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A Bayesian model of continuous speech recognition is presented. It is based on Shortlist (D. Norris, 1994;
D. Norris, J. M. McQueen, A. Cutler, & S. Butterfield, 1997) and shares many of its key assumptions:
parallel competitive evaluation of multiple lexical hypotheses, phonologically abstract prelexical and
lexical representations, a feedforward architecture with no online feedback, and a lexical segmentation
algorithm based on the viability of chunks of the input as possible words. Shortlist B is radically different
from its predecessor in two respects. First, whereas Shortlist was a connectionist model based on
interactive-activation principles, Shortlist B is based on Bayesian principles. Second, the input to
Shortlist B is no longer a sequence of discrete phonemes; it is a sequence of multiple phoneme
probabilities over 3 time slices per segment, derived from the performance of listeners in a large-scale
gating study. Simulations are presented showing that the model can account for key findings: data on the
segmentation of continuous speech, word frequency effects, the effects of mispronunciations on word
recognition, and evidence on lexical involvement in phonemic decision making. The success of Shortlist
B suggests that listeners make optimal Bayesian decisions during spoken-word recognition.

Keywords: Spoken-word recognition, Bayesian modeling, continuous speech

Sherlock Holmes seemed to know something about the power of
Bayesian decision making when he said to Watson: “How often
have I said to you that when you have eliminated the impossible,
whatever remains, however improbable, must be the truth?”
(Doyle, 1890, Ch. 6, p.93). We argue here that listeners know this
and much more about Bayesian decision making. Specifically, we
suggest that, in order to perceive continuous streams of speech as
sequences of discrete words, listeners behave as optimal Bayesian
recognizers. In support of this claim, we present a new computa-
tional model that gives a simple and elegant account of the main
empirical findings on spoken-word recognition. This leads to a
complete reconceptualization of the word recognition process. The
model introduces new ways of thinking about word frequency,
how words are matched to the perceptual input, lexical competi-
tion, and lexical activation.

In the literature on spoken-word recognition, there is almost
universal acceptance that recognition involves a process whereby
the perceptual input activates lexical representations, and these
activated representations then compete with each other to deter-
mine an appropriate segmentation of the input into words (e.g.,
Allopenna, Magnuson, & Tanenhaus, 1998; for reviews see

Frauenfelder & Floccia, 1998; Gaskell & Marslen-Wilson, 2002;
McQueen, 2007; McQueen, Norris, & Cutler, 1994). The Bayesian
framework we advocate here leads us to abandon the concept of
lexical activation.

Activation has been an extremely valuable metaphor in spoken-
word recognition research. It is embodied in two of the most
influential models, TRACE (McClelland & Elman, 1986) and
Shortlist (Norris, 1994), both of which are based on interactive-
activation networks. In such networks each word (or lexical can-
didate) is represented by a single node, which is assigned an
activation value. The activation of a lexical node increases as the
node receives more perceptual input and decreases when subject to
inhibition from other words. But what is the explanatory value of
the concept of activation? Beyond the general notion that bigger is
better, activation does not directly determine the behavior of these
models. In particular, neither reaction time nor response probabil-
ities can be derived directly from activation values without addi-
tional assumptions. Furthermore, as we will explain later, activa-
tion is not actually a core part of the theory motivating Shortlist.
The interactive-activation network is simply a convenient mecha-
nism for performing some of the computations required by Short-
list or, indeed, by any theory of spoken-word recognition. In this
article, therefore, we replace the interactive-activation network in
Shortlist with Bayesian computations that provide a more direct
implementation of the theoretical principles underlying the model.

One consequence of adopting the Bayesian perspective is that
activation is replaced by the concepts of likelihood and probability,
both of which have a clear formal interpretation. In the case of
probability, this can be linked directly to measures of behavior.
Thus, although one goal of this article is to present a new version
of Shortlist, the more general aim is to argue for the benefits of the
Bayesian perspective in understanding spoken-word recognition.

