On Cognition, Structured Sequence Processing, and
Adaptive Dynamical Systems

Karl Magnus Petersson *

“Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands

Abstract. Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized
in terms of information processing. We outline some aspects of this concept and consider a physical system to be an
information processing device when a subclass of its physical states can be viewed as representational/cognitive and
transitions between these can be conceptualized as a process operating on these states by implementing operations on the
corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially
organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its
processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a
framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of
asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an
asynchronous processing system. We use the human language faculty and natural language processing as a concrete
example through out.
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CLASSICAL MODELS OF COGNITION
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FIGURE 1. The Reber machine: an information processing device formulated within the Church-Turing framework.

A common framework for describing cognitive systems in cognitive neuroscience is Marr’s three descriptive levels
of analysis: the computational, the algorithmic, and the implementational [1]. Compared to classical cognitive
science, cognitive neuroscience typically works with a modified perspective including simultaneously perspectives
on cognition, learning, and development. However, the underlying ideas are essentially similar [2]. Within this
framework, the three descriptive levels are generalized to: 1) the cognitive level - a formal theory of structured
cognitive states and the cognitive transition system [3-5]; 2) the dynamical system level - given a formal cognitive
theory, a state-space is specified and processing is formulated in terms of a dynamical system that embeds the
cognitive level system specification [5, 6]; 3) the implementation level - given a dynamical system, this level
specifies the physical hardware implementation of the dynamical system, for example a neural network [7-9]. The
framework of classical cognitive science [10] assumes that information is coded by structured representations ("data
structures') and that cognitive processing is accomplished by the execution of algorithmic operations ("rules") on the
basic elements of compositionally structured representations [3, see also 4, 11]. This paradigm suggests that
cognitive phenomena can be modeled within the framework of Church-Turing computability and effectively takes
the view that isomorphic models of cognition can be found within this framework [4, 11]. The classical framework
has served well for language modeling in linguistics/psycholinguistics and all common formal language models can
be described within this framework [12, 13]. In the following, it is important to note that all information processing
devices in the Church-Turing framework can be reformulated as discrete-time dynamical systems [5, 9]. A typical
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example of a transition function 7 in the Church-Turing framework is given in Figure 1. 7 corresponds to a specific
finite-state architecture (e.g., the control of a Turing machine) that specifies the internal states (nodes) and valid
transitions between states (arrows). Cognition is equated with internal information processing in interaction with its
(computational) environment (cf., Figure 2) and is specified by the following components: the space of internal
states Q2 (s € (); a set of dynamical principles 7:QxX — QxA that govern information processing: given an internal
state s € Q2 and input » (transformed according to i/ = f{u) € X by some transduction mechanism), 7" specifies a new
internal state 7'¢s, i) € Q, while output A € A is generated optionally according to a suitable output transformation 4
= g(s, i), which can be taken to be a component of 7. Thus at time t, the system receives input i(z) in state s(¢), and
the system changes state into s(z+Ay) and outputs A(t+Ay) according to:  [s(t+A), At+A)] = T[s(@), i(®)] a
which is the description of a forced discrete-time dynamical system and we emphasize that (1) is one manifestation
of sequentially organized, structured processing or hierarchically structured sequence processing. When we
recognize that there is a one-to-one correspondence between discrete-time dynamical system of the form (1),
operating on discretized (quantized) values, formal grammars, and computational mechanisms of Church-Turing
type, we immediately realize that, in an essential sense, the specifics of (1) provides the dynamical system with its
processing logic. We note that the dynamical system formulation (1) of Church-Turing devices also is suitable for
asynchronous event-driven devices in which logical time (dependent sequence order) rather than physical time is the
crucial abstraction. In these systems physical time implements logical time and this is the fundamental reason for the
qualification that only a subclass of the available physical states is representational, while the totality of accessible
physical states basically serves as a necessary part of the implementation medium. Here, we have not explicitly
specified the memory organization of the system. It is important to note that the characteristics of the memory
organization, in particular whether the storage capacity is finite or infinite, is a crucial determinant of the
productive/parsing power of the architecture [9]. However, it seems natural to assume that the brain is finite with
respect to its memory organization and if one assumes that the brain implements a classical model of cognition, it
follows that this can be represented as a finite-state architecture (note that a finite-state machine will behave as a
Turing machine as long as the memory limitations are not encountered). However, it is possible to view classical
models as approximate abstract descriptions of cognitive brain functions and a complementary perspective is offered
by neural network models. It can be shown that cognition, viewed as a neurobiological system with its inherent
limitations (i.e., if one assumes that the brain sustains some level of noise or does not utilize infinite precision
processing; either of these assumptions seems necessary for physically realizability) is well-approximated by finite-
state behavior [9].

