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Because higher level cognitive processes generally involve the use of world knowl-

edge, computational models of these processes require the implementation of

a knowledge base. This article identifies and discusses 4 strategies for dealing

with world knowledge in computational models: disregarding world knowledge,

ad hoc selection, extraction from text corpora, and implementation of all knowledge

about a simplified microworld. Each of these strategies is illustrated by a detailed

discussion of a model of discourse comprehension. It is argued that seemingly

successful modeling results are uninformative if knowledge is implemented ad hoc

or not at all, that knowledge extracted from large text corpora is not appropriate

for discourse comprehension, and that a suitable implementation can be obtained

by applying the microworld strategy.

To explain experimental findings in cognitive psychology, models of the under-

lying process are constructed. Often, such models are expressed only verbally—

that is, without equations or completely specified algorithms. As long as such

a verbal model is not too vague or too complex, it is possible to ascertain its
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430 FRANK, KOPPEN, NOORDMAN, VONK

internal consistency and to use the model to make qualitative predictions. As a

model’s complexity increases, however, it becomes more difficult to test without

turning it into a computational model—that is, specifying it in enough detail

and with sufficient precision to implement and run the model as a computer

program—the output of which can be compared to experimental results. For a

computational model to be regarded as a simulation of some cognitive process,

there should at least be a qualitative correspondence (i.e., a correspondence on

an ordinal scale) between the model’s outcome and the experimental data.

Simply demonstrating such a correspondence in one particular simulation is

not enough to conclude that the model simulates the cognitive process. Running

a simulation often involves choices and assumptions in addition to those for the

construction of the model itself, and it may be those additional choices, instead

of the model, which are (partly) responsible for seemingly successful modeling

results. This issue is of particular importance when dealing with models of

higher level cognitive processes. In general, the higher the level of the simulated

process, the larger the gap between experiment and simulation that needs to be

bridged. For instance, if the model does not include lower level, perceptual pro-

cesses, its input must be a preprocessed version of experimental stimuli, if there

is any relation between the two at all. The particular way the input is constructed

will, of course, affect the model’s behavior. Also, processes such as comprehen-

sion and common-sense reasoning often require the application of background

knowledge, but no realistic amount of such knowledge can be made available

to a model. Therefore, choices need to be made regarding the world knowledge

that is included, and these can have a profound effect on the model’s outcome.

We discuss different strategies for dealing with world knowledge in compu-

tational models. Potential pitfalls and opportunities arising from these strategies

are illustrated by in-depth discussions of several models of one particular high-

level cognitive process: the comprehension of discourse. As will become clear,

the strong influence of world knowledge on the comprehension process has as a

consequence that much of the alleged success in computational modeling hinges

on details of knowledge implementation and cannot be attributed to the models

themselves but only to choices made beyond those for model construction.

To clarify how the chosen strategy for world-knowledge implementation

affects a models’ outcome, it is necessary to go quite deeply into some of

the details of the models. Nevertheless, note that our concern is the comparison

of the different knowledge-implementation strategies—that is, our claims apply

to these strategies and not to the particular models. Indeed, as we argue in the

Discussion, some models can use strategies other than those with which they

were originally designed. It is not our goal to identify the models’ strengths and

weaknesses or to make a direct comparison among the models. The latter would

be close to impossible considering the large variance among the models’ scopes

and aims. The models are only investigated to illustrate the pros and cons of the
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WORLD KNOWLEDGE IN DISCOURSE-COMPREHENSION MODELS 431

different knowledge-implementation strategies, and to show that problems that

are likely to arise from some of these strategies do in fact occur in practice.

Although we only discuss models of discourse comprehension, our claims

generally apply to computational models of cognitive processes that rely heavily

on large amounts of world knowledge. In fact, the scope of the models we

discuss is not necessarily restricted to discourse comprehension: Some of these

models have been applied (or have at least inspired research) in fields as diverse

as action planning (Doane & Sohn, 2000; Mannes & Kintsch, 1991), human–

computer interaction (Kitajima & Polson, 1995), skill learning (Doane, Sohn,

McNamara, & Adams, 2000), advertising (Luna, 2005; Yang, Roskos-Ewoldsen,

& Roskos-Ewoldsen, 2004), and philosophy of mind (Frank & Haselager, 2006).

OVERVIEW

In the following sections, we argue:

1. Any model of discourse comprehension should, at least in principle, be

able to handle all world knowledge that is potentially relevant to the

simulated process. In practice, however, models that are not designed

to deal with knowledge tend to break down when potentially relevant

knowledge is added.

2. Limiting the implemented world knowledge to what is needed for the

particular text under consideration makes it impossible to test a model’s

general properties or to validate it against experimental data.

3. Although generally applicable knowledge can be implemented by auto-

matic extraction from large text corpora, this strategy results in knowledge

of word meaning rather than knowledge of causal relations in the world,

making it unsuitable for most aspects of discourse comprehension.

4. Because the implementation of realistic amounts of suitable world knowl-

edge is infeasible, the applicability of models needs to be restricted to a

simplified world. Apparent drawbacks of this microworld strategy apply

to other strategies to the same extent at least.

5. Applying the microworld strategy to models that have not used it so far

may facilitate model testing and improvement.

DISREGARDING WORLD KNOWLEDGE

Because world knowledge permeates almost every aspect of text comprehension

(see Cook & Guéraud, 2005, for an overview), it clearly cannot generally

be disregarded in models of this process. However, for particular low-level
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432 FRANK, KOPPEN, NOORDMAN, VONK

subprocesses, the influence of world knowledge may seem small enough to

be ignored. A model simulating only such a subprocess would be able to do

without any implementation of world knowledge. If, however, world knowledge

is potentially relevant to the simulated process, then the inclusion of such

knowledge in the model should at least be feasible in principle, even when the

current model does not deal with it. We illustrate this claim by discussing the

Resonance model (Myers & O’Brien, 1998), which is intended to simulate only

a low-level subprocess of discourse comprehension: the fluctuating activation

of text items in the reader’s mental representation of the text. As Myers &

O’Brien acknowledge, the reader’s knowledge can play a role in this process.

Nevertheless, only information from the text is implemented in the Resonance

model to simplify the analysis. In the following, we explain the model; illustrate

that it may require world knowledge; and, crucially, show that it is likely to

break down when extended with this knowledge.

The Resonance Model

Simulated process. As reading proceeds, different parts of the repre-

sentation of the preceding text differ in their accessibility to the reader. For

instance, concepts and propositions that are central to the text can remain in

working memory while less important elements are backgrounded. However,

previously backgrounded text items can become reactivated if this is required

or instigated by the sentence currently being read. The phenomenon is know as

reinstatement. According to Albrecht and Myers (1995), reinstatement results

from a bottom-up process by which previous text items “resonate” to the items

in the current sentence. The Resonance model attempts to simulate this process

of reinstatement-by-resonance.

The resonance process. The Resonance model processes the sentences

of a text one at a time. Each sentence is parsed into three types of items:

concepts, propositions, and a sentence marker. Every time a sentence enters

the model, these items are added as nodes to a network representing the text.

These nodes can be connected to each other and to the nodes corresponding to

previous text items. Such links depend only on the items’ co-occurrence in a

sentence and on propositional forms,1 and not on the meaning of items or their

relation to the reader’s knowledge. Because all network nodes follow directly

from the text and the links between them are based on formal, not semantic,

considerations, world knowledge is not present in the Resonance model. This

1The sentence marker is connected to the propositions in the sentence, concepts are connected

to the propositions that have them as an argument, and propositions are mutually connected if they

have identical arguments (Myers & O’Brien, 1998, pp. 143–144).
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WORLD KNOWLEDGE IN DISCOURSE-COMPREHENSION MODELS 433

absence of world knowledge does not follow from any theoretical claim, but is

merely a simplification (see Footnote 2 in Myers & O’Brien, 1998).

After adding the items from the current sentence to the text network, res-

onance values and signal strengths of all network items are computed over a

number of processing cycles. An item’s resonance value can be interpreted as

its availability in the reader’s working memory, and its signal strength indicates

the extent to which it can affect the resonance values of other items. Initially,

all resonance values are set to 0, and items from the current sentence receive

an initial signal strength. In each processing cycle, items that have a signal

strength send a signal to all connected items. As a result, the resonance of a

receiving item increases by the total amount of signal received. After computing

the new resonance values, signal strengths are updated. An item’s signal strength

increases as its resonance increases, but decays over processing cycles. The rate

of this decay is controlled by a parameter ˇ that can take any positive value.