The central theoretical claims embodied in Shortlist can be
derived from a simple higher-level claim, namely that human
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listeners adopt a near optimal strategy for recognizing speech.
Here we cast this in terms of the theoretical principle that human
listeners approximate optimal Bayesian decision makers. We then
ask how much of what we know about human speech perception
can be explained purely on the basis of this simple premise. The
answer, we will argue, is that the principle of optimality gives us
a better explanation of a broader range of phenomena than any
existing model. Importantly, this explanation follows automati-
cally from this basic principle in such a straightforward way that
the resulting computational model is much simpler than any of the
competitor models.

The starting point for this work is an analysis of the computa-
tional problems that must be solved in order to complete the task
of speech recognition successfully (Marr, 1982)—in Anderson’s
(1990) terms, a Rational Analysis. We have argued in detail
elsewhere (Scharenborg, Norris, ten Bosch, & McQueen, 2005),
that, for spoken-word recognition to be successful, the listener
must solve a number of specific computational problems that arise
from the nature of the acoustic speech signal and from the structure
of the vocabulary. The original Shortlist model (Norris, 1994) and
its developments (Norris, McQueen, Cutler & Butterfield, 1997;
Scharenborg et al., 2005) offer algorithms for how these
computational-level problems are solved. According to Ander-
son’s (1990) Principle of Rationality, however, the overarching
constraint on all information-processing theories is that the cogni-
tive system should be optimized with respect to its goals. Spoken-
word recognition, therefore, should be optimal in the sense that a
listener’s behavior should approach the best that it can be, given
the constraints imposed both by the speech signal and by phono-
logical and lexical knowledge. As we now show, a major attraction
of a Bayesian model of spoken-word recognition is that its behav-
ior is guaranteed to be optimal in exactly this way.

If speech consisted of strings of completely unambiguous iso-
lated words, then optimal word recognition would simply entail the
selection of the sequence of words that matched the current input.
As we describe in more detail below, however, the speech signal
is phonetically ambiguous, and it does not consist of a series of
discrete words—instead, speech sounds unfold over time in a
quasi-continuous stream. Bayesian inference allows word recog-
nition to be optimal in the face of this ambiguity by combining the
perceptual evidence that is available (no matter how ambiguous)
with knowledge of the prior probabilities of words. Bayes’s theo-
rem ensures that the way these sources of information are com-
bined is optimal. First, with completely unambiguous input the
best-matching word will always be selected. Second, word recog-
nition will also be optimal with ambiguous input. As the ambiguity
of the input increases, the influence of the prior probability of the
words will also increase: As perceptual uncertainty increases, the
smart money goes on the events which are more likely to occur.

Our claim that human listeners approximate optimal Bayesian
decision makers requires us to specify exactly what function
listeners are attempting to optimize. This means we have to specify
the listeners’ task, as it is the task that determines the function that
must be optimized. Norris (2006) provides an extensive discussion
of optimality in tasks involving visual word recognition. In Nor-
ris’s Bayesian Reader model, evidence is accumulated from the
input by means of a noisy sampling process. In sequential sam-
pling models, there are two standard definitions of optimality,
depending on the task (see Bogacz, Brown, Moehlis, Holmes, &

Cohen, 2006, for a recent discussion of optimal decision making in
sequential sampling models). In tasks requiring speeded decisions,
optimality is defined as making the fastest decision possible while
achieving a given level of accuracy (e.g., 95% correct). In tasks
requiring a response based on a fixed amount of perceptual evi-
dence (e.g., perceptual identification), optimality is defined as
selecting the response (word) that is most probable, given the
available input.

In both cases the primary requirement is to calculate the condi-
tional probability of each word given the available input, and this
conditional probability is exactly what Bayes’s theorem allows us
to calculate:

P(Hypothesisi�Evidence)

�
P(Evidence�Hypothesisi) � P(Hypothesisi)

�
j�1

j�n

P�Evidence�Hypothesisj� � P�Hypothesisj�

(1)

Bayes’s theorem specifies how to revise or update beliefs in the
light of new evidence. Given some initial belief about the proba-
bility of a hypothesis being true, P(Hypothesis), Bayes’s theorem
tells us how to update this prior probability and compute the
posterior probability of the hypothesis being true, given the evi-
dence, P(Hypothesis|Evidence). P(Evidence|Hypothesis) is the
likelihood of the evidence given the hypothesis. When modeling
word recognition, the hypotheses correspond to words:

