula-
tions that perceptual cohorts may explain both the error biases and
the latency effects.

Accounting for Both the Error and Latency Findings

The mixed error effect can at least partly be attributed to
self-monitoring in WEAVER��. If in planning to say “cat,” the
lemma of calf is selected instead of the lemma of cat and the
corresponding encoded form is fed back through the speech com-
prehension system, the lemma of cat is in the comprehension
cohort of the error calf. However, if in planning to say “cat,” the
lemma of dog is selected instead of the lemma of cat, the lemma
of cat is not in the cohort of dog. Hence, the lemma of cat is more
active when activation from the word form of the error calf is fed
back via the comprehension system than when activation from the
form of the error dog is fed back, and the error calf for cat is more
likely to be overlooked in self-monitoring than the error dog for
cat.

4 Damian and Martin (1999) obtained a by-participants effect of phono-
logical relatedness (i.e., form and mixed versus semantic and unrelated) at
SOA � �150 ms. However, this effect appeared to be fully due to the
semantically related distractors. Pairwise comparisons revealed that the
semantically related distractors increased picture-naming latencies com-
pared with the form, mixed, and unrelated distractors, which did not differ
among each other. Compared with the unrelated distractors, the form effect
was 5 ms, and the effect of form and mixed distractors combined was 2 ms.
The point here is not that form related distractors may not yield facilitation
at SOA � �150 ms (e.g., Meyer & Schriefers, 1991, obtained such an
early effect, whereas Schriefers et al., 1990, and Damian & Martin, 1999,
did not) but that there may be a temporal dissociation between mixed
effects and phonological effects.
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On this account, the lemma of calf is a weaker competitor than
the lemma of dog in self-monitoring during planning to say “cat”
(i.e., cat and dog are closer in activation than cat and calf). That
calf is a weaker competitor than dog in planning to say “cat” also
accounts for the mixed distractor latency effect in WEAVER��
(cf. Roelofs et al., 1996), except that the effect results from the
comprehension of speech of others (i.e., spoken distractor words in
selecting cat for production) rather than from comprehension-
based self-monitoring (after having misselected calf or dog for
production). The mixed distractor CALF yields less interference
than the distractor DOG because the lemma of the target cat is
primed as a spoken cohort member of the distractor CALF but not
of the distractor DOG (so that cat and dog are closer in activation
than cat and calf). Thus, WEAVER�� explains why there is both
a reduction of semantic interference and a heightened change of
misselection for mixed items. In summary, according to
WEAVER�� mixed items are weaker competitors rather than
stronger competitors compared with semantically related items
only, exactly opposite to what RIA maintains (in RIA, production-
internal feedback gives rise to the situation in which cat and calf
are closer in activation than cat and dog). Therefore, selection
failures concerning mixed items are more likely to remain unno-
ticed during error monitoring in WEAVER��, and mixed items
have a smaller effect as spoken distractors on latencies, in agree-
ment with the speech error data and the production latency
findings.

Rapp and Goldrick (2000) argued that a role of self-monitoring
in the error biases cannot be taken seriously “because the specific
nature of the mechanism has remained unclear” (p. 468). However,
because the effect of spoken distractors has been simulated with
WEAVER�� (Roelofs, 1997) and self-monitoring is accom-
plished via the speech comprehension system, the required mech-
anism is already partly present in the model. Technically, self-
monitoring in WEAVER�� is like comprehending a spoken
distractor word presented at a long postexposure SOA, except that
the spoken word is self-generated. Below, I report the results of
WEAVER�� simulations that included self-monitoring through
comprehension-based feedback. The simulation results demon-
strate that a single underlying mechanism (i.e., a perceptual cohort
mechanism) suffices to explain the mixed distractor latency effect
(arising from perceptual cohorts in processing speech produced by
others, i.e., spoken distractors), the mixed error effect (arising from
perceptual cohorts in the monitoring of self-generated inner
speech), and the influence of impairment locus in aphasic speakers
(arising from the structure of the lexical network in self-
monitoring). The Appendix gives the details of the simulations.
Following Rapp and Goldrick, I have attempted to capture the gist
of the data rather than to provide a quantitative account (cf. Rapp
& Goldrick, 2000, pp. 492–493).

