
B R A I N R E S E A R C H 1 2 2 1 ( 2 0 0 8 ) 8 0 – 9 2

ava i l ab l e a t www.sc i enced i rec t . com

www.e l sev i e r. com/ loca te /b ra in res
Research Report

Instruction effects in implicit artificial grammar learning: A
preference for grammaticality
Christian Forkstama,b,c,⁎, Åsa Elwéra, Martin Ingvara, Karl Magnus Peterssona,b,c,d

aCognitive Neurophysiology Research Group, Stockholm Brain Institute, Karolinska Institutet, Stockholm, Sweden
bF. C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, The Netherlands
cMax Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
dCognitive Neuroscience Research Group, Universidade do Algarve, Faro, Portugal
A R T I C L E I N F O
⁎ Corresponding author.Max Planck Institute
E-mail address: christian.forkstam@mpi.n

0006-8993/$ – see front matter © 2008 Elsevi
doi:10.1016/j.brainres.2008.05.005
A B S T R A C T
Article history:
Accepted 5 May 2008
Available online 13 May 2008
Human implicit learning can be investigated with implicit artificial grammar learning,
a paradigm that has been proposed as a simple model for aspects of natural language
acquisition. In the present study we compared the typical yes–no grammaticality
classification, with yes–no preference classification. In the case of preference instruction no
reference to the underlying generative mechanism (i.e., grammar) is needed and the subjects
are therefore completely uninformed about an underlying structure in the acquisition
material. In experiment 1, subjects engaged in a short-term memory task using only
grammatical strings without performance feedback for 5 days. As a result of the 5
acquisition days, classification performance was independent of instruction type and both
the preference and the grammaticality group acquired relevant knowledge of the underlying
generativemechanism toa similar degree. Changing the grammatical stings to randomstrings
in the acquisition material (experiment 2) resulted in classification being driven by local
substring familiarity. Contrasting repeated vs. non-repeated preference classification
(experiment 3) showed that the effect of local substring familiarity decreases with repeated
classification. This was not the case for repeated grammaticality classifications. We conclude
that classification performance is largely independent of instruction type and that forced-
choice preference classification is equivalent to the typical grammaticality classification.
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1. Introduction

Humans are equipped with acquisition mechanisms with the
capacity to implicitly extract structural regularities from
experience (Reber, 1967; Stadler and Frensch, 1998). Reber
(1967) showed that humans can classify strings generated from
an implicitly acquiredartificial grammarandhe suggested that
this process is intrinsic to natural language learning. Implicit
learning has four characteristics: (1) no or limited explicit
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access to the acquired knowledge; (2) the acquired knowledge
ismore complex than simpleassociationsor exemplar-specific
frequency-counts; (3) is an incidental consequence of informa-
tion processing; and (4) does not rely on declarative memory
(Forkstam and Petersson, 2005; Seger, 1994). In this context,
we note that several studies (see e.g. Bahlmann et al., 2006;
Fletcher et al., 1999) use stimulus material generated from
artificial grammars in combination with explicit problem
solving tasks with feedback (for a brief review see Petersson
Box 310, 6500 AH Nijmegen, The Netherlands. Fax: +31 24 3521213.
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Fig. 1 – The transition graph representation of the Reber
machine used in all experiments to generate the stimulus
material. Grammatical strings are generated by traversing
the transition graph from state 1 through the internal states
along the direction indicated by the arrows (grammatical
transitions) until an end state is reached. For example, the
grammatical string MSVRXVS can be generated and parsed
by the machine through the sequence [1-2-2-4-3-2-4-6] of
states, while the non-grammatical string MXVRXSS cannot.
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et al., 2004). It is important to distinguish these explicit ex-
periments from the type of implicit learning experiments
outlined below.

Natural language acquisition is a largely spontaneous, non-
supervised, andself-organizedprocess. The structural aspects of
natural languageare acquiredat anearlyageand largelywithout
explicit feedback (Chomsky, 1965; Jackendoff, 2002; Pinker, 1994;
for a different view see e.g. Goldstein andWetherby, 1984; Hirsh-
Pasek et al., 1984; Moerk, 1980). In contrast, reading and writing
are examples of typically explicitly taught cognitive skills (see
e.g. Petersson et al., in press). Recently, the artificial grammar
learning (AGL) paradigm has been proposed as a model for
aspects of language acquisition (Gomez and Gerken, 2000;
Petersson et al., 2004) and for exploring differences between
human and animal learning relevant to the faculty of language
(Hauser et al., 2002). Evidence from functional neuroimaging
data is consistent with this suggestion. Brain regions related to
natural language syntax are also engaged in artificial syntactic
processing. In particular, the left inferior prefrontal cortex
centered on Broca's region (Brodmann's area, BA, 44/45) is sen-
sitive to artificial syntactic violations (Forkstam et al., 2006;
Petersson et al., 2004). Moreover, this region is specifically sen-
sitive to the structural properties rather than to local linear sur-
face features of the input items.