Resonances and signal strengths are repeatedly updated until all signal

strengths fall below a small threshold value. At this point, the sentence has

been processed. The four items that end up with the largest resonance values

are said to remain in working memory. When processing the next sentence, not

only the sentence’s items but also the four items in working memory receive an

initial signal strength.

Reinstatement. The Resonance model has, for instance, been applied to

the “captain text” (see Table 1 in Myers & O’Brien, 1998), which introduces

a captain sitting at his desk to finish his ship’s inventory. However, before he

starts the inventory, he is called away, leaving the inventory forms on the desk.

After this, the text has no more reference to the unfinished inventory or to the

desk, until, at the end of the story, the captain is said to return to his office

and sit down at his desk. In this sentence, the concept DESK is assumed to

activate the previous occurrence of DESK in the text, reinstating the unfinished

inventory. Indeed, Albrecht and Myers (1995) found experimental support for

such reinstatement.

In the model, reinstatement consists in bringing certain critical items into

working memory. Therefore, the amount of reinstatement can be defined as the

increase in the number of critical items in working memory that is brought

about by processing the reinstating sentence. Because working memory consists

of four items, this is the maximum amount of reinstatement. When running the

Resonance model on the captain text2 with levels of decay rate ˇ ranging from

2The text was parsed into 103 items, based on those provided by J. L. Myers (personal

communication, September 20, 1995) and Weeber (1996). The critical items are the concept

INVENTORY, the propositions of which it is an argument, and the markers of the sentences that

contain them (Myers & O’Brien, 1998, p. 147).
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434 FRANK, KOPPEN, NOORDMAN, VONK

0.005 to 0.7, we found reinstatement for 0:019 � ˇ � 0:048 only, with the

amount of reinstatement being, at most, two items.

For a successful simulation of the experiment by Albrecht and Myers (1995),

there should be less reinstatement in an alternative version of the story in

which the desk is not mentioned in the reinstating sentence. Indeed, Myers

& O’Brien (1998, p. 148) reported no reinstatement of critical elements at

all when processing this alternative story. When we removed the proposition

mentioning the desk from the reinstating sentence, we found a decrease in

amount of reinstatement from 2 to 1, for values of ˇ ranging from 0.027 to

0.032.

Recency and connectivity. The accessibility of text items depends on

more than just reinstatement. Two main experimental findings are that more

recently read items are, in general, more available than older items, and that

items which are central to the text are more accessible than less important items

(Albrecht & Myers, 1991; O’Brien, 1987; O’Brien, Albrecht, Hakala, & Rizzella,

1995). The Resonance model simulates both these effects. First, items from the

current sentence receive an initial signal and can, therefore, be expected to end

up with larger resonance values than other items, resulting in a recency effect.

Second, items that are more central to the text have many connections to other

items and are, therefore, more likely to receive large resonance values, resulting

in a connectivity effect.

The decay rate ˇ can be expected to strongly affect the magnitudes of

the recency and connectivity effects. If the decay rate is large, signals decay

quickly and resonance will not spread far through the text network, resulting in

a strong recency effect. For small values of ˇ, the opposite happens: Signals keep

spreading throughout the network, and most resonance will eventually settle on

the items that have the largest number of connections.

The magnitude of the connectivity effect can be measured by the proportion

of variance in resonance values explained by the items’ numbers of connections.

Likewise, the size of the recency effect is measured by the proportion of this

variance explained by whether the items occurred in the current sentence or

not. Figure 1 shows that, in our simulations, a clear trade-off between the

recency effect and the connectivity effect, controlled by ˇ, indeed occurs when

processing the captain text.

The narrow range of decay rates (between 0.019 and 0.048) resulting in

reinstatement corresponds to a very weak recency effect. This is not surprising

because a weaker recency effect means that non-recent items have higher res-

onance values and, by definition of reinstatement, critical items are not recent

when the reinstating sentence is being processed. However, a weak recency

effect necessarily comes with a strong connectivity effect, as Figure 1 shows. If

the value of ˇ is too low, the effect of connectivity can become so strong that
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WORLD KNOWLEDGE IN DISCOURSE-COMPREHENSION MODELS 435

FIGURE 1 Proportion of variance in resonance values explained by recency or connec-

tivity, as a function of decay parameter ˇ, after processing the reinstating sentence of the

captain text.

reinstatement is no longer possible because working memory is always occupied

by the four most strongly connected items. For the lowest decay rate at which

reinstatement occurs (ˇ D 0:019), connectivity already explains almost 93% of

variance in final resonance values.

World Knowledge in the Resonance Model

The captain text showed that bottom-up reinstatement can be simulated by a

resonance process without including world knowledge. However, in another

text to which Myers and O’Brien (1998) applied the Resonance model, one

of the concepts CHURCH or BARN is to be reinstated by the mention of BUILD-

ING. This reinstatement requires knowledge about semantic relations between

these concepts. Contrary to the normal rules for connecting text items, con-

nections between BUILDING and CHURCH and between BUILDING and BARN

were added to the network (see Table 2 footnote in Myers & O’Brien, 1998),

implementing precisely the piece of information needed for reinstatement. This

example shows that world knowledge cannot completely be ignored for the

simulated process. More important, if some piece of knowledge about the se-

mantic relations between text concepts can be required for a particular case

of reinstatement, then any semantic relation in the text could become rele-

vant. Consequently, such semantic relations should be generally available to

the model.

As previously shown, the model’s ability to simulate reinstatement depends

on a delicate balance between recency and connectivity effects. Crucially, this
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436 FRANK, KOPPEN, NOORDMAN, VONK

balance is disturbed when semantic knowledge is included in the model. Con-

necting all pairs of semantically related concepts leads to a strong increase in the

number of connections of some concepts in the network. Because of the strong

connectivity effect that comes with the small effect of recency that is required,

these concepts will often occupy working memory, preventing reinstatement.

Indeed, after connecting all of the captain text’s semantically related concepts

to each other,3 we no longer found any reinstatement, regardless of the level of

ˇ—that is, the Resonance model no longer functions when potentially relevant

knowledge is included.

Conclusion

In particular instances, such as the captain text, the activation of text items

by a bottom-up resonance process can be simulated without resorting to world

knowledge. However, the fact that this is not so in general (as we have seen

for the CHURCH–BUILDING–BARN example) entails that models of this process

should at least be compatible with the presence of knowledge of word semantics.

The Resonance model was never intended to function with a large amount

of added knowledge. Consequently, it cannot deal with the highly connected

network that results from including semantic relations, as was shown by our

discussion of the recency–connectivity balance, coupled with the model’s failure

on the captain text when semantic knowledge was added.

More generally, any cognitive model should be compatible with the presence

of all knowledge that is potentially relevant to the simulated process. However,

it is to be expected that, by its sheer abundance, the inclusion of this knowledge

will come to dominate the processing of any model that has not been designed

to take knowledge into account. An obvious way out is to include only a

small amount of knowledge such that the model’s process will not become

disrupted. For instance, the Resonance model achieved reinstatement of CHURCH

or BARN by the ad hoc inclusion of nothing more than two required connections;

namely, from BUILDING to CHURCH and BARN. As discussed in the next

section, this “solution” of including only the specific pieces of knowledge needed

for the case at hand is applied more widely with other models, and has the

unwanted consequence of making proper investigation or validation of these

models impossible.

3Semantic relations between concepts were found by using latent semantic analysis (LSA). Two

concepts were connected if their semantic relatedness according to LSA’s cosine score was at least

as large as the cosine between BUILDING and CHURCH, which is .10. This resulted in 53.3% of

concept pairs becoming connected. In total, the number of connections in the network increased by

60%.
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WORLD KNOWLEDGE IN DISCOURSE-COMPREHENSION MODELS 437

AD HOC SELECTION OF WORLD KNOWLEDGE

All models of discourse comprehension require information in addition to the

input text. Such additional information is encoded in the setting of parameters.

Note that we use the term parameter in a fairly broad sense, to refer not only to

quantitative variables (i.e., those having numerical values) but also to qualitative

variables, such as whether a particular fact from world knowledge is made

available to the model.

Parameters can also be classified by the role they play in the simulation.

For our objective, an important distinction is between free and fixed parameters

(each of which can be either quantitative or qualitative). Free parameters may

vary over simulation runs, and can therefore be considered part of the input to

the model rather than part of the model itself. Their values are set by the modeler

on an ad hoc basis. A quantitative parameter like “activation decay rate,” for

instance, is a free parameter if its value is chosen dependent on the particular

text to be processed. Ideally, a model should not include any free parameters

because seemingly successful simulation results that depend crucially on the

particular choice of free parameter values may incorrectly be attributed to the

properties of the model itself.