P�Wordi�Evidence� �
P�Evidence�Wordi� � P�Wordi�

�
j�1

j�n

P�Evidence�Wordj� � P�Wordj�

(2)

where n is the number of words in the lexicon. Bayes’s theorem
therefore gives us exactly the information we need: The condi-
tional probability of each word, given the available evidence. This
holds regardless of whether the input is spoken or written. It makes
no difference whether the evidence is being accumulated by noisy
sampling, as in the Bayesian Reader, or because spoken input is
arriving over time, as in Shortlist B. Once these conditional prob-
abilities have been computed, optimal decisions can be made either
by selecting the most probable word at a given time or by making
a response when the probability of a word exceeds a predetermined
probability threshold. The focus of most of the simulations here
will be on calculation of the relevant probabilities; but, in the final
simulations, we will estimate actual reaction time (RT) measures
in the tasks of lexical decision and phonetic categorization.

There is one important qualification to the claim for optimality
we have just presented. The probabilities calculated will only be
true probabilities to the extent that the listener’s prior beliefs are a
true reflection of real probabilities. For example, if a listener has a
completely mistaken belief as to the probability of encountering a
particular word in a particular context, the posterior probability he
or she assigns to that word will no longer correspond to the actual
probability. Listeners’ erroneous beliefs may lead them to make
inaccurate decisions. In most of the simulations presented here, we
make the simplifying assumption that the appropriate prior prob-
abilities can be estimated from standard measures of word fre-
quency. However, we will also need to take account of the fact that
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word frequency represents only a fraction of the knowledge that
listeners have at their disposal when recognizing continuous
speech.

A new, Bayesian version of Shortlist will therefore be presented:
Shortlist B. In the original version of the model (henceforth,
Shortlist A, for Activation) the output is a pattern of word activa-
tions over time. In contrast, Shortlist B operates as a Bayesian
classifier and its output is a list of the posterior probabilities of
words. Nevertheless, Shortlist B shares most of the key assump-
tions of its predecessor about, for example, the nature of prelexical
and lexical representations and the processing architecture of the
recognition system. Shortlist B therefore offers the same solutions
as Shortlist A to the computational problems associated with
spoken-word recognition but with the additional major benefit that
the model makes optimal Bayesian decisions.

The Bayesian approach taken in Shortlist B is attractive not only
because it instantiates the assumption that word recognition is
optimal but also because almost all of the characteristics of the
model follow directly from this assumption. As we discuss in
greater detail below, the ways the model deals with the data on
lexical competition, word frequency, perceptual match and mis-
match, and the relation between lexical and sublexical information
are all forced by the optimality assumption. This has two major
benefits. First, the result is a much simpler theory than in the
corresponding connectionist models. TRACE, Shortlist A, and
Merge (Norris, McQueen, & Cutler, 2000b) all have a large
number of free parameters. Changes to these parameters can pro-
duce quite large differences in model behavior (Pitt, Kim, Navarro,
& Myung, 2006). In contrast, as will become apparent, Shortlist B
has very few parameters, and the exact values of these parameters
are not critical. Furthermore, the parameters that are used in the
model are all designed to reflect expectations about the structure of
the linguistic input or the task to be performed.

Second, the optimal Bayesian account of phenomena such as
word frequency effects encourages a complete reassessment of
core aspects of the word recognition process. Shortlist B generates
insights into word recognition that cannot readily be derived from
the traditional activation-based approach. For instance, the effect
of mispronunciations on lexical access is usually cast in terms of
perceptual similarity: The degree of activation of a lexical hypoth-
esis varies simply as a function of the phonetic similarity of the
mispronunciation to the base word. Probability must also be con-
sidered, however. For example, irrespective of phonetic similarity,
some mispronunciations may be more likely renditions of a base
word than others. As will be demonstrated, Shortlist B offers a
formal account of how the likelihood of different realizations of
words can modulate word recognition.

A further advantage of modeling speech recognition within a
Bayesian framework is that it allows us to take advantage of some
of the principles developed in the Bayesian Reader model of visual
word recognition (Norris, 2006). As will be shown, this enables us
to give a principled account of lexical decision and to simulate
both RTs and error rates. Please note that further discussion of the
benefits of Bayesian methods, which apply just as well to spoken
as to visual word recognition, is to be found in Norris (2006).