The artificial grammar learning paradigm is a suitablemodel
for the structural aspects of language acquisition. The under-
lying grammar supports unbounded parsing and generation,
and the paradigmcomprise implicit learning on acquisition sets
of grammatical examples alone without performance feedback
(Forkstam et al., 2006; Petersson et al., 2004). It is likely that
natural and artificial language acquisition share implicit ac-
quisition mechanisms, as originally suggested by Reber (1967).
Additional support for the implicit character of artificial gram-
mar learning comes from lesion studies on amnesic patients.
Knowlton and Squire (1996) investigated artificial grammar
learning in amnesic patients and normal controls on gramma-
ticality classification. Both groups performed similarly ongram-
maticality classification, while the amnesic patients showed no
explicit recollection of either whole-item or substring informa-
tion, suggesting that artificial grammar learning depends on the
implicit acquisition of structural knowledge (i.e., “rule-based”
representations). Alternative theoretical frameworks have
questioned the abstract (“rule”) acquisition picture and suggest
instead that grammaticality classification utilizes exemplar-
based representations (Vokey and Brooks, 1992) or substring
representations (Perruchet and Pacteau, 1991). In order to ad-
dress this issue and to control as well as test for any potential
substring dependency, the ACS measure was developed
(Knowlton and Squire, 1996; Meulemans and Van der Linden,
1997). Associative chunk strength (ACS) is a statistical measure
of the associative familiarity of local substrings (e.g., bi- and
trigrams) between a classification item and the acquisition set.
It is quantified in terms of the frequency with which its sub-
strings occur in the acquisition set. In this approach, acquired
structural and instance specific information is quantified by
grammaticality and ACS, respectively. From several studies
which control ACS it is clear that structural knowledge is ac-
quired (Forkstam et al., 2006; Meulemans and Van der Linden,
1997). This is also consistent with the fact that long-distance
dependencies are implicitlyacquired inAGL (e.g., Poletiek, 2002).
Taken together, the evidence suggest that grammar learn-
ing — whether natural or artificial — can be conceptualized
both in terms of structure based rule acquisition and surface
based statistical learning mechanisms and not as typically has
been proposed as either one or the other. We have recently
proposedanalternative viewonAGL somewhere between these
two conceptualizations (Forkstam et al., 2006; Petersson et al.,
2005). In essence, our proposal re-traces a major trend in
theoretical linguistics in which syntax is “shifted” into the
mental lexicon andwhere the distinction between lexical items
and grammatical rules is beginning to vanish (Culicover and
Jackendoff, 2005; Jackendoff, 2002, 2007). In brief, hierarchically
structured information is recursively constructed from primi-
tive structures which are stored in long-term memory. On-line
integration of structured information results from the unifica-
tion or successive merging of primitive structures, which are
retrieved from long-termmemory to aunification componentof
working memory when activated. Now, if a mechanism for on-
line structural integration is already in place, then there is no
need for a specific “rule” acquisition mechanism in order to
establish a parsing process. In a sense, “rule” acquisition is
accomplished by lexical acquisition of structured representa-
tions and their subsequent on-line unification (cf. e.g., Hagoort,
2004; Jackendoff, 2007; Vosse and Kempen, 2000).

The typical artificial grammar learning experiment includes
a short acquisition session followed by a classification test.
During the acquisition phase, participants are engaged in a
short-termmemory task using an acquisition sample of symbol
sequences generated from an artificial grammar, typically a
right-linear phrase structure grammar (e.g., Fig. 1, Davis et al.,
1994; Perrin and Pin, 2004). Subsequent to the acquisition
session, the subjects are informed that the items were gene-
rated according to a complex systemof rules, without providing
information about the rules, and the subjects have to classify
new items as grammatical or non-grammatical guided by their
immediate intuitive impression (i.e., guessing based on “gut-
feeling”); this instruction type will be called the grammaticality
classification (GC) instruction in this paper. The subjects



Fig. 2 – Experiments 1–3: Acquisition rate as a function of
classification performance. Strings correctly classified=
[number of hits and correct rejections] / [total number of
responses] (mean and standard error); B = baseline, D1–5 =
day 1–5 classification, D5G = final grammaticality
classification, and variable dotted line = response bias
deviating from 50% chance level (straight dotted line), see
Table 2 for group abbreviations.
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typically perform reliably above chance, suggesting that they
acquired knowledge about relevant aspects of the underlying
grammar. Based on the fact that subjects are typically unable to
provide sufficient, if any, reasons tomotivate their classification
decisions (for reviews see Forkstam and Petersson, 2005; Seger,
1994; Stadler and Frensch, 1998), it has been assumed that the
classification performance is based on implicit acquisition
mechanisms. However, it has been suggested that invoking
grammaticality judgments might not be the best way of
accessing implicit knowledge, since the grammaticality classi-
fication instruction may induce a rule-seeking strategy that, in
principle at least, might encourage explicit processing (Manza
and Bornstein, 1995; Newell and Bright, 2001). An alternative
approach to probe implicit knowledge is based on the mere
exposure effect. This effect refers to the finding that repeated
exposure to a stimulus induces an increased preference for that
stimulus compared to novel stimuli (Zajonc, 1968).

In the present study we investigated the typical artificial
grammar learning design while taking advantage of the
structural mere exposure effect (Manza and Bornstein, 1995).
In mere exposure artificial grammar learning subjects receive
preference classification (PC) instruction which make no
reference to any previous acquisition episode and the subjects
are not informed about the existence of an underlying
generative mechanism. The idea is that mere exposure AGL
mightmeasure implicit knowledge inamorepuremanner since
there is nothing in the classification procedures that refers to
the acquisition part of the experiment. It has been shown that
the preference classification instruction induces similar classi-
fication performance as the grammaticality classification in-
struction (Buchner, 1994;ManzaandBornstein, 1995) inagraded
classification task (i.e., preference continuum). This rules out or
complicates a direct comparison with forced-choice (yes–no)
grammaticality classification. The primary objective of the
present studywas to compare forced-choice (yes–no) preference
with grammaticality classification and to investigate whether
and to what extent preference classification would show a
similar pattern of results as the standard grammaticality clas-
sification. In experiment 1we directly compared the outcome of
implicit artificial grammar learning in subjects given either the
grammaticality classification or preference classification
instruction. The stimulus material was organized in a 2×2
factorial design using the factors grammaticality (grammatical
G/non-grammatical NG) and level of associative chunk strength
(ACS; high H/low L). Thus we are able to assess differences
between instruction types related to grammaticality as well as
of substring familiarity (i.e., ACS). In addition to the rate of
acquisition, we also investigated the influence of instruction
type on pre-acquisition baseline classification.
2. Results