Adaptive Information Processing Systems

Input Sutput ]

i w fu) = gish
Infarmation Frocessing
T MxQxE »[3 3]

Retrieval Enceding ]

R

Information Storage
LMxOaxT =M

FIGURE 2. A general outline of adaptive information processing systems.

In order to incorporate learning/development in this picture, the processing dynamics, 7, has to be extended with
an adaptive learning dynamics, L (Figure 2). For simplicity, let us focus on some particular cognitive system/module
C, which is fundamental in the sense that all normal individuals develop cognitive capacities related to C. Given C,
we conceptualize developmental/learning processes as a trajectory in C:s accessible configuration space M = [m | the
model m can be instantiated by C]. The developmental/learning process is driven by C:s interaction with its
environment in conjunction with innately specified developmental processes. Thus, at any point in time C is in a
given configuration mc(?) (i.e., C instantiates the model mc(?)). If we assume that C incorporates innately specified
prior structure, we can capture this with the notion of a structured initial state, mc(ty). As C develops, it traces out a
trajectory in M determined by its adaptive dynamics L according to:  mc(t+Af) = L(mc(t), s(?), 1) Q)
where the explicit dependence on time in L captures the idea of an innately specified developmental process
("maturation") and possible dependence on the developmental history. If C and L are such that m(?) converges on a
final model mc/F],characterizing the end-state of the developmental process reached after time Atg: mc(tpt Atg) ~
mcfF]. The configuration m¢ determines the transition function 7 in the following sense: 7 is parameterized by mc, T’
=T[mc] (or T"MxQxX — QxA), and (1) 1s modified according to: [s(t+AD), At+AD] = Tmg, s(®), i(®)] an

The adaptive framework outlined here is essentially similar to Chomsky’s well-known hypothesis concerning
language acquisition [14] where the module C is taken to be the human faculty of language, L the language
acquisition device, and the configuration space M is determined by an innate universal grammar. Different aspects of
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the universal grammar are captured by M, L, and the initial state mc(#y). Chomsky and others have argued extensively
that the inherent properties of M, L, and m(?y) are determined by innately specified (genetic) factors. From this point
of view, language acquisition is the result of an interaction between two sources of information: 1) an innate prior
structure, which is likely to be both language specific and general non-language specific in nature, and 2) the
environment, both the linguistic and the extra-linguistic (which can be viewed as an interactive boundary condition
[2]). The type of learning that characterizes language acquisition is largely implicit, self-organized in nature, as
opposed to the acquisition of reading/writing skills, which has an explicit supervised component [15, 16].

The nervous system is naturally viewed as a biophysical dynamical system and the temporal evolution of a given
brain system, determined by its underlying neuronal dynamics, corresponds to transitions between physical states,
which we here have conceptualize as information processing in terms of transitions between cognitive states. The
brain’s recurrent network architecture is a prerequisite for integration of functionally specialized brain regions. This
set of facts can serve as a basis for a general dynamical systems perspective on cognitive brain functions and
suggests a form of functional modularity, dynamic functional modularity, which naturally lends itself to a description
in terms of Marr’s three modified levels of analysis [2].