Simulation of the Mixed Distractor Latency Effect

Figure 4 demonstrates that WEAVER�� exhibits the latency
effect of mixed distractors in picture naming. The figure plots the
effects of semantic, form, and mixed distractors on picture-naming
latencies relative to unrelated distractors against SOA. A positive
difference score indicates interference, and a negative score indi-
cates facilitation relative to unrelated distractors. The solid lines in
Figure 4A show the empirical latency results of Damian and

Martin (1999). At SOA � �150 ms, the semantically related
distractor DOG yields interference in planning to say “cat,” but the
mixed distractor CALF yields no interference, even though there is
no pure form facilitation from CAP at this SOA. Figure 4B shows
the effect that the auditory distractors have on lemma retrieval in
WEAVER��. At SOA � �150 ms, the distractor DOG yields
semantic interference in planning to say “cat.” But, the mixed
distractor CALF yields no semantic interference, even though there
is no pure form facilitation from CAP at this SOA. Thus, form
relatedness may affect lemma retrieval in case of semantic relat-
edness even when it yields no pure form facilitation at this level
because of a floor effect in speeding up the retrieval process.
However, when lemma retrieval is slowed down by a semantically
related distractor, form relatedness can have its facilitatory influ-
ence (see Levelt et al., 1999a; Roelofs et al., 1996). This accounts
for the temporal dissociation between the mixed semantic–
phonological and the pure phonological effects observed by Dam-
ian and Martin (1999). Figure 4C shows the effects of the distrac-
tors after both lemma retrieval and word-form encoding in the
model are completed. There are effects of semantic and form
relatedness, and together the effects interact, as empirically ob-
served (the correlation between model and data is .93, N � 9, p �
.001). The results of the simulations are identical for conditions
with and without comprehension-based feedback. Thus, including
self-monitoring in WEAVER�� does not affect earlier published
fits of the model (e.g., Roelofs, 1992, 1996, 1997, 2003).

There is no semantic effect at SOA � 0 ms in WEAVER��,
but this is not excluded. Whether semantic interference occurs at
this SOA depends on the exact temporal parameters of spoken
word recognition in the simulations (e.g., the exact materials used,
which differs between experiments). Schriefers, Meyer, and Levelt
(1990) also observed no semantic interference at SOA � 0 ms (the
dashed lines in Figure 4A indicate their results). The simulated
patterns correspond to what Schriefers et al. (1990) observed (the
correlation between model and data is .98, N � 6, p � .001). As
concerns the pure semantic effect, there exists a small empirical
difference between the results of Schriefers et al. (1990) and
Damian and Martin (1999), which may be investigated in future
research. Important for this article, however, is that the reduction
of semantic interference for mixed distractors may be observed at
an SOA at which there is no pure phonological facilitation, both
empirically and in WEAVER��.

Simulation of the Mixed Error Bias and the Effect of
Impairment Locus

Self-monitoring via the speech comprehension system requires
cognitive operations to detect discrepancies between selections
made in production and comprehension. Lexical selection errors
may be detected by verifying whether the lemma of the recognized
word is linked to the target lexical concept in production. In
addition, errors in lexical concept selection may be detected by
verifying whether the lexical concept of the recognized word is
linked to the conceptual information derived from the to-be-named
object. WEAVER�� implements such verification operations by
means of condition-action production rules (see Roelofs, 2003, for
an extensive discussion of the production rule component of the
model and how it plays a role in verbal control). Errors occur when
production rules mistakenly fire. The probability of firing by
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mistake is a function of activation differences among nodes (cf.
Roelofs, 1992, 1997, 2003).

Figure 5 demonstrates that self-monitoring in WEAVER��
suffices to explain the mixed error effect and its dependence on the
functional locus of damage in aphasic speakers. The lower panel
shows the influence of comprehension-based feedback on the
activation levels of the lemmas of cat, calf, and dog. When the
lemma of calf is erroneously selected and monitored via the speech
comprehension system (i.e., through the internal monitoring loop),
the activation level of the lemma of cat is increased because of the
form overlap with calf. However, when dog is fed back, the
activation of the lemma of cat is not increased. As a result, the
difference in activation between the lemmas of cat and calf is
greater than between the lemmas of cat and dog. Consequently,
verification is more likely to fail with the error calf than with the
error dog. The upper panel of Figure 5 shows the influence of
comprehension-based feedback on the activation levels of the
lexical concepts CAT(X), CALF(X), and DOG(X). The figure
shows that the activation of CAT(X) is not much affected by
whether a form-related or unrelated item is fed back via the speech

comprehension system. An effect is also not observed earlier or
later in time. Thus, the probability of verification failures at the
conceptual level should not differ between the error calf and the
error dog. Thus, the mixed error effect in WEAVER�� is likely
to arise at the level of lemmas but not at the level of lexical
concepts.