2.1. Experiment 1 — preference and
grammaticality classification

2.1.1. Baseline classification
Instruction type (grammatical/preference classification) influ-
enced the classification behavior already during baseline
classification (i.e., pre-acquisition; Fig. 2). Both groups rejected
more strings than they accepted, and effects of grammati-
cality and associative chunk strength developed in the two
groups, but in the opposite direction (Fig. 3; preference clas-
sification: grammaticalNnon-grammatical and lowNhigh ACS;
grammaticality classification: non-grammaticalNgrammati-
cal and highN low ACS). To investigate the effect of instruction
during baseline, we pooled the participants from experiments
1–3 (i.e., 20 participants with grammaticality classification and
20 with preference classification) and divided the baseline
items into two equal sized time-blocks of 20 items (first/
second half as they were presented over time). The basic
ANOVA was extended with the factor block [1/2]. Any block
effect would suggest that the subjects learned properties of
the stimulus material already during the baseline classifica-
tion. The preference classification group increased their
rejection rate over time while the rejection rate decreased in
the grammaticality classification group, a drift in response
bias that differed between groups (F(1,266)=4.1, Pb0.043). The
effect of grammaticality increased over time in both groups
but in the opposite direction. The changing grammaticality
effect derives from an increased rejection rate of non-
grammatical strings in the preference classification group
while this decreased in the grammaticality classification
group. The effect of associative chunk strength tended to
develop over time in the grammaticality classification group
while the preference classification group showed a constant
associative chunk strength effect (as well as a tendency to
diminish over time, Figs. 3a and b). In summary, the preference
classification group acquired sensitivity to grammaticality but
showed a constant associative chunk strength effect, while
the grammaticality classification group acquired sensitivity
to grammaticality and a tendency for an associative chunk



Fig. 3 – Experiments 1–3: Baseline classification performance. Endorsement rate (mean and standard error) as a function of
instruction type: (a) main factors (in 5 blocks); (b) main factors (in 2 blocks); as well as (c) factor levels; Block 1–5 and
Block 1–2 = equally sized parts of baseline classification; Dotted line = response bias, ACS = associative chunk strength, and
variable dotted line = response bias deviating from 50% chance level (straight dotted line).
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strength effect. However, all effects developed over time, as
indicated when dividing the baseline classification perfor-
mance in more than two blocks (Fig. 3a). The detailed results
are outlined in the following two paragraphs.

2.1.1.1. Effects of grammaticality. Both the preference and
grammaticality classification groups showed effect of gram-
maticality, although in an instruction dependent manner.
The preference classification group rejected non-grammatical
strings (F(1,133)=11, P=0.001), while the grammaticality classi-
fication group rejected grammatical strings (F(1,113)=29,
Pb0.001; PC vs. GC group: F(1, 266)=37, Pb0.001). This reversed
effect of grammaticality increased over time in both groups.
The preference classification group rejected non-grammatical
strings more often during the second block (block 1: PN0.24;
block 2: F(1,57)=12, Pb0.001; block 2 vs. block 1: F(1,133)=3.0,
Pb0.085), an effect that derived from a significantly increased
rejection rate of non-grammatical strings (F(1,59)=8, P=0.008).
Fig. 4 – Experiment 1: Classification performance day 1–5. Endo
instruction type: (a) main factors; as well as (b) factor levels; B =
NG = non-grammatical, ACS = associative chunk strength, and va
level (straight dotted line).
In contrast, the rejection rate of non-grammatical strings
decreased in the grammaticality classification group (F(1,59)=
6,P=0.019), leading to increased rejectionof grammatical strings
(block 1: F(1,57)=6, P=0.018; block 2: F(1,57)=23, Pb0.001; block
2Nblock 1: F(1,133)=4.5, P=0.035). Overall, this difference in
classification differed between groups (F(1,266)=7, P=0.007).

2.1.1.2. Effects of associative chunk strength. Both groups
also showed an effect of associative chunk strength in an in-
struction dependent manner. The preference classification
group preferred low ACS strings and rejected high ACS strings
(F(1,113)=8, P=0.004) while the grammaticality classification
group displayed the opposite behavior classifying high ACS
strings as grammatical and rejecting low ACS strings (F(1,113)=
3.9, P=0.05; PC vs. GC group: F(1,266)=12, Pb0.001). The asso-
ciative chunk strength effect did not change significantly over
time ineither group,butweobservedannon-significant increase
in the grammaticality classification group (block 1: F(1,57)=0.8,
rsement rate (mean and standard error) as a function of
baseline, D1–5 = day 1–5 classification, G = grammatical,
riable dotted line = response bias deviating from 50% chance



Table 1 – Structural knowledge vs. local substring
familiarity

Item category Structural knowledge
(grammaticality)

Local substring
familiarity (ACS)

High ACS–
Grammatical

Accept Accept

Low ACS–
Grammatical

Accept Reject

High ACS–
Non-grammatical

Reject Accept

Low ACS–
Non-grammatical

Reject Reject

The predicted classification pattern over the item types depending
on whether the classification is driven by structural (grammatical)
knowledge or local substring familiarity (ACS=associative chunk
strength).
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PN0.36; block 2: F(1,57)=3.1, P=0.08; block 2Nblock 1: F(1,133)=
0.6,PN0.4, ns.), aswell asa tendency todecrease in thepreference
classification group (Fig. 3a).

2.1.2. Classification: day 1–5
The baseline response bias disappeared immediately after
the first acquisition session. Over the 5 days, the grammati-
cality effect developed in both groups. The grammaticality
classification group also switched their preference from non-
grammatical to grammatical strings after the first acquisition
session, so that the difference between groupswith respect to
the grammaticality effect disappeared from day 3 onwards.
Thus, while both groups acquire sensitivity to grammatical-
ity, the course of acquisition ismodulated by instruction type.
The effect of associative chunk strength decreased over the
5 days in the preference classification group but stayed
constant in the grammaticality classification group. This
together with the opposite associative chunk strength effect
in the preference and grammaticality classification groups
suggest that the associative chunk strength effect is not
acquired in the same way as the grammaticality effect. The
associative chunk strength effect either does not change over
acquisition sessions, as is the case for the grammaticality
effect in the grammaticality classification group, or repre-
sents only a transient effect that washes out with repeated
acquisition, as in the preference classification group (Fig. 4).
The detailed results are outlined in the following three
paragraphs.