Fixed parameters, in contrast, have values that remain the same whatever the

model’s input, so can be viewed as part of the model itself. Static aspects of the

experimental context should correspond to fixed parameters in the simulation of

the experiment. Qualitative fixed parameters are of great importance to models

of discourse comprehension. Understanding a text always takes place within

the context of the reader’s background knowledge, so it is necessary for the

model to have access to a knowledge base. To the extent that the reader’s world

knowledge is assumed constant among or within readers, its implementation in

the model should be fixed—that is, take the form of fixed parameters.

When the choice between providing or not providing the model with some

specific piece of world knowledge nevertheless depends on the text to be pro-

cessed, this comes down to the setting of a qualitative free parameter. Several

discourse-comprehension models use such a strategy: Pieces of world knowledge

that seem relevant to the particular text under consideration are hand-picked, and

only those are provided to the model. This prevents technical problems with

running a model in the context of large amounts of knowledge, but introduces

free parameters.

Although the outcomes of models that use free parameters for world-knowledge

implementation have been claimed to support the models’ validity, most of

these results are in fact direct reflections of the ad hoc and subjective selection

and implementation of world knowledge. The Construction–Integration (CI)

model (Kintsch, 1988; Kintsch, 1998), which has been widely applied and

has stimulated much experimental research, is the most influential discourse-
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438 FRANK, KOPPEN, NOORDMAN, VONK

comprehension model using this strategy for world knowledge implementation.

By a detailed discussion of the CI model, we intend to show that this strategy

makes it impossible to determine whether the model’s results reflect properties

of the model or only of the parameter setting.

The CI Model

Simulated process. Most texts do not explicitly mention everything that

is needed for comprehension. To make sense of a text, inferences need to be

made by applying world knowledge to the text-given information. The CI model

simulates this inference process. It assumes that text comprehension takes place

in two phases. In the first phase, called construction, world knowledge items

that are potentially relevant to the text are selected. Next, from the resulting

collection of text and knowledge items, less relevant or inappropriate items are

discarded in the integration phase.

Construction. The model takes as input a collection of concepts and propo-

sitions that correspond to the text being processed. For example, Kintsch (1988)

parsed the short text The lawyer discussed the case with the judge. He said “I

shall send the defendant to prison.” into the five text propositions labeled “T” in

Table 1. Two of these correspond to the text’s incorrect interpretation in which

the ambiguous pronoun he refers to the lawyer, and two others correspond to

the correct reading in which he is the judge.

During the construction phase, each concept and proposition from the text

retrieves a small number of items from the reader’s world knowledge in a

context-free manner. Knowledge items have a better chance at being retrieved

TABLE 1

Five Propositions, Labeled ‘‘T’’, Taken From the Text

The Lawyer Discussed the Case With the Judge. He Said

‘‘I Shall Send the Defendant to Prison.’’, and the

Two Propositions, Labeled ‘‘A’’, That Become Associated

During the Construction Phase (Kintsch, 1988, p. 169)

Label Proposition

T1 DISCUSS(LAWYER, JUDGE, CASE)

T2 SAY(LAWYER, T3)

T3 SEND(LAWYER, DEFENDANT, PRISON)

T4 SAY(JUDGE, T5)

T5 SEND(JUDGE, DEFENDANT, PRISON)

A1 SENTENCE(JUDGE, DEFENDANT)

A2 IMPLY(A1, T5)
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if, according to the reader’s knowledge, their association to the text item is

stronger (Kintsch, 1988, p. 166). It is important to note that, in theory, only

this association strength has an effect on the retrieval process. It is not possible

for context information to influence which knowledge items are chosen. As

Kintsch (1988) put it, “The construction process lacks guidance and intelligence;

it simply produces potential inferences, in the hope that some of them might

turn out to be useful” (p. 167). In practice, however, the construction process

is strongly guided by the modeler’s intelligence. Because the “real” association

strengths between the items from the text and those from reader’s knowledge are

unknown, it is up to the modeler to decide which knowledge items are important

to the text at hand. For instance, the five text propositions in Table 1 are assumed

to retrieve two world-knowledge propositions in total: Text proposition (T3)

SEND(LAWYER, DEFENDANT, PRISON) does not retrieve any items because the

reader does not know anything about lawyers sending defendants to prison.

On the other hand, the proposition (T5) SEND(JUDGE, DEFENDANT, PRISON)

does retrieve two items from world knowledge. These propositions, labeled “A”

in Table 1, are (A1) SENTENCE(JUDGE, DEFENDANT) and a proposition (A2)

IMPLY(A1, T5), stating that sentencing the defendant implies sending him or

her to prison. None of the other text propositions are associated to any world-

knowledge item. Clearly, selecting (A1) and (A2), and just these two, comes

down to a setting of qualitative free parameters.

So far, the construction process resulted in a collection of unconnected con-

cepts and propositions, originating both from the text and from world knowledge.

Next, these items are connected to each other, forming a network called the

enriched textbase (Kintsch, 1988, p. 166) in which each connection is assigned

a weight. The enriched-textbase network resulting from the “lawyer and judge”

example, including connection weights, is shown in Figure 2.

There is no agreement about objective rules for choosing the weight values.

Even the set of weights that is used varies strongly among different applications

of the model. Kintsch (1988) used real values between �1 and C1, but in

most other studies weights are taken from a small set of integer values. For

instance, Kintsch and Welsch (1991) used only weights of 0, 1, and 2, whereas

Tapiero and Denhière (1995) also included weights of �3. The integer values 0

to 5 are used in three different studies (Kintsch, Welsch, Schmalhofer, & Zimny,

1990; Radvansky, Zwaan, Curiel, & Copeland, 2001; Schmalhofer, McDaniel, &

Keefe, 2002), but Schmalhofer et al. used a different assignment of these weights

to the connections. In Otero and Kintsch (1992), connections had a weight of

�1, 0, 1, 2, or 10, but Singer (1996) used �1, 0, and 1, whereas Singer and

Halldorson (1996) also included 1

2
. Also, it is not clear whether items should

be connected to themselves. In Kintsch (1988) they are not, but according to

Kintsch (1998) they are. Kintsch (1992) even used the weights of these self-

connections to indicate which propositions are emphasized by the text, whereas
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440 FRANK, KOPPEN, NOORDMAN, VONK

FIGURE 2 Enriched textbase network corresponding to the propositions in Table 1,

including the connection weights (Kintsch, 1988, pp. 169–170). Note. Weights between

text propositions depend on their distance in the text. The connections to, and between,

associated propositions are assumed to have a weight of .5. Propositions corresponding to

different interpretations of the pronoun are maximally negatively connected (indicated by

dashed lines) because they exclude each other.

others varied them to simulate differences in the reader’s goal (Schmalhofer

et al., 2002), strategy (Otero & Kintsch, 1992), or age (Radvansky et al., 2001).

This lack of consistency shows that the connection weights are quantitative free

parameters.

Integration. The integration phase of the CI model takes as input the

enriched textbase that resulted from the construction phase and selects which

nodes of this network can be discarded because they are less relevant to the

text than others, or because they are inconsistent with the rest of the enriched

textbase. This is accomplished by assigning an initial activation value to items

originating from the text. The integration process spreads the activation among

the network over a number of processing cycles until the average difference

between the old and new activation values falls below some small fixed value.

The items that now have the highest activation values are assumed to be the

most relevant. Highly activated items originating from world knowledge are the

inferences that were drawn from the text.

In the enriched textbase of Figure 2, proposition T5 has more positive connec-

tions than its competitor T3 and will, therefore, receive a higher activation value

during integration. As a result, proposition T4 is connected to a more active node

than its competitor T2, so it too will receive more activation. Eventually, the
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activations of T2 and T3 (the LAWYER nodes) become 0, whereas the activations

of T4 and T5 (the JUDGE nodes) remain high. The incorrect interpretation of

the pronoun is discarded, and the correct one is kept: It is the judge, and not

the lawyer, who says that he shall send the defendant to prison.

World Knowledge in the CI Model

Selection of associated knowledge items. In theory, the particular knowl-

edge items that become connected to the text during the construction phase

are selected by a “dumb” process of association. In practice, exactly the items

necessary for comprehension of the text, together with just a few distracting

items, are carefully chosen by the modeler. Because this constitutes a setting of

many free parameters, there exists a serious risk that a successful outcome of

the integration process reflects the aptness of this choice rather than the aptness

of the model.

