English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

I see what you mean: Theta power increases are involved in the retrieval of lexical semantic information

MPS-Authors
/persons/resource/persons6

Bastiaansen,  Marcel C. M.
Neurobiology of Language Group, MPI for Psycholinguistics, Max Planck Society;
Unification, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons139

Oostenveld,  Robert
Neurobiology of Language Group, MPI for Psycholinguistics, Max Planck Society;
Unification, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons85

Jensen,  Ole
Neurobiology of Language Group, MPI for Psycholinguistics, Max Planck Society;
Unification, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Group, MPI for Psycholinguistics, Max Planck Society;
FC Donders Centre for Cognitive Neuroimaging, external;
Unification, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Bastiaansen_2008_see.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bastiaansen, M. C. M., Oostenveld, R., Jensen, O., & Hagoort, P. (2008). I see what you mean: Theta power increases are involved in the retrieval of lexical semantic information. Brain and Language, 106(1), 15-28. doi:10.1016/j.bandl.2007.10.006.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-1F41-F
Abstract
An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects performed a visual lexical decision task while their EEG was recorded. We compared the EEG responses to nouns with either visual semantic properties (VIS, referring to colors and shapes) or with auditory semantic properties (AUD, referring to sounds). A time–frequency analysis of the EEG revealed power increases in the theta (4–7 Hz) and lower-beta (13–18 Hz) frequency bands, and an early power increase and subsequent decrease for the alpha (8–12 Hz) band. In the theta band we observed a double dissociation: temporal electrodes showed larger theta power increases in the AUD condition, while occipital leads showed larger theta responses in the VIS condition. The results support the notion that semantic representations are stored in functional networks with a topography that reflects the semantic properties of the stored items, and provide further evidence that oscillatory brain dynamics in the theta frequency range are functionally related to the retrieval of lexical semantic information.