2.1.2.1. Effects of grammaticality. Significantly, both groups
preferred grammatical over non-grammatical strings during
each classification session except for the grammaticality
classification group on day 1. However, in the grammaticality
classification group the switch in preference from non-gram-
matical to grammatical strings between baseline and the
classification on day 1 was significant (F(1,63)=4.1, P=0.046). In
addition, the grammaticality effect increased in both groups
over acquisition sessions, although the increase was larger in
the grammaticality than in the preference classification group
(day 5Nday 1; preference classification: F(1,63)=4.0, P=0.05;
grammaticality classification: F(1,63)=15, Pb0.001; GCNPC
group: (F(1,126)=3.8, P=0.05).

2.1.2.2. Effects of associative chunk strength. The preference
classification group generally preferred lowACS over high ACS
strings, while the grammaticality classification group tended
to classify high ACS strings as grammatical more often than
low ACS strings. The effect of associative chunk strength
decreased over acquisition sessions in the preference classifica-
tion group (day 1–5: F(4,171)=2.6, P=0.037; day 1–2: F(1,27)N13,
Pb0.001; day 1Nday 5: F(1,63)=4.2, P=0.045), while the effect
of associative chunk strength stayed essentially constant
over days in the grammaticality classification group (day 1–5:
F(4,171)=0.08, P=0.99, ns.). The grammaticality×associative
chunk strength interaction was consistently significant
through the acquisition days in the preference classifica-
tion group (F(1,171)=23, Pb0.001), independent of acquisition
session (F(4,171)=0.4, PN0.8), and it was modulated by in-
struction type (PCNGC group: F(1,342)=5.6, P=0.018; GC
group: F(1,171)=0.3, PN0.6).
2.1.2.3. Effects of structural knowledge and local substring
familiarity. We investigated the effects of grammaticality
and associative chunk strength as a function of instruction
type and number of acquisition sessions relative to the re-
sponse bias (i.e., the mean endorsement rate over all four
categories). With the assumption that acceptance decisions
during classification are based on acquired knowledge about
grammaticality or high ACS, and rejection otherwise, two
(pure) cases are possible: (1) if structural (i.e., grammatical)
knowledge drives classification, the predicted classification
pattern over the item types HG/LG/HNG/LNG is accept/accept/
reject/reject, while (2) if the classification is driven by local
substring familiarity (i.e., ACS) the predicted pattern is accept/
reject/accept/reject (cf., Table 1).

Following this logic, the preference classification group
acquired structural knowledge already at an early stage, as
indicated by their significant preference (relative response
bias) for low ACS grammatical strings and rejection of high
ACS non-grammatical strings (over all days including base-
line; accept LG: baseline: F(1,19)=7, P=0.01, day 1–5: F(1,10)N
26, Pb0.001; reject HNG: baseline: F(1,19)=11, P=0.004, day 1–5:
F(1,10)N11, Pb0.007; Figs. 3c and 4b). Similarly, also the
grammaticality classification group acquired structural
knowledge. After an initial influence of local substring
familiarity during baseline (reject LG: F(1,19)=12, P=0.003;
accept HNG: F(1,19)=4.8, P=0.042), the grammaticality group
switched to accepting low ACS grammatical strings from day 3
and rejecting high ACS non-grammatical strings from day 2
(LG day 1–5: F(1,36)=4, Pb0.05; LG test day interaction term: F
(4,36)=2.5, P=0.06; HNG day 1–5: F(1,36)=5.4, Pb0.026; HNG
test day interaction term: F(4,36)=6, Pb0.001; Figs. 3c and 4b).
This pattern of results suggests that acquired grammatical
knowledge plays a central role in classifying novel strings
regardless of instruction type. It provides support for the
notion that the basis of preference and grammaticality
classification is structural knowledge rather than local sub-
string familiarity.

2.2. Experiment 2 — Reber and random strings

In order to establish a reference for the acquisition rate of
grammatical structure in the acquisition input, we included



86 B R A I N R E S E A R C H 1 2 2 1 ( 2 0 0 8 ) 8 0 – 9 2
an experimental group similar to the grammaticality classifi-
cation group of the first experiment with the only difference
that the Reber strings were replaced by random strings in the
acquisition set. Both the grammatical structure group (acqui-
sition on Reber strings) and the random structure group
(acquisition on random strings), showed an effect of gramma-
ticality on day 1–5 although in a manner depending on the
acquisition set. The grammaticality effect increased over day
1–5 in the grammatical structure group, while this was not the
case in the randomstructure group. Therewas also an effect of
associative chunk strength in both groups over day 1–5. With
the same rationale as in experiment 1, using the low ACS
grammatical and high ACS non-grammatical dissociation as a
marker for structural knowledge vs. local substring familiarity
driving the classification performance, the random structure
group was guided relatively more by local substring familia-
rity compared to the grammatical structure group which based
Fig. 5 – Experiment 2: The effect of acquisition on Reber and rand
function of acquisition material: (a) main factors; as well as (b) fa
G = grammatical, NG = non-grammatical, ACS = associative chun
from 50% chance level (straight dotted line).
their classification decisions primarily on acquired structural
knowledge (Fig. 5).