The Bayesian approach has another important motivation. Un-
like the activation values output by connectionist models, the
posterior probabilities generated by Shortlist B have a clear formal
interpretation. Activation rarely corresponds directly to behavioral

observations such as speed, accuracy, or probability of responding.
Following McClelland and Rumelhart (1981), the R.D. Luce
(1959) choice rule is sometimes used to generate response prob-
abilities from activation values (e.g., Allopenna, Magnuson, &
Tanenhaus, 1998; Dahan, Magnuson, & Tanenhaus, 2001; Luce,
Goldinger, Auer, & Vitevitch, 2000; McClelland & Elman, 1986).
But this is largely a pragmatic procedure for generating probabi-
listic data from a deterministic model. It is therefore still unclear
what activation values mean: In particular, do they reflect the
probabilities that words will be recognized? Davis, Gaskell and
Marslen-Wilson (1998) have suggested that activations in a recur-
rent network trained to identify words should be interpreted as the
conditional probabilities of identifying those words given the
input. It is not clear that this is a formal property of this model,
however, or even that the model would produce such probabilities
under conditions other than the specific circumstances of the
simulations that Davis et al. report. Because the interpretation of
activation values is not straightforward, we avoid any use of the
activation metaphor here. Shortlist B works entirely within the
probability domain; interpretation of the posterior probabilities
output by the model is therefore completely unambiguous. A
related reason to favor the Bayesian approach over connectionist
models is that the use of such models does not guarantee optimal
word recognition. It might be possible to build an interactive-
activation network that computed the same Bayesian functions as
Shortlist B, but it is also possible to build networks that compute
other functions. The use of an interactive-activation framework
therefore does not ensure that recognition will be optimal. In
contrast, as we have already argued, the Bayesian framework
guarantees optimality.

Continuous Speech Recognition

Previous models have taken a similar approach to the problem
of speech recognition that we advocate here. One is the Neighbor-
hood Activation Model (NAM; Luce, 1986; Luce & Pisoni, 1998);
another is the Fuzzy Logical Model of Perception (FLMP; Mas-
saro, 1987, 1989b; Oden & Massaro, 1978). As in Shortlist B, the
NAM instantiates the critical assumption that words’ prior prob-
abilities (i.e., their frequency of occurrence) are combined with
bottom-up evidence to determine word recognition. As we de-
scribe later in the section on NAM and Shortlist B, however, the
way in which NAM operates is not strictly Bayesian. Furthermore,
the NAM offers an account only of the recognition of isolated
monosyllabic words. A major goal in developing Shortlist B was
to provide an account of the recognition of words in the continuous
speech stream and not just isolated words.

The FLMP foreshadowed Shortlist B in assuming that speech
recognition should be optimal, that optimality should be achieved
through the independent evaluation of different sources of evi-
dence (Massaro, 1987; Massaro & Cohen, 1991), and that recog-
nition can be conceived of as a Bayesian process (Massaro, 1987;
Massaro & Friedman, 1990). But, as with the NAM, although there
are strong formal similarities between FLMP and Bayes’s theorem
(Massaro & Friedman, 1990), the FLMP is not strictly Bayesian
(see the section FLMP and Shortlist B below). In addition, al-
though the FLMP has been applied to many types of perceptual
data, as with the NAM, it has not been applied to large-vocabulary
continuous speech recognition. Where the FLMP has been applied
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to data on recognizing words in sentences (Massaro, 1978, 1989a),
the critical words have always been treated exactly as they would
in a model of isolated word recognition.