NON-CLASSICAL DYNAMICAL MODELS OF COGNITION

A developmental leamning system can be conceptualized as a system of coupled dynamics: 1) a dynamics for
processing of information in interaction with 2) a dynamics for learning, memory, and development; for example,
(1") and (2) might correspond to the perception-cognition-action cycle and the encoding-storage-retrieval cycle of
Figure 2 [2, 16]. We thus arrive at a dynamic conceptualization of a cognitive learning system D = < functional
architecture, rvepresentational dynamics, learning dynamics > in terms of: 1) functional architecture: a specification
of the structural organization of the system (e.g., a network architecture), 2) representational dynamics. a
specification of a state-space (2 carrying/representing information, and dynamical principles, 7: MxQxZ — QxA,
governing the active processing of information (e.g., evolution of membrane potentials and action potential
generation); and 3) learning dynamics: a configuration space M, which includes a specification of learning (adaptive)
variables/parameters, m, for memory formation and information storage in a general sense (e.g., synaptic
parameters), as well as dynamical principles, a "leaming algorithm”, Z: MxQ2 — M, that govermn the temporal
evolution of the learning variables in configuration space [e.g., Hebbian learning; 7, 17]. The temporal evolution of
the adaptive parameters depends on the active processing of information and the learning dynamics is typically, but
not necessarily, conceived of as taking place on a slower (longer) characteristic time-scale than that of the
representational dynamics. This formulation is directly reflected in the interaction between the two cycles of Figure
2 which correspond to active information processing in interaction with learming/memory. To be more explicit, this
can for example be formulated within the framework of coupled multivariate stochastic differential/difference
equation with additive noise processes &) and n(1) [18]:  ds = T(m,s,i)dt + d&@t) and dm = L(ms)dt +dn@) (3)
where i = f{u) is the input representation, and 4 = g(s,i) is the output representation. Note that the representational
dynamics corresponds to the first part of (3) while the leamning dynamics corresponds to the second, and (3)
correspond directly to the classical picture given by (1') and (2). More general formulations are also possible (e.g., in
terms of semi-groups of operators). As in the case of (1), or (1') and (2), we emphasize that (3) is a manifestation of
the concept of sequentially organized, structured processing, which also in this case provides the dynamical system
with its processing logic, here understood in the generalized terms of state-space dynamics. Again, this formulation
offers a descriptive framework for asynchronous event-driven devices and also in this case, logical time and
representational subclass are important abstractions, where physical time and the totality of available physical states
serve as implementation media. We note, however, general dynamical system theory [19] is in a sense obviously too
rich a framework; for example, it turns out that for any given state-space one can find a universal dynamical system
whose traces will generate any dynamics on that state-space [19]. Thus, it is crucial to specify the relevant constraints
and processing principles from cognition and the underlying neurobiological networks [2]. In a very important sense,
most of the empirical and theoretical work necessary for a deeper understanding of cognitive brain functions remains
in order to specify detailed and integrated models of cognition, development, and learning.

INTEGRATION OF THE LEVELS OF DESCRIPTION

The point of the discussion so far has been to specify an explicit form for cognitive models formulated as
adaptive dynamical systems, both classical and non-classical, and we have emphasized the close similarity in form
between the two. This provides a context for how cognitive states, viewed as physical states, and operations on these
can be empirically characterized with functional neuroimaging techniques (PET/FMRI/EEG/MEG/TMS). These
methods allow direct or indirect quantitative measurements of aspects of the physical states of the brain. The problem
of how the brain processes structured sequences of information is a generic and fundamental problem in cognition.
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Human language is of course the cardinal example and in a series of empirical and theoretical studies, which we
review briefly, we have approached this problem from the point of view of implicit artificial grammar learning
(AGL). A typical implicit AGL experiment includes an acquisition phase followed by a classification test [20].
During implicit acquisition, participants are engaged in a short-term memory task, without performance feedback,
using an acquisition sample of symbol sequences generated from an artificial grammar (Figure 1). Subsequently,
subjects are asked to classify new items as grammatical or not based on their immediate impression (guessing based
on "gut feeling") and perform reliably above chance (Figure 3). Thus, participants have acquired knowledge about
relevant aspects of the underlying generative mechanism and subjects can typically provide little (if any) sufficient
reasons to motivate their classification decisions [15, 21, 22]. An alternative way of assessing the implicit acquisition
of a grammar is the structural mere exposure version of AGL with preference classification [15]. The mere exposure
effect refers to the finding that repeated exposure to a stimulus induces an increased preference for that stimulus
compared to novel stimuli. Folia et al. [15] used the Reber grammar represented in Figure 1 and characterized a
novel implicit structural mere exposure AGL paradigm using preference classification in a 2x2 factorial design with
local substring familiarity (high/low) relative to the acquisition string set and grammaticality (G/NG) as factors. The
results showed that preference and grammaticality classification are qualitatively equivalent in terms of behavior and
strongly support the notion that humans implicitly acquire knowledge about a complex system of interacting rules by
mere exposure to the acquisition material (Figure 3). Recent FMRI investigations of similar AGL paradigms (Figure
3) have shown that grammaticality (G vs. NG) correlates with caudate nucleus activity while syntactic violations
(NG vs. G) correlate with activation in the left inferior frontal region [BA 44/45; 20, 22]. These results are consistent
with analogous findings in natural language processing [23] and lend further support to the suggestion that the left
inferior frontal region has a specific role in the processing structural regularities.