In greater detail, the grammatical structure group gen-
erally endorsed grammatical strings while the random struc-
ture group endorsed non-grammatical strings (grammatical
structure: F(1,171)=157, Pb0.001; random structure: F(1,171)=
62, Pb0.001; grammatical vs. random structure: F(1,342)=218,
Pb0.001). This effect increased in the grammatical structure
group over acquisition dayswhile the endorsement rate of non-
grammatical strings remainedconstant in the randomstructure
group (grammatical structure: F(4,171)=5.8, Pb0.001; gram-
matical vs. random structure: F(4,342)=5, Pb0.001). Both
groups endorsed high ACS compared to low ACS strings to a
similar degree, and this effect remained constant over days
(grammatical structure: F(1,171)=18, P=0.001; random struc-
ture: F(1,171)=51, Pb0.001). However, the random structure
group showed the opposite endorsement behavior with respect
om strings. Endorsement rate (mean and standard error) as a
ctor levels; B = baseline, D1–5 = day 1–5 classification,
k strength, and variable dotted line = response bias deviating
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to lowACS grammatical and highACS non-grammatical strings
compared to the grammatical structure group regardless of
instruction type, i.e. compared to both the preference and gram-
maticality classification groups (LG strings: F(1,10)N7, Pb0.03;
HNG strings: F(1,10)N6, Pb0.03; Fig. 5b).

2.3. Experiment 3— repeated and non-repeated preference
classification

In the third experiment we followed up on the result on
preference classification in experiment 1 by investigating the
effect of repeated classification. We included an experimental
group similar to the repeated preference classification group
in experiment 1, with the only difference that they only
participated in classification before and after the 5 days of
acquisition, that is, non-repeated classification. We found no
effect of classification session repetition with respect to
grammaticality in either the repeated or non-repeated classi-
fication group. Repeated classification did however modulate
Fig. 6 – Experiment 3: The effect of repeated classification. Endo
preference classification repetition: (a) main factors; as well as (b)
final grammaticality classification, G = grammatical, NG = non-gr
dotted line = response bias deviating from 50% chance level (stra
the effect of associative chunk strength by decreasing the
effect of associative chunk strength on endorsement with
repeated classification to the degree that the effect was absent
from day 3 onwards (Fig. 6). However, on the last day, day 5,
the effect of grammaticality increased significantly for the
non-repeated classification session group, between the switch
from the last preference classification to the final grammati-
cality classification. The detailed results are outlined in the
following two paragraphs.

2.3.1. Effects of grammaticality
Both the repeated and the non-repeated classification groups
showed an effect of grammaticality to a similar degree on the
day 5 final preference classifications (repeated: F(1,27)=72,
Pb0.001; non-repeated: F(1,27)=69, Pb0.001; repeated vs. non-
repeated: PN0.4). This was already the case for the first classi-
fications session (i.e., on day 1 for the repeated group and day
5 for non-repeated group; repeated-day-1: F(1,27) = 33,
Pb0.001; non-repeated-day-5: F(1,27)=69, Pb0.001; repeated-
rsement rate (mean and standard error) as a function of
factor levels; B = baseline, D1–5 = day 1–5 classification, D5G =
ammatical, ACS = associative chunk strength, and variable
ight dotted line).
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day-1 vs. non-repeated-day-5: PN0.14), though in the repeated
classification group the effect of grammaticality increased
significantly over day 1–5 (day 1: F(1,27)=72, Pb0.001; day 5: F
(1,27)=69, Pb0.001; day 5 vs. day 1: F(1,63)=4, P=0.05). The
effect of grammaticality increased significantly in the non-
repeated classification group on the final grammaticality
classification on day 5, but not in the repeated classification
group (non-repeated: F(1,63)=14, Pb0.001; repeated: PN0.8;
non-repeated vs. repeated: F(1,126)=4.1, P=0.045).

2.3.2. Effects of associative chunk strength
The effect of associative chunk strength differed significantly
between groups during the day 5 preference classification, in
that the non-repeated classification group preferred high ACS
strings while the repeated classification group showed no
preference (non-repeated: F(1,27)=13, P=0.001; repeated:
PN0.6; non-repeated vs. repeated: F(1,54)=7, P=0.009). How-
ever, the repeated classification group showed an initial effect
in the opposite direction for low ACS strings on day 1, which
disappeared over days 1–5 (day 1: F(1,27)=13, P=0.001; day 5:
PN0.6; day 5 vs. day 1: F(1,63)=4.2, P=0.045). This pattern of
results did not change on the last grammaticality classifica-
tion (repeated: PN0.2; non-repeated: PN0.6; Fig. 6).
3. Discussion

The main finding of the present study is that preference
classification is behaviorally equivalent to the typical gram-
maticality classification. This is important because the pre-
ference version of artificial grammar learning overcomes the
potential concern that informing the participants about the
existence of an underlying set of rules for generating the
acquisition strings, induce explicit strategies. The typical
artificial grammar learning setup employs grammaticality
classification instruction. Some researchers have raised the
concern that this might direct subjects to use explicit problem
solving strategies, based on perceived regularities or imagined
rules, and that this might interfere with the implicitly
acquired knowledge put to use during classification. All
experimental groups (except the random-acquisition group
of experiment 2) displayed the same qualitative classification
behavior overall and acquired knowledge of the underlying
syntactic regularities to the same degree. Thus, this concern
appears unwarranted, as long as incidental implicit acquisi-
tion is employed and the subjects base their classification
decisions on their immediate “gut-feeling”. Interestingly, the
grammaticality effect was boosted in the non-repeated
preference classification group when switching from prefer-
ence to grammaticality instruction (a finding replicated in
Folia et al., 2008; Folia et al., in submission). Thismight suggest
that the grammaticality instruction is perceived as more well-
defined or focused by the subjects. Alternatively, the gram-
maticality instruction might trigger general vigilance, motiva-
tion, or attention effects. The results also show that the
standard grammaticality version of artificial grammar learn-
ing assesses implicit acquisition of knowledge about the
underlying generative mechanism in the same way as the
preference version. However, we suggest that forced-choice
preference classification might have certain theoretical
advantages over grammaticality classification. It appears that
preference classification induces lesser dependency on surface
features related to local substrings. Preference classification
might thusbe less likely to induceexplicit rule-basedorproblem
solving strategies, if these latter possibilities are of a real
concern. Moreover, the fact that effects of grammaticality as
well as associative chunk strength can develop already during
classification prior to acquisition suggest that the mechanism
engaged (not necessarily the same as in artificial grammar
learning proper) can work on surprisingly scarce input. For
example, Reber and Perruchet (2003) list a number of features
(e.g., number of letters in strings, multiple letter position, letter
repetitions, and bigram reoccurrence) which they suggested
untrained subjects might employ during baseline or the initial
classification phase. However, in this context in the current
study, it is important to observe that the participants classified
at random at the very beginning of the baseline classification
and that the instruction effects developed subsequently over
the baseline session (see Fig. 3a).