To give an illustrative example of this, Kintsch, Patel, & Ericsson (1999;

see also Kintsch, 2000a) apply CI to the ambiguous newspaper headline Iraqi

head seeks arms. They report that, for the integration process to deactivate the

incorrect reading of the sentence, several world-knowledge propositions were

needed: “Iraq is a country,” “Countries have governments,” “Governments have

heads,” and “Arms are weapons.” After applying the integration process to the

enriched textbase network including these propositions, the items corresponding

to the correct reading of the sentence (“The government of Iraq wants weapons”)

had higher activation values than the items corresponding to the incorrect read-

ing. However, this result depends critically on the specific knowledge-based

propositions that were chosen to be included because all of these were only

connected to the text items corresponding to the correct reading. As a result,

these “correct items” have more positive connections than the “incorrect items,”

so they receive more activation. If propositions related to the other reading had

been selected (e.g., “An Iraqi is a person,” “A person has a body,” “Heads and

arms are parts of the body”), the incorrect reading of the sentence would have

resulted from the integration process.4

Connection weight setting. As noted earlier, the choice of connection

weights, like that of associated world knowledge items, is an ad hoc and sub-

4Kintsch, Patel, and Ericsson (1999) acknowledged that, in this example, the world-knowledge

items in the enriched textbase do not result from a context-free construction process, but instead

from a “goal directed inference process” (p. 197). This inference process must have disambiguated

the sentence to come up with these particular world-knowledge items, raising the question of what

use the subsequent integration process is.
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jective setting of free parameters. Such freedom can lead to modeling results

that are almost completely determined by the particular choices made. Consider,

for example, the following sentence used in an experiment by Till, Mross, and

Kintsch (1988): The townspeople were amazed to find that all the buildings

had collapsed except the mint. Obviously, mint refers to the building and not

the candy. Kintsch (1988) used the CI model to solve this lexical ambiguity. A

small part of the enriched textbase is shown in Figure 3.

The concept MINT is assumed to retrieve from world knowledge the concepts

CANDY and MONEY, which are connected by a weight of �1 because they

exclude each other (only one of them can end up in the interpretation of the

sentence). Also, a connection of �:5 is added between CANDY and BUILDING,

“because the homophone mint contributed associations to the subset that refers

to both of its senses” (Kintsch, 1988, p. 173). During the integration process, the

activation of CANDY becomes 0, whereas MONEY ends up with an activation of

.074, indicating that the model found the intended meaning of mint (or, rather,

discarded the unintended meaning).

Had the negative connection between CANDY and BUILDING not been added,

the network would be completely symmetric with regard to CANDY and MONEY,

so these two concepts would have received the same final activation and the

ambiguity would remain unresolved. Because there is no reason to assume there

is a negative association between the concepts CANDY and BUILDING in world

knowledge (see also under “LSA for CI” in a following section), the negative

connection between them seems to have been added to make sure the integration

process would produce the desired result.

FIGURE 3 Part of the enriched textbase network of The townspeople were amazed to find

that all the buildings had collapsed except the mint, including connection weights. Note.

Rectangles are items originating from the text, ovals are the associated world-knowledge

items. Dashed lines indicate negative connections (Kintsch, 1988, pp. 172–173).
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Conclusion

Because different texts usually require different knowledge bases, implementing

only text-relevant knowledge seems to make sense. However, this comes down

to the introduction of many free parameters. With enough parameters to set,

models can produce almost any desired output. As we have shown, in several

applications of the CI model, presented results directly resulted from convenient

choices regarding world knowledge. By implementing world knowledge sub-

jectively and on an ad hoc basis, no conclusion about a model’s properties or

qualities can be drawn from its output because many other outcomes would also

have been possible. This is not to say that such models must be flawed, but only

that they cannot be properly validated until all parameters are fixed.

The “Connectionist Extension to CI” model (Sanjosé, Vidal-Abarca, & Padilla,

2006) deals with some of these issues by computing connection weights from

activation values rather than choosing them subjectively. However, this does

not solve the problems that associated world knowledge needs to be selected

subjectively and that some initial connection weights are set by hand to encode

the reader’s prior knowledge (Sanjosé et al., 2006, p. 12).

So far, we have presented CI as a model of knowledge-based inference in

which the activation of an item is interpreted as its relevance to the text. The

model has also been widely applied to predict experimental data by comparing

activation values to experimental measures. According to Schmalhofer, Mc-

Daniel, and Keefe (2002), a proposition’s activation predicts the naming time of

a word that is part of the proposition. They used CI to account for text priming

effects on these naming times. For simulating experiments in which participants

had to indicate whether a target sentence occurred in a previously read text,

activation values are taken as a prediction of response times (Caillies, Denhière,

& Kintsch, 2002) or sentence recognition probabilities (Caillies & Denhière,

2001; Kintsch et al., 1990; Radvansky et al., 2001). Tapiero and Denhière (1995)

interpreted activation of a text proposition as its probability of free recall. For

propositions denoting a fact from world knowledge, Singer (1996) and Singer

and Halldorson (1996) took the activation to predict the time needed to verify

whether the fact is true.

In these studies, the correspondence between model results and experimental

data has been established extensively. Because qualitatively different inferences

can easily be obtained by setting free parameters accordingly (as our discussion

of several CI simulations has made clear), it stands to reason that the parame-

ter setting also strongly affects the much subtler quantitative correspondences

between model outcomes and experimental data. The fact that each text comes

with its own parameters setting raises the question how persuasive these corre-

spondences are.
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444 FRANK, KOPPEN, NOORDMAN, VONK

This is also apparent in two other models that implement world knowledge

as free parameters: the Landscape model (Van den Broek, Young, Tzeng, &

Linderholm, 1999) and the model by Langston and Trabasso (1999). The latter

model takes as input a network of nodes that represent text clauses. Text-

specific knowledge about causality, as judged by the modeler, is implemented

by weighted links that represent causal relations between the events referred

to by the clauses. As we discussed extensively in a previous article (Frank,

Koppen, Noordman, & Vonk, 2005), the model’s output is virtually identical

to this input. Consequently, the output also encodes the text’s causal structure.

Because causal structure is a major factor affecting discourse comprehension, the

output of the Langston and Trabasso model corresponds to a lot of experimental

data. However, this correspondence is no evidence in support of the model

whatsoever because the same data is accounted for by the model’s input. This

makes the Langston & Trabasso model a very clear example of how the selection

of world knowledge can have a larger impact on model results than does the

actual model.

In the Landscape model, a similar problem arises when input values are

mistakenly interpreted as model outputs. The model’s input takes the form of

activation values of items from the text and, if necessary, items that are assumed

to be inferred from the reader’s world knowledge. An item can receive activation

because it is mentioned in the text or because it is somehow related to an item

that is activated. Which items receive activation, and how much, can be chosen

by the modeler to implement a particular theory of text processing or differences

in reading goal.

In Linderholm, Virtue, Tzeng, & Van den Broek’s (2004) simulation of

the difference between reading for study and reading for entertainment, the

difference between the two reading purposes is assumed to lie in the standard

of coherence readers attempt to obtain. When reading for entertainment, only

explicit and referential relations are identified in the text, while a study purpose

also requires finding causal, logical, and contrastive relations (Linderholm et al.,

2004, p. 173). Note that the differences in these standards of coherence entail a

difference in required world knowledge.

To implement this, the explicit, referential, causal, logical, and contrastive

relations in a text were analyzed. The choice of input activation was based on the

relations that were found: Simulating the processing of a sentence from the text

involved activating the propositions from earlier in the text that were explicitly

or referentially related to the sentence being processed. In the study-purpose

simulation, but not in the entertainment-purpose simulation, input activation was

also provided to earlier propositions that had a causal, logical, or contrastive

relation to the current sentence. As a result, more input activation is present in

the study-purpose simulation, which, of course, means that there is more overall

activation. According to Linderholm et al. (2004), “This finding suggests that,
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in the computational simulation : : : reading for study results in the activation of

more elements throughout reading” (p. 173). However, this so-called finding is

actually the manipulation of parameters (i.e., which propositions receive input

activation depending on the task being simulated). The same is true for the

second finding from this simulation, which is that propositions causally related

to the current sentence receive activation in the study-purpose simulation but

not in the entertainment-purpose simulation (see Figure 1 in Linderholm et al.,

2004). Clearly, this difference in activation values between the two simulated

tasks is precisely the applied manipulation of input activations rather than a

prediction of the model.

EXTRACTING KNOWLEDGE FROM TEXT CORPORA

As argued in the previous section, implementing only text-specific world knowl-

edge comes down to an unacceptable setting of free parameters. It would be

better to have one fixed knowledge base that can be applied to many different

texts—that is, to implement world knowledge as a setting of fixed, rather than

free, parameters.