Although there are positive connections from lemmas to lexical
concepts in the model, the activation differences among the lem-
mas cat, calf, and dog are not fully carried over to the concept level
for two main reasons. First, only a proportion of the activation of
lemmas spreads to the lexical concept level, which reduces abso-
lute activation differences. Second, because lexical concept nodes
are part of a conceptual network with bidirectional connections
among the concept nodes, small activation differences at this level
are rapidly “washed away.” For example, the activation difference
between the lemma node of cat with calf fed back and the lemma
node of cat with dog fed back was 0.69 at 325 ms, which is a
difference of about 6%. However, the activation difference be-
tween the concept node CAT(X) with calf fed back and the
concept node CAT(X) with dog fed back was 0.09 at 325 ms,

Figure 4. The latency effect (in milliseconds) of semantically related, form related, and mixed spoken
distractors relative to unrelated spoken distractors in picture naming as a function of stimulus onset asynchrony
(SOA; in milliseconds). A: Solid lines show the empirical findings of Damian and Martin (1999), and the dashed
lines show the findings of Schriefers et al. (1990). B: The effects in WEAVER�� after completing lemma
retrieval only. C: The effects in WEAVER�� after completing both lemma retrieval and word-form encoding.
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which is only a difference of about 0.2%. Thus, although feeding
back the forms of calf and dog yields activation differences at both
the lemma and concept levels, the differences at the concept level
are much reduced compared with those at the lemma level.

Consequently, erroneous selection of a lexical concept node in
naming a picture due to damaged functioning at the conceptual
level (yielding the pattern of only semantic errors from a concep-
tual level lesion, as observed with patient K.E.) should have about
an equal chance of being detected when the erroneous concept has
a form-related (calf) or a form-unrelated (dog) name. In contrast,
erroneous selection of a lemma for a correctly selected lexical
concept due to damaged functioning at the lemma level (yielding
the pattern of only semantic errors from a postconceptual or lexical
level lesion, as observed with patients P.W. and R.G.B.) should
have a greater likelihood of being intercepted when the errone-
ously selected word has a form-unrelated (dog) than a form-related
(calf) name. Thus, the presence of a mixed error bias in
WEAVER�� depends on the locus of the lesion: The bias is
present with postconceptual damage but absent with conceptual
damage, in agreement with the empirical observations by Rapp and
Goldrick (2000).

Note that WEAVER�� captures the differential effect of form
relatedness according to the impairment locus in aphasia despite
the presence of backward links from lemmas to lexical concepts in
the model. In contrast, a critical claim of Rapp and Goldrick (2000;
the feature that makes RIA different from other interactive models,

such as that of Dell et al., 1997) is that the empirically observed
effect of impairment locus in aphasia refutes functionally effective
backward links from lexical items to their meaning. Thus, the
WEAVER�� simulations demonstrate that this claim by Rapp
and Goldrick is not warranted.

Cohort Effects on the Speech Error Biases

If the speech error biases arise partly because of self-monitoring
that is accomplished through the speech comprehension system,
cohort effects on errors are to be expected. In particular, initial
segment overlap between target and error should be critical, as
suggested by the research on spoken word recognition. Speech
comprehension studies have shown that when the first segments of
two items differ in more than one or two phonological features
(such as voicing), the items are not spoken cohort members of each
other (e.g., Connine, Blasko, & Titone, 1993; Marslen-Wilson,
Moss, & van Halen, 1996; Marslen-Wilson & Zwitserlood, 1989).
In an eye-tracking study, Allopenna, Magnuson, and Tanenhaus
(1998) observed that the probability of fixating, for example, a
visually presented target dollar was less affected by hearing
COLLAR (a rhyme competitor of dollar, the name of the object)
than by hearing DOLPHIN (a cohort competitor of dollar). This
suggests that cohort competitors are more activated than rhyme
competitors in spoken word recognition.

Dell and Reich (1981) indeed observed that the mixed error
effect for semantic substitutions in their corpus of spontaneous
speech errors was strongest for first segment overlap and less
strong for second, third, or fourth segment overlap. The same held
for blends. Martin et al. (1996) replicated this serial order effect on
mixed errors in picture naming, both with normal and aphasic
speakers. Is a seriality effect also observed for lexical bias? Most
phonological errors concern the initial segments of words, and
therefore, Dell and Reich (1981) examined only initial consonant
errors in their analyses of lexical bias. So, these data are incon-
clusive. However, lexical bias may arise partly because some
phonological errors are actually lemma or morpheme selection
failures resulting in a form-related lexical substitution (malaprop-
ism). Thus, on the self-monitoring account of lexical bias, the
cohort effect should hold for malapropisms, which was indeed
observed by Dell and Reich (1981).