The first experiment showed that the preference and
grammaticality classification groups displayed the same
qualitative classification behavior. Both groups acquired
structural (grammatical) knowledge to the same degree over
the 5 days of acquisition. Thus once the initial transient effects
of acquisition had passed, knowledge of the underlying
structural regularities was largely independent of instruction
type. In other words, the preference classification group
started to show preference for grammaticality to the same
degree as the grammaticality classification group classified
test items correctly. In contrast, the influence of substring
familiarity depended on instruction type.

Interestingly, the instruction type modulated the early ac-
quisitionpatternduringbaseline classification. The two typesof
instruction induced slightly different initial response biases. In
addition, the preference classification group developed sensi-
tivity to grammaticality during baseline classification, which
continued to develop during the 5 days of acquisition. The
grammaticality classification group also showed an effect of
grammaticality during baseline classification, but in the oppo-
site direction compared to the preference classification group.
However, once the acquisition part of the experiment was ini-
tiated, the grammaticality classification group started to
endorse grammatical instead of non-grammatical strings,
which then developed in the samemanner as in the preference
classificationgroup.Moreover, both instructions inducedeffects
of substring familiarity but in opposite direction throughout the
experiment. Interestingly this effect of substring familiarity
washed out as a function of acquisition in the preference clas-
sification but not in the grammaticality classification group.
Instead, the grammaticality instruction appeared to promote a
highACS string preference that remained throughout thewhole
acquisition period in the grammaticality classification group.

In the second experiment we establish an acquisition rate
reference for the grammaticality classification group. We
investigated a group of participants, similar to the grammati-
cality classification group of the first experiment but with the
Reber strings replaced by random strings during acquisition.
We found that the classification behavior was driven by local
substring familiarity when the acquisition material lacked the
underlying grammatical composition (i.e., consisted of
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random strings). Classification thus predictably did not
depend on acquired structural knowledge, as was the case in
experiment 1 when grammatical acquisition material was
used (Fig. 5).

In the third experiment we followed up on the result on
preference classification in experiment 1 by investigating the
effect of repeated classification on performance. Repeated clas-
sification entails multiple exposures to both positive (gramma-
tical) and negative (non-grammatical) examples. Although no
performance feedback was ever given it is conceivable that
repeated classification on grammatical and non-grammatical
items influence classification performance. It might e.g. change
the acquisition dynamics, make the subjects more likely to
becomeaware of theunderlying objective of the experiment, or it
might make the subjects process the non-grammatical and
grammatical information in a non-differentiated manner. We
investigated a group of subjects on preference classification
before and after the 5 days of acquisition, in contrast to the
repeated preference classification in experiment 1. We found
that repeated classification had no effect on the acquisition of
structural knowledge. In other words, both the repeated and the
non-repeated preference classification groups displayed the
same classification behavior with respect to grammaticality. On
the other hand, the effect of associative chunk strength de-
creased as a function of classification repetition (Fig. 6). It is thus
possible that the increased exposure to negative examples (non-
grammatical items) andsubstringswith lowsubstring familiarity
during repeated classification provides the implicit learning
mechanism with additional information. Once the processing
system has acquired sufficient structural knowledge to distin-
guish between grammatical and non-grammatical items, this
mechanism can make beneficial use of information from
negative examples — both non-grammatical and low ACS — in
thesenseof reducing the influenceofassociativechunkstrength.

In the current series of experiments all groups received
their respective classification instruction at the baseline test.
Thus the participants were aware what their task would be
during the 5 days. This had no qualitative effect on the results
with respect to structural acquisition. The same pattern of
results is observed in paradigms, which do not include
baseline classification, including our own (see e.g. Forkstam
et al., 2006; Petersson et al., 2004) and several other AGL
experiments (for a review see Forkstam and Petersson, 2005;
Pothos, 2007). Thus this aspect of the current paradigm does
not result in something new or unexpected. Importantly, the
preference groups were never informed about the existence of
a complex set of rules generating the acquisition set until their
final grammaticality classification test. Nonetheless, prefer-
ence and grammaticality classification yielded the same
result. Moreover, it was emphasized that there was no right
or wrong with respect to preference classification and that the
subjects should base their classification decision on their
immediate gut-feeling. Still preference correlated with gram-
maticality status independent of local substring familiarity
(ACS) on the final day in the preference groups, and to a
similar degree as in the grammaticality group. The same holds
for the grammaticality group which was also instructed to
base their classification decision on their immediate gut-
feeling. Although these participants were aware of the exis-
tence of a complex set of rules during the 5 days of acquisition,
it is all the more surprising that this had virtually no effect on
the overall pattern of results, in particular with respect to the
acquisition of structural regularities. Again the emphasis was
on classification decision based on gut-feeling and the
speeded presentation during classification basically precluded
any elaborate explicit strategy — this was also what the sub-
jects reported in the post-experiment interview. All subjects
complied with the instruction to base their decisions on their
immediate gut-feeling and none reported basing their deci-
sions on any substantial rules.