One method for constructing a generally applicable knowledge base is to

compute, from large text corpora, word representations that encode semantic

relations among the words. A well known technique that accomplishes this is

latent semantic analysis (Landauer & Dumais, 1997) in which each word is

represented as a vector in a high-dimensional semantic space. The similarity

between two word vectors, measured by the cosine of the angle between them,

is a value between �1 and C1 that indicates the semantic relatedness of the two

words.

LSA has been used to reduce the number of subjective choices in CI-model

simulations, and has served as the basis for an implementation of world knowl-

edge to be used by computational accounts of discourse comprehension. How-

ever, as we argue, LSA cosines cannot directly replace the hand-picked connec-

tion weights in the CI model. More important, only knowledge of word meaning

can be extracted from text corpora, whereas sentential meaning is more important

to discourse comprehension, for one, because it is crucial for knowledge-based

causal inferencing. Although it has been claimed that the information in LSA

vectors can be used to drive causal inference (Kintsch, 2001), we show that such

claims do not hold.

LSA for CI

Kintsch (1998, 2000a; Kintsch et al., 1999) discussed how hand coding in the CI

model can be prevented by using LSA. Instead of subjectively deciding which
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knowledge items become associated to the text items during the construction

phase, the text items’ nearest neighbors in LSA’s semantic space can be selected

objectively. The cosine between the vectors then becomes the weight of the

connection between the corresponding network nodes. Because the LSA vectors

do not depend on the particular text or task, this method does away with the ad

hoc nature of world knowledge in the CI model.

However, this scheme will not generally result in a useful weight setting. For

instance, in the MINT example discussed in our evaluation of the CI model, a neg-

ative weight between MINT’s associates CANDY and BUILDING was needed to

disambiguate the word (see Figure 3). However, the LSA Web Site (lsa.colorado.

edu) reports a positive cosine of C.14 between them. The cosine between

MONEY and BUILDING is also C.14, so letting LSA determine these connection

weights would not have worked in this example. Moreover, LSA would not

have come up with the associations MONEY and CANDY at all because they are,

respectively, only the 25th and 79th nearest neighbor of MINT. The 10 nearest

neighbors of MINT in semantic space are all related to the “money” sense of the

word, and the 11th is related to the “herb” sense. The first word that could in

any way be associated to the “candy” sense of MINT is CRISP, which is the 17th

nearest neighbor. This shows that the number of associates a text item retrieves

from world knowledge needs to be much larger than the CI model assumes.

Another problem with the LSA approach is that it fails when propositions

need to be retrieved from world knowledge, as was the case in the “lawyer and

judge” example of Table 1. Although, as discussed next, vector representations

of propositions can be defined given the vectors of the proposition’s predicate

and arguments, there are no “nearest proposition neighbors” of a text item pre-

defined in semantic space. As a result, choosing the associated world-knowledge

propositions remains a setting of free parameters, again involving the risk that

choices are made with the desired result in mind.

The standard approach for computing the LSA vector representation of a

sentence or text is to simply take the (weighted) sum of the vectors of its

individual words (e.g., see Foltz, Kintsch, & Landauer, 1998). However, because

this method regards a sentence as a collection of individual words, it cannot

account for sentential meaning in general. If the same approach would be applied

to propositions, it would be impossible to take into account the different roles

of predicates and arguments. The Predication model (Kintsch, 2001) offers a

possible solution to this problem.

The Predication Model

Simulated process. The Predication model computes a vector representa-

tion of a proposition given the LSA vectors of the proposition’s predicate and

arguments, but extends LSA’s simple summing rule by not treating predicate
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and arguments equally. More important, the resulting proposition vectors form

an implementation of world knowledge that can be used for processing any text.

The model itself does not simulate any cognitive process but does make claims

about the mental representation of discourse statements and world knowledge.

These representations have been applied to several aspects of cognition such

as judgements of similarity, causal inferencing, and metaphor comprehension

(Kintsch, 2000b; Kintsch, 2001; Kintsch & Bowles, 2002).

Constructing proposition vectors. According to the Predication model,

the vector representing a proposition of the form P.A/, with predicate P and

a single argument A, is computed from the LSA vectors for P and A by first

finding a small number of vectors closest to (i.e., having the largest cosine with)

P . From those, a subset of vectors closest to A is selected. These vectors and

the vectors for P and A themselves are summed to form the vector representing

P.A/ (Kintsch, 2001, pp. 180–181). Vectors representing a proposition of the

form P.A1; A2/, carrying two arguments, can be computed similarly (Kintsch,

2001, pp. 189–190).

One important thing to note is that the predicate P has a larger impact on

the proposition’s vector than does the argument A (or the two arguments A1

and A2). By first selecting the nearest neighbors of P and then selecting from

these the vectors closest to A, predication biases the vector sum toward P . As

a result, the vector for P.A/ usually is closer to P than to A.

Interpreting vectors. To investigate the meaning of a proposition vector,

it is compared to several so-called “landmark” vectors, which are the LSA

vectors of words considered to be related to the proposition’s meaning. For

the propositions RAN(HORSE) and RAN(COLOR), Kintsch (2001, Table 2) used

as landmarks the vectors for GALLOP and DISSOLVE. The first of these land-

marks is closer to RAN(HORSE), whereas the second has a larger cosine with

RAN(COLOR). It is concluded that the predication algorithm correctly resulted in

a vector for RAN(HORSE) that “is like” GALLOP, and a vector for RAN(COLOR)

that “is like” DISSOLVE. This result shows how the meaning of propositions is

reflected in the distance between their vector representations, as was the case

for LSA’s word vectors.

World Knowledge in the Predication Model

The Predication model has access to the knowledge of word semantics that

LSA extracted from text corpora. For discourse comprehension, however, causal

knowledge is at least as important because causal inferences are often required

to understand a text. Indeed, the Predication model has also been applied to

causal inferencing, for example, to infer that the statement The student washed
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the table implies that as a consequence The table was clean. If predication picks

up this causal relation, the vector for WASHED(STUDENT, TABLE) should have

a larger cosine with CLEAN(TABLE) than with, for instance, CLEAN(STUDENT).

Kintsch (2001, Table 1) showed that this is indeed the case. More important,

the difference between the two cosines is less when the sum of just the vectors

STUDENT, WASHED, and TABLE is chosen to represent The student washed the

table. This is taken as evidence that, for causal inferences, the Predication model

performs better than LSA’s method of simply summing the vectors of the words

involved.

At first glance, predication seems to solve the world-knowledge implemen-

tation problem: Knowledge that is extracted from large text corpora can be

applied generally, so computational models can use it as fixed parameters—

for instance, for a task as crucial to text comprehension as causal inferencing.

However, it turns out the alleged demonstrations of causal inference are not

what they seem. Because interpreting the model’s output requires comparing it

to landmark vectors, the interpretation depends strongly on the landmarks that

are chosen. By taking into account that proposition vectors are biased toward

the predicate (in the previous example, the verb WASHED), it can be shown that

in all nine cases of causal inference presented by Kintsch (2001), the particular

choice of landmarks was responsible for incorrectly interpreting the model’s

outcome as reflecting causal relations.

The last column of Table 2 shows that the cosine between the words WASHED

and TABLE (cos D .25) is much larger than between WASHED and STUDENT

(cos D .02). Biasing the proposition vector toward the verb therefore results in a

vector closer to TABLE than to STUDENT, and closer to CLEAN(TABLE) (cos D

.83) than to CLEAN(STUDENT) (cos D .62). If the landmarks The table was

TABLE 2

Cosines Between Four Test Propositions and Landmark Propositions,

According to Kintsch (2001, Table 3); and Cosines Between the

Test Proposition’s Predicate and the Landmarks’ Arguments, According to the

Latent Semantic Analysis Web Site at lsa.colorado.edu

Proposition (pr) Landmarks (lm) cos(pr, lm) cos(Ppr; Alm)

WASHED(STUDENT, TABLE) CLEAN(STUDENT) .62 .02

CLEAN(TABLE) .83 .25

DROPPED(STUDENT, GLASS) BROKEN(STUDENT) .87 .10

BROKEN(GLASS) .91 .23

DRANK(DOCTOR, WATER) THIRSTY(DOCTOR) .83 .05

THIRSTY(WATER) .78 .26

SHOT(HUNTER, ELK) DEAD(HUNTER) .73 .41

DEAD(ELK) .70 .24
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TABLE 3

Cosines Between Five Landmark Propositions and Test Propositions, According to Kintsch

(2001, p. 192); and Cosines Between the Predicates of the Test Propositions and the

Landmark, According to the Latent Semantic Analysis Web Site at lsa.colorado.edu

Test Propositions (pr) Landmark (lm) cos(pr, lm) cos(Ppr; Plm)

TOOK(SARAH, ASPIRIN) WENT(PAIN, AWAY) .89 .74

FOUND(SARAH, ASPIRIN) .47 .39

EXPLODED(HARRY, PAPER BAG) JUMPED(HE, in ALARM) .32 .36

INFLATED(HARRY, PAPER BAG) .28 .07

SHOT(HIKER, DEER) DIED(DEER) .74 .34

AIMED(HIKER, at DEER) .56 .18

SCRUBBED(TED, POT) SHONE(POT, BRIGHTLY) .45 .25

FOUND(TED, POT) .41 .19

LOST(CAMPER, KNIFE) SAD(CAMPER) .48 .37

DROPPED(CAMPER, KNIFE) .37 .27

tired and The student was tired are chosen to test causal inferences, the model

incorrectly concludes that washing the table is more tiring for the table than

it is for the student: We found a cosine between WASHED(STUDENT, TABLE)

and landmark TIRED(STUDENT) of .66, compared to a cosine with landmark

TIRED(TABLE) of .81.