Any adequate model of spoken-word recognition must be able
to recognize words in continuous speech. Because of the spaces
between written words in a text like this, one can consider that
recognition of written sentences entails the repeated application of
the procedures used to recognize individual written words. The
spaces provided by the writer tell the reader where one word ends
and the next one begins. But speakers do not segment their
utterances in this way for their listeners. Although there is a wide
range of cues in the speech signal that are correlated with word
boundaries (Church, 1987; Cutler & Carter, 1987; Nakatani &
Dukes, 1977) and although listeners are sensitive to these cues and
use them in segmentation (Cutler & Butterfield, 1992; Cutler &
Norris, 1988; Davis, Marslen-Wilson, & Gaskell, 2002; Gow &
Gordon, 1995; Mattys, White, & Melhorn, 2005; McQueen, 1998;
Norris, McQueen, & Cutler, 1995; Salverda, Dahan, & McQueen,
2003; Shatzman & McQueen, 2006; Tabossi, Collina, Mazzetti, &
Zoppello, 2000; Vroomen & de Gelder, 1995), none of these cues
is completely reliable.1 Word recognition therefore requires a
solution to this segmentation problem: A mechanism that can work
in the absence of any such signal-based cues.

If words were not alike, then the lack of reliable segmentation
cues would not be a problem. Each word would be perceptually
distinct and could be recognized on the basis of its unique material
even if it were not segmented from other words. But words are
alike. Because the words of a given language are made up from a
limited inventory of speech sounds, they tend to be phonologically
very similar to each other. Words begin in the same way as many
other words, end in the same way, and often have other words
embedded within them (Cutler, Norris, Mister, & Sebastian-
Galles, 2004; Luce, 1986; McQueen, Cutler, Briscoe, & Norris,
1995). Given the continuous nature of the speech signal, it also
often contains words that straddle word boundaries and hence yet
more words that are not part of the sequence of words intended by
the speaker. For example, the Italian sequence visi tediati, “faces
bored,” contains the spuriously embedded word visite “visits.”
Experiments by Tabossi, Burani and Scott (1995) suggest that such
between-word embedded words are indeed considered by listeners
during sentence comprehension.

These observations have led speech researchers to reject earlier
accounts, such as the Cohort model (Marslen-Wilson & Welsh,
1978), in which words were identified in a strictly sequential order
(see also Cole & Jakimik, 1978, 1980), and to believe that spoken-
word recognition involves a process of competition between lex-
ical candidates, so that candidates that overlap in the input compete
with each other (McClelland & Elman, 1986; Norris, 1994). Words
such as visite will be considered but will lose the fight with the
competing words visi and tediati and will not be consciously
perceived as being present in the utterance. This competition
process segments the input (e.g., finds the boundary between visi
and tediati) even in the absence of any cues signaling a lexical
boundary.

Both of the connectionist models that have been most widely
used to explain continuous speech recognition (TRACE and Short-
list A) implement this competition process in terms of interactive-
activation networks, where nodes representing the activation of
lexical candidates inhibit each other via reciprocal inhibitory con-

nections. This, however, is certainly not the only solution to the
problem of identifying the sequence of words in a stretch of
continuous speech. Indeed, this is never the solution adopted in
Automatic Speech Recognition (ASR) systems. In ASR, the task
of discovering the sequence of candidate words that provides the
best coverage of the input is usually thought of as a search
problem. As we will explain below, candidate words can be
encoded in a graph or lattice (see Figure 1) and the task is to find
the best contiguous path through the lattice. The best path should
correspond to the best fitting sequence of words. In Marr’s (1982)
terms, lattice-based search and competitive inhibition in a connec-
tionist model are different algorithms for the same computational
function, that of searching for the sequence of words that best
matches the input.

In a Bayesian model, such as Shortlist B, words do not have
activation values, and there is no direct inhibition among lexical
hypotheses. The same assumptions are made in the FLMP (Mas-
saro, 1987, 1989b; Massaro & Oden, 1995). But path probabilities
can be computed and compared with each other in Shortlist B.
This, then, is the solution to the segmentation problem instantiated
in Shortlist B. Although there is no competitive inhibition in the
new model, it still has a search algorithm that evaluates multiple
lexical hypotheses simultaneously. The parallels between the two
approaches are illustrated in Figure 1 (see also Scharenborg et al.,
2005). The upper panel shows the standard representations of
candidate words in an interactive-activation network like that in
Shortlist A. Each candidate is connected to every overlapping
candidate by inhibitory links. The lower panel represents the same
candidates in terms of a word lattice, as in ASR systems and
Shortlist B. The aim of the recognizer here is to search for the best
path through the lattice. This example mainly shows paths that link
contiguous word candidates. Standard ASR practice is to allow
discontinuous paths too, but to penalize paths that leave some part
of the input unaccounted for. Examples of discontinuous paths are
also shown in Figure 1; we discuss below how such paths are
processed in Shortlist B.