Finally, the non-repeated preference classification group
had a final grammaticality classification test on the last day.
These participants were never informed about the existence of
a complex set of rules for generating the acquisition set until
their final grammaticality classification test. This group
showed the same overall pattern of results as the grammati-
cality group and the repeated preference classification group
(recently replicated by Folia et al., 2008; Folia et al., in sub-
mission). Thus, the conclusion to draw from this set of
findings is that the AGL paradigm yields very robust implicit
learning quite independent of the experimental details.
4. Conclusion

We have shown that classification performance in implicit
artificial grammar learning is largely independent of instruc-
tion type (preference or grammaticality instruction) and that
all experimental groups exposed to grammatical acquisition
items acquired structural knowledge related to the underlying
generativemechanism to a similar degree. In contrast, surface
based substring familiaritywas dependent on instruction. This
effect decreased with repeated preference classification but
not with repeated grammaticality classification. When the
underlying grammatical composition of the acquisition mate-
rial was removed the classification behavior was predictably
driven by local substring familiarity and not structural knowl-
edge.We conclude that forced-choice preference classification
is equivalent to the typical grammaticality classification. Pre-
ference instruction overcomes some concern raised by the fact
that instruction on grammaticality depends on informing sub-
jects about the existence of an underlying set of generative
rules. We suggest that the preference instruction carry certain
theoretical advantages relative the grammaticality instruction
in that the classification performance appears to be less de-
pendent on surface features such as substring familiarity, a
potentialmarker for explicit problemsolving strategies. On the
other hand, our results also show that the standard version of
artificial grammar learning assesses implicit acquisition of
knowledge about the underlying generativemechanism in the
same way as the mere exposure version.
5. Experimental procedures

5.1. Experiment 1

5.1.1. Participants
Twenty healthy right-handed university students volunteered
to participate in the study (12 females, range 18–40 years).
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Participants were pre-screened and none of the subjects used
any medication, had a history of drug abuse, neurological or
psychiatric illness, or a family history of neurological or
psychiatric illness. All subjects were right handed. The
experimental protocol was approved by the local Ethics
committee, and all participants gave their written informed
consent according to the Declaration of Helsinki. To investi-
gate the effect of instruction during baseline, we pooled the
participants from experiments 1–3 (i.e., 20 participants with
grammaticality classification and 20 with preference
classification).

5.1.2. Experimental groups
The 20 participants were randomly allocated to 2 groups
balanced for gender. All subjects participated in one acquisi-
tion session each day for 5 days. The classification instruction
was manipulated between groups. Participants in the gram-
maticality classification (GC) group were informed that they
were taking part in an artificial grammar learning experiment
consisting of repeated short-term memory experiments (i.e.,
the acquisition sessions), that a complex set of rules generated
the underlying structure in the acquisition material, and they
were instructed to classify novel strings as grammatical or not
during the classification sessions. It was emphasized that the
subjects should base their decisions on their immediate
intuition (i.e., guessing based on their “gut-feeling”) and
avoid any attempt to explicitly analyze strings, since this
would yield the best classification performance. Participants
in the preference classification (PC) group were not informed
about the existence of an underlying generative mechanism
until the last classification sessionwhich they performedwith
the grammaticality instruction. They were informed that they
were taking part in repeated short-termmemory experiments,
and that they should classify novel strings as preferable or not
(i.e., whether they liked the symbol string or not). Just as for
subjects given the grammaticality classification instruction, it
was emphasized that they should base their classification
decisions on their immediate intuition (i.e., guessing based on
their “gut-feeling”) and avoid any attempt to explicitly analyze
the strings.

The grammaticality instruction was administered to the
grammaticality classification group (Table 2) before the base-
line (pre-acquisition) classification and each subsequent
Table 2 – Experiments 1–3: Experimental design

AQ = acquisition; CL = classification session; GC = grammaticality classifica
strings = light grey.

Table 2 – Experiments 1–3: Experimental design
classification session. Similarly, the preference instruction
was administered to the preference classification group before
the baseline (pre-acquisition) and each subsequent classifica-
tion session day 1–5, followed by a final classification session
with the grammaticality instruction.

5.1.3. Stimulus material
We generated 569 grammatical (G) strings from the Reber
grammar (5–12 consonants long from the alphabet {M, S, V, R,
X}; see Fig. 1). Toderive theassociative chunkstrength (ACS) for
each string, we calculated the frequency distribution of bi- and
trigrams (i.e., substrings of length 2 and 3) for both terminal
and complete string positions (Knowlton and Squire, 1996;
Meulemans and Van der Linden, 1997). In an iterative
procedure we randomly selected 100 strings to generate an
acquisition set which were representative in terms of associa-
tive chunk strength in comparison to the complete string set.
For the random acquisition set, 100 random strings were
generated from the same alphabet and of the same length and
with similar levels of associative chunk strength as the Reber
grammar acquisition set. For each remaining grammatical
string in the complete string set, we generated non-gramma-
tical (NG) strings by a switch of letters in two non-terminal
positions. We selected the non-grammatical string that best
matched the grammatical strings in terms of both terminal
and complete string position associative chunk strength (i.e.,
collapsed over order information within strings). These
grammatical and non-grammatical strings were further clas-
sified in terms of their associative chunk strength status
independent of grammatical status. High/low associative
chunk strength refers to classification strings composed of
common/uncommon bi- and trigrams in the acquisition set
(for both terminal and complete string position). In an iterative
procedure we randomly selected 6 sets of 40 strings each such
that for a given classification set: (1) its highACS strings did not
differ significantly in terms of associative chunk strength
compared to theacquisition set; (2) its highand lowACSstrings
did not differ significantly with the high and lowACS strings in
the other classification sets; and (3) its low ACS strings did
differ significantlywith both the acquisition set and to thehigh
ACS strings in each classification set. Thus the classification
material was organized in a 2×2 factorial design with the
factors grammaticality (grammatical/non-grammatical) and
tion; PC = preference classification; Reber strings = dark grey; Random
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associative chunk strength (high/low), and the classification
sets included 10 strings from each category: high ACS
grammatical (HG), low ACS grammatical (LG), high ACS non-
grammatical (HNG), and low ACS non-grammatical (LNG).