In three out of four cases in Table 2, the landmark closest to the test propo-

sition was the one whose argument was closest to the proposition’s predicate.5

Only in the example DRANK(DOCTOR, WATER) did this not occur: Although

DRANK is closer to WATER than to DOCTOR, the model seems to have concluded

correctly that it was the doctor, and not the water, who must have been thirsty.

However, changing the landmarks shows that, again, the interpretation of the

model’s output depends critically on the landmarks chosen. Drinking the water

will refresh the doctor and not the water, but we found a much smaller cosine of

DRANK(DOCTOR, WATER) with REFRESHED(DOCTOR) (cos D .38) than with

REFRESHED(WATER) (cos D .69).6

Kintsch (2001, p. 192) gave five more examples of causal inference by the

Predication model. In each of these examples, shown in Table 3, there was

5Note that the Predication model does not make the correct causal inference in the last example:

The vector representing The hunter shot the elk is closer to The hunter is dead than to The elk is

dead.
6In constructing the vector for REFRESHED(DOCTOR), latent semantic analysis came up with

the following nearest neighbors: OCASSION [sic], HOGARTHIAN, GETHSEMANE, CHINOISERIE, and

CARISSIMA. All of these occur only once in the corpus that was used to construct the semantic

space, so their vectors have an extremely short length (0.03). Replacing them with the next five, more

acceptable, words—SLEEPING, AWAKE, SOUNDLY, EVENING, and SLEEP—resulted in a vector for

REFRESHED(DOCTOR) that had a cosine of .42 with DRANK(DOCTOR, WATER).
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450 FRANK, KOPPEN, NOORDMAN, VONK

only one landmark (e.g., The pain went away), which was compared to two

test propositions varying only in the predicate. One of these formed a direct

cause for the landmark (e.g., Sarah took the aspirin), and the other did not (e.g.,

Sarah found the aspirin). In all five cases, Kintsch (2001) found that the causally

related proposition was closer to the landmark than the non-related proposition.

However, we found that all these cases could be explained by simply looking

at the cosine between predicates of the test propositions and of the landmark

(see Table 3). The landmark’s predicate is always closer to the predicate of

the causally related test proposition than to the other predicate. For instance,

WENT is closer to TOOK (cos D .74) than to FOUND (cos D .39). Because a

proposition’s vector is usually closest to its predicate, this explains why these

five landmark propositions are closer to the causally related propositions than

to less related propositions.

Conclusion

Using LSA and the Predication model results in a knowledge implementation

that is fixed and can be applied to many different texts. However, understanding

text requires understanding its propositions, and there is an important difference

between words and propositions that the Predication model ignores: Unlike

words, propositions are statements to which a truth value can be assigned. Causal

inferencing is based on such truth values and, therefore, requires propositions:

If it is true that Sarah took the aspirin, then it is likely that the pain will go

away. LSA constructs a semantic space in which the cosine between vectors

is a measure for the semantic relatedness between the corresponding words.

If the Predication model could indeed turn such semantic relations into causal

relations, that would be a spectacular result. However, predication takes the LSA

vectors and constructs from them other vectors in the same space. Relations

that depend on truth values (such as causal relations) do not correspond to any

measure in the semantic space. This is easily shown by comparing the vectors

for CLEAN(TABLE) and its negation NOT(CLEAN(TABLE)). These vectors are

very similar (their cosine is .91), showing that they do not represent the opposite

meanings of the propositions. Instead, predication vectors correspond to words

adjusted to a specific context. The vector that is claimed to represent the sen-

tence The horse runs should actually be interpreted as meaning something like

horselike running because it takes the verb runs and adjusts it to the context of

horse.

This point is also made clear by results reported by Burgess, Livesay, and

Lund (1998), who developed another method for automatically constructing vec-

tor representations of word meaning from text corpora: the Hyperspace Analog

to Language (HAL) model. Burgess et al. (pp. 234–236) constructed vectors

representing sentences by summing the sentence’s word vectors (weighted by
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inverse word frequency). These sentences described goals and corresponding

means, such as be less sarcastic (goal) by thinking twice before I say anything

(means). A comparison of the distances among vectors for goals and means

revealed that knowledge about their relation was not captured in their vector

representations. Because such knowledge is a kind of causal knowledge (means

can cause a goal to be reached), this negative result is exactly what could be

expected considering that HAL vectors encode information about words only.

Knowledge about the causal relation between statements does not simply follow

from the meaning of the individual words in these statements.

World knowledge about causality is of major importance to understanding

text, so models of this process require an implementation of causal knowl-

edge. Although LSA and HAL manage to encode a large amount of realistic

knowledge, they do not represent causal knowledge, limiting their value to

computational models of discourse comprehension. This is not just a technical

problem with LSA and HAL, which could be overcome by using some other

method. Such methods cannot extract causal knowledge from text corpora be-

cause world knowledge does not follow from word knowledge. Nevertheless,

world knowledge can be obtained by a similar “extraction” strategy, as we

discuss next.

THE MICROWORLD STRATEGY

Knowledge about the world cannot be automatically extracted from text corpora,

so this question arises: What sort of corpus is needed for this? For such a scheme

to work, the corpus should not consist of texts but of events or situations in the

world. Unlike large and general corpora of naturally occurring texts, however,

corpora of real-world events are not readily available. Therefore, event corpora

need to be constructed from scratch. As a result, the knowledge that can be

encoded is at best that of a tiny subset of the real world: a microworld.7

A model that uses this microworld strategy can process only texts dealing

with the microworld. In contrast to models that use only text-relevant knowledge,

however, microworld-based models can process several texts without requir-

ing any parameter adjustment because all knowledge about the microworld

is encoded in fixed parameters. Such models can be run on different texts

while making sure that positive results are not simply caused by the modeler’s

interference.

7Note that, in principle, microworld knowledge could also be implemented directly—that

is, without extracting it from an event corpus. However, we do not know of any discourse-

comprehension model that obtains its world knowledge in such a way.
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One model that makes use of microworld knowledge extracted from an

event corpus is the Distributed Situation Space (DSS) model (Frank, Koppen,

Noordman, & Vonk, 2003). As we hope to show from our following discussion

of that model, using the microworld strategy leads to models whose properties

can be thoroughly investigated.

The DSS Model

Simulated process. The DSS model simulates the same process as the CI

model: the knowledge-based drawing of inferences from a text. Nevertheless, the

two models view the inference process very differently. Whereas CI simulates

inference as activation and selection of world knowledge, DSS treats it as a

process of pattern completion.

The microworld. The microworld is very simple, having only two char-

acters, called Bob and Jilly, who can engage in a small number of activities

and be in a small number of states. For instance, it can be the case that “Bob

is outside,” “Bob and Jilly play soccer,” or “Jilly wins.” In total, 14 so-called

“basic propositions” (listed in Table 4) are needed to describe any situation that

can occur in the microworld. The number of possible microworld situations is

much larger because the basic propositions can be combined using the boolean

operators of negation, conjunction, and disjunction.

TABLE 4

Basic Propositions and

Their Intended Meanings

Label Meaning

SUN The sun shines.

RAIN It rains.

B_OUT Bob is outside.

J_OUT Jilly is outside.

SOCCER Bob and Jilly play soccer.

HIDE Bob and Jilly play hide-and-seek.

B_COMP Bob plays a computer game.

J_COMP Jilly plays a computer game.