a0 o baseline
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80 B grammaticality

endorsement rate

NG H
string type

FIGURE 3. Implicit AGL. Left: Behavioral results (cf., [15]). Right: FMRI results (cf., [22]).

In order to get a handle on implicit grammar acquisition and how sequentially organized, structured processing of
structured sequences, might take place in a recurrent neural network, we proceeded with a series of computer
experiments using predictive networks based on the simple recurrent network (SRN) architecture [gradient-descent
error back-propagation; adaptable leaming rate and momentum; for details see 24].

FIGURE 4. The activation of the hidden nodes plotted along the first three principal axes obtained by PCA. The dots correspond
to internal states of the Reber machine (Figure 1) and cluster in the state-space of the SRN (cf., [24]).

In brief, the discrete-time SRN can be viewed as a simple network analogue of the finite state architecture [9]
specified by a coupled dynamics of the form (3) without explicit noise terms. Our analysis of the state-space
dynamics of the network reproduces the dynamics of the Reber machine (Figure 4). In other words, we observe an
"isomorphic" model of a classical cognitive processing device being embedded in the non-classical network
dynamics. Grammar acquisition, whether natural or artificial, is commonly conceptualized in terms of a structure-
based ("rule") acquisition mechanism or a statistical learning mechanism. Our analysis suggests that the recurrent
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network learned to represent the rules of the grammar in its state-space dynamics [24]. Since the learning dynamics
we used is commonly viewed as a "statistical learning algorithm", the two perspectives on grammar acquisition are
complementary. The combined approach of analyzing the state-space behavior of the network with a competitive
network in combination with principle components analysis (PCA) provides an approach to grammar extraction from
the state-space dynamics, which is closely related to the symbolic dynamics approach used in the analysis of non-
linear dynamical systems [25].

CONCLUSIONS

Cognitive neuroscience approaches the brain as an information processing device and here we have outlined some
relevant aspects of this concept. In particular, we have identified a problem in cognition, which is both generic and
fundamental, the problem of structured sequence processing. We argue that the natural generalization of the concept
processing logic in Church-Turing type devices is state-space dynamics in dynamical system models of information
processing. In an approach addressing the problem of structured sequence processing we illustrate how to integrate
levels of analysis within the framework of adaptive dynamical systems. We argue that dynamical systems offer a
descriptive framework for asynchronous event-driven devices. This is likely to be of central importance in cognition
because the brain appears to be an asynchronous processing system. Finally, it is clear that our work on implicit AGL
is in it infancy with respect to a more profound understanding of sequentially organized, structured processing in the
brain. We have outlined a series of empirical and theoretical approaches to the problem. The integration of these
approaches is hinted at by the common conceptual basis outlined in the first part of the paper. Important issues to
address in future work include determining what might be a relevant state-space, with associated dynamics, in order
to understand active information processing in general. Moreover, issues related to what might serve as relevant prior
constraints and the characteristics of the adaptive machinery that allows all normal human individuals to acquire a
native language robustly and in a relatively short period of time need to be addressed. These are essentially questions
about the nature of the neural code, the dynamical variables that serve as information carriers, and its adaptive
characteristics, which in the end allow all humans, through acquired cognitive skills, to actively participate and
contribute to the process of cultural transmission.
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