The serial order effect on the error biases does not occur in RIA.
Shared segments activate lexical nodes in the network independent
of the serial position of the segments within the word. Of course,
implementations should not be confused with theory. The RIA
model was unconcerned with a possible serial order inherent in the
word-form encoding process. Perhaps this shortcoming may be
remedied by giving up the assumption that all connection weights
are equal and by assuming that onset segments are more strongly
connected to lexical nodes than later segments of a word are.
Whether this suffices to produce the serial order effect on the
errors remains to be shown by computer simulations.

Concluding Remarks

Speakers listen to their own talking, and they correct many of
the errors made in the planning and production of speech. To
account for this type of output control, researchers have made
feedback that serves self-monitoring of speech planning and pro-

Figure 5. Activation levels of the lexical concept nodes CAT(X),
CALF(X), and DOG(X) (top) and the lemma nodes of cat, calf, and dog
(bottom) as a function of comprehension-based feedback of activation in
WEAVER��.
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duction an integral part of feedforward models of spoken word
production for two decades (e.g., Levelt, 1983, 1989; Levelt et al.,
1999b). Furthermore, the latency and error data on spoken word
production that have been collected over the past few decades are
intricate, and therefore not surprisingly, even the simplest models
that have been developed to provide a comprehensive account of
these data (e.g., WEAVER��) are more complex than the par-
ticular models that Rapp and Goldrick (2000) evaluated (see
Levelt et al., 1999a, 1999b). In evaluating the various theoretical
positions, Rapp and Goldrick have concentrated on speech errors
while paying almost no attention to latency data. Moreover, they
have evaluated newly constructed feedforward models, even
though implemented feedforward models exist in the literature. In
particular, Rapp and Goldrick have evaluated the class of feedfor-
ward models by studying the effect of manipulating interaction
parameters in a specific connectionist model (i.e., a feedforward
variant of the RIA model). Not only does this connectionist model
not have the explanatory power of existing feedforward models
like WEAVER��, but it also leaves out self-monitoring.

Computational examinations such as the study of Rapp and
Goldrick (2000) are important but also limited in that not much can
be concluded in general from studying specific models. A refuta-
tion of a whole class of models requires a mathematical proof or an
exploration of the entire parameter space of a fully representative
model, neither of which is provided by Rapp and Goldrick. In
contrast, the refutation of a general claim about a class of models,
like the claim of Rapp and Goldrick that feedforward models
cannot account for the error data, requires only one counterex-
ample from that class, which is the logic followed in this com-
mentary. Thus, Rapp and Goldrick’s computational exercise can
best be construed as an exploration of which variant of a specific
model best accounts for the data. Thus construed, the RIA model
that Rapp and Goldrick favor accounts for the error data consid-
ered, but it cannot be excluded that other extant models can also
account for these data. To assess this, one has to analyze these
existing models rather than a newly constructed model that is
presumed to represent the whole class. In this article, I have shown
that a feedforward model like WEAVER�� can account for both
the error data and the production latency findings. The challenge
for Rapp and Goldrick is to show that restricted-interactive models
like RIA can do the same.
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Appendix

Details of the WEAVER�� Simulations

Picture naming was simulated with the production of a single
consonant–vowel–consonant target represented in a network with approx-
imately the structure of the networks used by Dell et al. (1997), Nickels and
Howard (1995), and Starreveld and La Heij (1996). The target was cat and
the neighbors were calf (mixed), dog (semantically related), doll (form
related to a semantic alternative, namely dog), and cap (form related).
WEAVER�� is described in detail in many other places, and I refer to
these sources for a detailed description of the model and its simulation
(e.g., Levelt et al., 1999b; Roelofs, 1992, 1996, 1997, 2003).

The current simulations used procedures and parameter values that were
exactly the same as in earlier simulations of the model. A few small
parameter adjustments were made to fine-tune the current fits. The re-
sponse threshold at the lemma level was set at 1.5, and the correction for
the internal SOA at �150 ms. The duration of a speech segment in a

perceived spoken distractor was set to 100 ms. The segment duration in
perceiving an internally generated phonological word representation was
set to 50 ms on the basis of empirical evidence suggesting that perceiving
internal speech runs about twice as fast as perceiving external speech
(Levelt et al., 1999b), but this is not critical. Because lemma retrieval and
word-form encoding have varying rather than fixed latencies in the model,
Figure 5 gives only one specific set of activation curves after internal
comprehension-based feedback, namely feedback starting 300 ms after
picture onset. Earlier or later feedback gives equivalent curves, except that
the curves are shifted backward or forward in time.

Received May 14, 2001
Revision received October 23, 2002

Accepted October 23, 2002 �

572 COMMENTS