B_DOG Bob plays with the dog.

J_DOG Jilly plays with the dog.

B_TIRED Bob is tired.

J_TIRED Jilly is tired.

B_WINS Bob wins.

J_WINS Jilly wins.
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Of course, some situations are more likely to occur than others. For instance,

it is more likely that Bob and Jilly are both outside than that only one of them

is. Some situations are even impossible. For instance, it never happens that Bob

or Jilly wins while they are not playing a game. In addition to these differences

in the likelihood of situations, there are also constraints regarding temporal

sequences of situations. For instance, when someone is tired, the other is more

likely to win the game they are playing. Also, when Bob and Jilly are tired, they

are not very likely to start playing soccer.

World-knowledge representation. Just like LSA vectors encode word

knowledge based on the words’ co-occurrences in texts, vectors in the DSS

model encode world knowledge based on the events’ co-occurrences in the

microworld. The event corpus is a hand-crafted sequence of 250 microworld

situations, which abides by the microworld’s probabilistic constraints. Each of

the situations is represented as a 14-element binary vector, with a 0 for each basic

proposition that is not the case in the situation, and a 1 for each basic proposition

that is. Next, a self-organizing map (SOM; Kohonen, 1995) is trained on these

250 vectors. As a result, each basic proposition comes to be represented by a

pattern of activation over the 150 cells of the SOM, or equivalently, as a 150-

element vector. Using well-known equations from fuzzy logic, these vectors can

be combined into representations of any microworld situation. For this reason,

the vectors are called “situation vectors.”

Situations that are alike result in vectors that are alike. In practice, this

means that from any situation vector X , the probability that any of the 14

basic propositions is the case can quite accurately be estimated by comparing X

to the vector representation of the desired basic proposition. Such an estimated

probability, or belief value, can also be computed for any combination of basic

propositions—that is, for any microworld situation.

Knowledge about the temporal constraints between microworld situations is

also extracted from the event corpus. This knowledge is encoded in a 150 � 150

matrix W .

The inference process. A story is a description of a temporal sequence of

situations occurring in the microworld. Usually, this description is incomplete:

A story does not state everything that does and does not happen. The model’s

task is to take as input the vectors representing the incomplete story situations

and infer what else is likely to be the case at each moment in the story.

Situations in the microworld are assumed to follow one another in discrete

time steps, indexed by t . The vector representing the situation at some time step t

is denoted Xt , so the input to the model is the sequence of vectors hX1; X2; : : : i.

This is called the story’s trajectory through situation space.
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The situation vectors enter the model one at a time. After a new vector is

added, the temporal world-knowledge matrix W is applied to the story trajectory

so far. The DSS model adopts the mathematical basis from Golden and Rumel-

hart’s (1993) story-comprehension model to compute the most likely trajectory

given the current trajectory and matrix W . The trajectory is adapted toward this

most likely trajectory, such that the vectors come to represent situations that are

more fully specified. This simulation of the inference process adds information

to the original, incomplete specifications of situations.

The process halts when the rate of change of the trajectory falls below

a particular level, controlled by a “depth-of-processing” parameter. At that

moment, the next story situation vector enters the model. The variable amount

of processing time needed to update the trajectory serves as the model’s analog

of sentence reading time.

The model in practice. Table 5 shows an example of a simple story. It

consists of four consecutive situations. First, Bob and Jilly are stated as being

outside. Next, it is claimed that they are playing together. In the microworld, this

means that they either play soccer, hide-and-seek, both play a computer game, or

both play with the dog. Because they were outside, it is unlikely that they play a

computer game (it is not impossible, however, because they might have moved

inside by t D 2). Integrating X1 and X2 should therefore result in an updated

vector X2 that represents a situation in which B_COMP ^ J_COMP is unlikely.

Contrary to this, the information that Bob and Jilly are outside increases the

likelihood of SOCCER, which is always played outside, but does not affect the

probability of HIDE because hide-and-seek can be played inside or outside. Next,

the story states that Bob or Jilly wins. This means that they could not have been

playing with the dog at t D 2. Integrating X2 and X3 should therefore decrease

the belief value of B_DOG ^ J_DOG in X2. The story ends by stating that Bob

and Jilly are not tired.

The result of processing the story of Table 5 is shown in Figure 4. When

the first two story situations are integrated, the belief value of B_COMP ^

TABLE 5

A Sequence of Situations (‘‘Story’’) Processed by the Distributed Situation

Space Model and a Corresponding Story Text

t Microworld Situation Possible Text

1 B_OUT ^ J_OUT Bob and Jilly are outside.

2 SOCCER _ HIDE _ (B_COMP ^ J_COMP) _ They are playing together.

(B_DOG _ J_DOG)

3 B_WINS _ J_WINS One of them wins.

4 :B_TIRED ^ :J_TIRED They are not tired.
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FIGURE 4 Result of processing the story of Table 5 by the Distributed Situation Space

model. Note. Plotted is the change in belief values for four games at story time step t D 2,

as a function of the model’s processing time. Integration of the first two situations begins at

processing time 0. At time 5.27, the third situation is added.

J_COMP at t D 2 decreases, and the belief value of SOCCER increases because

of the information that they are outside. After 5.27 units of processing time,

integration has stabilized enough to allow the third situation to enter the model.

At this point, the belief value of B_DOG ^ J_DOG at t D 2 decreases because

of the information that the game they played has a winner. In short, whenever

a new story statement is included in the model, it makes the correct inferences

by updating its representation of the story’s situations in accordance with its

temporal knowledge of the microworld.

World Knowledge in the DSS Model

The DSS model can process any story taking place in the microworld without

the need for setting free parameters because the same world knowledge and

other parameter values are used in many simulation runs. The model does

have many knowledge-implementing parameters (i.e., the situation vectors and

matrix W ), but these are all fixed. This means that the pattern of results over

many texts can be relied on to indicate properties of the model and not just

of the parameter setting. For instance, Frank et al. (2003) showed that the

model’s processing time is lower for stories that are more coherent, which

is in accordance with experimental data (Golding, Millis, Hauselt, & Sego,

1995; Myers, Shinjo, & Duffy, 1987). Because this result is based on processing

many different stories and the parameter setting was the same for each of these,

the predicted relation between coherence and processing time reveals an actual

property of the model rather than the accidental outcome of some parameter

setting.
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As was the case for LSA’s semantic vectors, the DSS model’s situation vectors

and temporal knowledge matrix result from an unsupervised training process—

that is, the knowledge base is task-independent and can be probed in many

different ways. Indeed, the DSS model’s world-knowledge implementation has

not only been applied to inferencing but also to modeling story retention (Frank

et al., 2003) and ambiguity resolution (Frank, Koppen, Noordman, & Vonk,

2007). In these simulations, the model successfully predicted experimental data

concerning free recall rates, reading times, and disambiguation errors.

Of course, the model also suffers from several limitations. For instance, it

cannot infer at which story time steps situations take place so these must enter

the model in chronological order. Also, the model does not simulate how text

processing can lead to updated world knowledge. Moreover, it lacks an attention

mechanism as well as an account of working-memory limitations. Note, however,

that these shortcomings are specific to the model rather than resulting from the

microworld approach to world-knowledge implementation.

Conclusion

Extracting world knowledge from a description of events in the world and

implementing all of this knowledge for use by a computational model results

in fixed rather than free parameters. Consequently, the model can be tested

on several texts without changing the parameter setting, making it possible to

investigate the model and its predictions more thoroughly. For this method to

be feasible, the world to which the model is applied needs to be simplified

considerably, making it a microworld. In contrast to knowledge extracted from

text corpora, microworld knowledge deals with the situational rather than the

word level, making it more useful for discourse comprehension.

Other microworld models. When using the microworld strategy, care needs

to be taken to make sure that the knowledge base is not too task specific. Two

examples of microworld-based models that suffer from this problem are the Story

Gestalt model (St. John, 1992) and the DISPAR (Distributed Paraphraser) model

(Miikkulainen & Dyer, 1991). Both use recurrent neural networks that are trained

on script-based stories, represented as a sequence of predicates and arguments.

The models extract microworld (script) knowledge from these training stories.