5.1.4. Procedure
During acquisition, 100 strings were presented on a computer
screen one by one. The string presentation order was rando-
mized for each acquisition session. Each string was presented
for 5 s and the participants were asked to type the string from
memory after the string disappeared fromscreen in a self paced
manner. Each acquisition task took between 25 and 45min. The
classification sets were balanced across subjects, days and
groups, and the string presentation order was randomized for
each test. The baseline test was presented to the subjects as
independent of the subsequent testing. The preference classi-
fication groups were unaware of the final grammaticality clas-
sification test until it occurredon the last day,while participants
with grammaticality instructions were informed about the
existence of an underlying complex set of rules in the acqui-
sitionmaterial during the5days. Eachclassification sessionwas
presented as a yes/no classification task and lasted approxi-
mately 5 min during which 40 strings were presented one at a
time for 3 s on a computer screen. The subjects made their
classification decision during a 2 s response window.

5.1.5. Data analysis
We used a mixed-effect multi-way repeated measures analy-
sis of variance (ANOVA) with endorsement rate (i.e., strings
accepted as grammatical/preferable regardless of grammati-
cality) as the dependent variable using the statistics package R
(www.r-project.org). We modeled the main factors grammati-
cality [G/NG], associative chunk strength [H/L], and classifica-
tion session [baseline/day 1–5] as within subjects fixed-effects,
group [GC/PC] as between subjects fixed-effect, and subjects as
random-effects. An overall significance level of Pb0.05 was
used for statistical inference, and explanatory investigations
for significant effects were restricted to the reduced ANOVA
contrasted over the appropriate factor levels. To investigate
the effect of instruction during baseline, we pooled the
participants from experiments 1–3 (i.e., 20 participants with
grammaticality classification and 20 with preference classifi-
cation) and divided the baseline items into two equal sized
time-blocks of 20 items (first/second half as they were
presented over time). The basic ANOVA was extended with
the factor block [1/2].

5.2. Experiment 2

5.2.1. Participants, experimental groups and procedures
Ten new healthy right-handed university students volun-
teered in the study (6 females, range 18–40 years), and
participated in a random grammaticality classification (GCR)
group (Table 2). For the random grammaticality classification
group grammaticality classification instructions were admi-
nistered during both the baseline (pre-acquisition) classifica-
tion and during each subsequent classification session. The
only difference between the random grammaticality classifi-
cation and the grammaticality classification group was the
nature of the acquisition material in that it consisted of
random strings for the random grammaticality classification
group while it was derived from the Reber grammar for the
grammaticality classification group. In all other respects the
participant screening, stimulusmaterial and the experimental
procedure was identical to experiment 1.

5.2.2. Data analysis
We modeled the main factors grammaticality [G/NG], asso-
ciative chunk strength [H/L], and classification session [base-
line/days1–5] as within subjects fixed-effects, group [GC/GCR]
as between subjects fixed-effects, and subjects as random-
effects. An overall significance level of Pb0.05 was used for
statistical inference, and explanatory investigations for sig-
nificant effects were restricted to the reduced ANOVA
contrasted over the appropriate factor levels.

5.3. Experiment 3

5.3.1. Participants, experimental groups and procedures
Ten additional healthy right-handed university students
volunteered in the study (6 females, range 18–40 years), and
participated in a non-repeated preference classification (PCN)
group (Table 2). For the PCN group preference instruction were
administered during the baseline (pre-acquisition) classifica-
tion and during the classification session subsequent to the
acquisition sessions on test day 5, followed with a final
classification session with the grammaticality instruction.
The only difference between the non-repeated preference
classification and the preference classification group in
experiment 3 was the number of classification sessions in
that classifications were also administered during each day
(1–5) for the preference classification group. In all other
respects the stimulus material and the experimental
procedure was identical to experiments 1 and 2.

5.3.2. Data analysis
We modeled the main factors grammaticality [G/NG], asso-
ciative chunk strength [H/L], and classification session [base-
line/day5PC/day5GC] as within subjects fixed-effects, group
[PC/PCN] as between subjects fixed-effects, and subjects as
random-effects. An overall significance level of Pb0.05 was
used for statistical inference, and explanatory investigations
for significant effects were restricted to the reduced ANOVA
contrasted over the appropriate factor levels.
Appendix — task instructions

Short term memory task

During this task consonant strings will be presented on the
computer screen. You shall study the string attentively and
after presentation you shall retype the string as correct as
possible on the computer keyboard. It is important that you
concentrate on each string to remember it correctly.

Preference classification

During this task consonant strings will be presented on the
computer screen. You shall study the string attentively during

http://www.r-project.org
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presentation and respond whether you like the string or not
based on your immediate impression. Trust your immediate
intuitive impression or guessing based on ‘gut-feeling’ and
avoid any other elaboration of the basis for your decision.

Grammaticality classification

The consonant strings presented during the short-term
memory test all belong to an artificial language. They were
generated according to a complex set of rules, that is, they are
all grammatical in relation to these rules. During this task
consonant strings will be presented on the computer screen.
Half of the set of strings is grammatical and the other half is
not. You shall study the string attentively during presentation
and respond whether the string is grammatical or not. Trust
your immediate intuitive impression or guessing based on
‘gut-feeling’ and avoid any other elaboration of the basis for
your decision. You will achieve the best performance if you
base the decisions on your intuitive ‘gut-feeling’.
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