The training task is different for the two models. Story Gestalt learns to

answer specific types of questions about the story, whereas DISPAR is trained

to paraphrase the stories it processes. Both these tasks require the drawing of

inferences, using background knowledge, when gaps in the stories need to be

filled in. The two models manage to learn the task, showing that they apply

world knowledge when needed. However, it can be argued that the networks

do not actually have any declarative knowledge about the microworld, but only
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procedural knowledge that tells them how to answer questions or paraphrase

stories. This is because, during the supervised training process, the neural net-

works adapt to the task they are to perform. The resulting connection weights

(i.e., the implementation of world knowledge) do not encode knowledge in

general because their only purpose is to be useful for either answering questions

or paraphrasing stories. Consequently, the weights are not useful for any other

task. For example, Story Gestalt is trained on questions that take the form of a

predicate from the story. To answer the question, the network has to give the

predicate’s arguments. Because the network is never trained to answer a question

like “what happened next?,” it would need to be retrained completely if it is to

answer such questions.

Possible drawbacks of the microworld strategy. A question that arises

when using the microworld strategy is whether the model can be scaled up to

more realistic amounts of knowledge. To be regarded a viable cognitive model, it

should be able to handle amounts of knowledge much larger than that of a small

microworld. To what extent the DSS model can be scaled up is still an open

question. This question is rarely posed when discussing models that only use

text-specific knowledge, presumably because the presence of additional world

knowledge is simply ignored. Nevertheless, the issue matters to such models

as well because the amount of knowledge that is relevant to the text may be

very large indeed. Using the microworld strategy forces the modeler to design

the model to always take all existing knowledge into account. As a result, the

scalability issue becomes apparent more easily when dealing with a microworld

than with text-specific knowledge only. This may actually be an advantage of

the microworld strategy, rather than a drawback.

Another issue for models that have only microworld knowledge is that they

cannot be used to process texts dealing with events outside the microworld,

such as most natural texts. This incapability of using natural text input seems

like a major limitation because it makes detailed, quantitative comparisons be-

tween simulation results and experimental data impossible. However, qualitative

comparisons can still indicate whether the model adequately simulates human

discourse-comprehension processes. For example, without predicting reading

times for realistic texts, the DSS model provides an account of the relation

between text coherence and reading times. Moreover, it can be argued that

models that only include text-specific knowledge (or none at all) do not process

natural texts either because a text can only be considered natural when embedded

in a large amount of world knowledge. For example, when some network node

in a CI simulation is labeled SEND(JUDGE, DEFENDANT, PRISON), it is this

label that activates our knowledge of the legal system, making it seem to us as

if it represents a bit of natural text. To the model, however, there is no label.

Within a simulation, a node can only acquire meaning to the extent that it is
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connected to nodes representing world knowledge. If these are (largely) absent,

the node remains meaningless and the text it represents is anything but natural.

To summarize, drawbacks of the microworld strategy apply as well to models

that rely on free parameters. First, upscaling is an important open issue for

all models of discourse comprehension. It is just harder to ignore when using

a microworld. Second, although microworlds may provide only a small-scale

embedding in world knowledge, an ad hoc selection of knowledge for each

individual text amounts to an even smaller, disposable “nanoworld” instead of

one reusable microworld.

DISCUSSION

Strategies for World-Knowledge Implementation

We identified four different strategies for dealing with world knowledge in com-

putational models: disregarding world knowledge, treating it as a free parameter

setting, treating it as a fixed parameter setting obtained from text corpora, and

treating it as a fixed parameter setting obtained from event corpora.

Obviously, world knowledge is only left out of models to simplify them—

that is, it is acknowledged that the simulated cognitive process is, in reality,

embedded in world knowledge. Such a simplification comes with the risk that

the model’s algorithm only functions without world knowledge because the

presence, and possible influence, of knowledge was not taken into account when

the model was designed. In that case, it cannot be an adequate description of the

cognitive process. We have shown this to be the case for the Resonance model,

whose simulation of the “true” resonance process is ruined by the addition of

knowledge about semantic relations, although such knowledge is used by the

cognitive process.

Leaving knowledge out of the model makes it impossible to process texts

for which some piece of knowledge is required. This can be solved by inserting

bits of knowledge as needed. Whenever the knowledge that is implemented

depends on the particular text being processed, world knowledge is treated as

a setting of free parameters. The underlying idea is that any text activates or

requires only a small amount of world knowledge, which is all that needs to

be implemented. Of course, the problem is that nobody knows which particular

bit of world knowledge becomes activated when processing a certain text. In

practice, therefore, the modeler implements an ad hoc and subjective selection

of world knowledge. Making this selection often comes down to performing

the task that the model is supposed to simulate, resulting in correct model

outcomes that nevertheless do not allow for any claims about the performance

of the model itself. We have shown this to occur in simulations using the CI,
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Landscape, and Langston and Trabasso (1999) models. This is not because of the

models themselves but because of the presence of free parameters. Whenever a

modeler has the freedom to steer each simulation individually by adjusting free

parameters, it becomes unclear if the model’s outcomes reflect its own internal

processes or mainly those of the modeler.

If a discourse-comprehension model is to be validated against experimental

data, or if its properties are to be rigorously investigated, it has to be applied to

a large number of texts. Implementing a different subset of world knowledge for

each of these comes down to setting many free parameters, making it impossible

to draw conclusions about the model itself. We have seen an example of this in

the Resonance model: Its failure on the captain text with semantic knowledge in-

cluded indicates that its success on the CHURCH–BARN reinstatement depended

critically on the inclusion of no more than two specific connections. In such a

way, this “success” actually hides a shortcoming of the model. What is needed

for ascertaining a model’s general properties is a fixed parameter setting—that

is, a single knowledge base to be applied to several texts.

By automatically extracting knowledge about word meaning from large text

corpora, LSA and HAL construct meaningful and widely applicable vector

representations of words. These vectors can serve as a fixed knowledge base,

preventing the problems caused by the use of free parameters. However, when

it comes to discourse comprehension, the meaning of propositions is more

important than that of words and causal relations are at least as relevant as

semantic relations. Such more sophisticated knowledge does not follow from

mere word co-occurrences. Claims to the contrary turned out not to be warranted:

The Predication model’s alleged handling of causal inference was based on the

misinterpretation of its output vectors, resulting from the particular choice of

landmark vectors to which the model’s output was compared.

Computational models of discourse comprehension are faced with the dilemma

that no small subset of world knowledge can a priori be marked as “relevant to

the text,” in particular when dealing with narratives, whereas the implementation

of (a substantial subset of) true human knowledge is far from feasible. By imple-

menting knowledge about a small and clearly defined microworld, and restricting

the input texts to those describing events taking place in this microworld, the

introduction of free parameters is prevented. This is the strategy applied by the

DSS model. As we have argued, its results do not crucially depend on a clever

setting of free parameters—that is, on text-specific and subjective knowledge

selection and implementation. Consequently, these results can be relied on to

give information about the properties of the model.

Because the microworld strategy is not a model in itself, it is certainly not

sufficient for successful modeling. Our claim is merely that it is a necessary

approach to discourse-comprehension modeling as long as relevant amounts of

human “macroworld” knowledge cannot be implemented.
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Applying the Microworld Strategy to Other Models

The modeling problems we identified are first of all caused by the handling

of world knowledge, and less so by the models themselves. In some cases, the

microworld strategy may very well be applicable to models that have so far used

some other method. If this is indeed possible, it is an appropriate step for testing

and improving the models.

As we have previously argued, the Resonance model is not likely to be

successful if it has to deal with larger networks; so simply plugging knowledge

into Resonance will not work. However, the microworld strategy may help in

developing an improved resonance algorithm that can deal with larger and more

densely connected networks—that is, networks that include relevant amounts of

semantic knowledge.

Other models may be better than the Resonance model at dealing with the rel-

atively large amount of world knowledge that is implemented in the microworld

strategy. The CI model, for instance, can quite easily be supplied with knowledge

of a microworld. Of course, this is not implemented as a DSS-like situation

space but should take the form of a large network of concepts and propositions.

During the construction phase, many knowledge items could then be associated

to the text items in a context-independent fashion, without any interference by

the modeler. Also, connection weights in the microworld-knowledge network

would be fixed, doing away with any free parameters. In fact, this is how

the model is originally presented: Kintsch (1988, pp. 166–167) assumed that

the reader’s world knowledge is stored in a “knowledge net” consisting of

concepts and propositions connected by weighted links. The probability that a

particular knowledge item becomes associated to a text item is proportional to the

connection weight between these two items in the knowledge net, and weights in

the enriched text base are inherited from weight in the knowledge net. However,

these ideas are not put into practice when the CI model is used. The reader’s

knowledge net is, of course, unknown and not implementable; so associated

knowledge items and connection weights are chosen freely by the modeler. If,

instead, a microworld knowledge net would have been implemented, it could

have been used for processing several texts without changing the parameter

setting. For any model of discourse comprehension, such a strategy is necessary

to reveal the model’s general properties.
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