In practical ASR systems the number of alternative paths
through a lattice can become very large indeed. The search process
is usually simplified by using dynamic programming techniques,
such as Viterbi search (Viterbi, 1967) or token passing (Young,
Russell, & Thornton, 1989). The parallels between lattice-based
search and inhibition in an interactive-activation network were
recognized by Norris (1994), who suggested that dynamic pro-
gramming techniques could be used as an alternative to the
interactive-activation network in Shortlist. Although Shortlist B
does not use dynamic programming, it does work by performing
computations on paths.

The details on how path probabilities are computed are given
below. Two points about how Shortlist B deals with continuous
speech can already be made, however. The first is that, with
respect to the segmentation problem, the high-level computation
performed by the new model is the same as that in Shortlist A. The
second is that the key computations involve path probabilities
rather than word probabilities. A major goal in the development of
Shortlist B was to examine whether Bayesian decisions based on

1 Furthermore, we know of no evidence suggesting that any combination
of these cues is completely reliable.
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paths are successful in explaining the data on human continuous
spoken-word recognition.

The Input to Shortlist B

A final motivation for the development of Shortlist B was the
need to improve on the account of early phonetic analysis offered
by the original Shortlist model. The input to Shortlist A is simply
a string of phonemes. The representations of those phonemes have
no internal structure, and all phonemes are treated equally. There
is therefore nothing in the input to the word-recognition process to
indicate that listeners find some phonemes more confusable than
others. Furthermore, this kind of input to word recognition is
discrete and categorical in two inappropriate ways. First, it is
discrete in temporal terms. That is, there is no overlap of evidence
for different speech sounds, as if, counterfactually, there were no
effects of coarticulation in the speech signal. Second, this kind of
input is discrete in informational terms: For any segmental position
in the input there is 100% support for one and only one phoneme.
There is, however, considerable evidence (reviewed in McQueen,
2007) to suggest that the word-recognition process is continuous in
both the temporal and informational senses. Acoustic information
modulates word recognition on a much finer time-scale than pho-
neme by phoneme, and that information concerns within-phoneme
variability. The input to Shortlist A is therefore inadequate.

To date there have been three different approaches to producing
more realistic input representations in models of spoken-word
recognition. One option is to model the input noncategorically.
The input in TRACE (TRACE II, to be more precise; McClelland
and Elman, 1986), for example, consists of a vector of phonetic
features that varies over time. Although this kind of input is more

detailed, it still involves considerable oversimplification, particu-
larly with respect to the time-course with which featural informa-
tion becomes available. Critically, this approach depends on a
largely untested set of assumptions about what evidence the lis-
tener can extract about different features (and hence phonemes) in
any stretch of input.

A second option is to construct a model that takes the raw
acoustic waveform as its input. Both TRACE I (Elman and Mc-
Clelland, 1986; McClelland & Elman, 1986) and SpeM (Scharen-
borg et al., 2005) take this approach. A limitation of this method,
once again, is that there is little reason to believe that there will be
a close mapping between the acoustic-phonetic processes and
representations in these models and those used by human listeners.
Scharenborg et al., for example, derive phonemic representations
with a conventional hidden Markov model phone recognizer, as
used in ASR systems. To the extent that this recognizer deviates
from human behavior, the results of the SpeM model as a whole
could be misleading.

A third alternative is to accept that it may be premature to expect
to produce a well-motivated model of the early stages of speech
recognition and, instead, to try to simulate these processes using
data from human phoneme or word confusions (e.g., Luce &
Pisoni, 1998). Even though this approach sidesteps the question of
how the early stages of recognition operate, it enables one to
present later stages of a model with input that corresponds more
closely to the input that would be received from the human
perceptual system. For example, if listeners have more difficulty
discriminating one pair of phonemes than another, then the input to
the model should reflect that difference. Luce and Pisoni (1998)
have used this procedure to great effect in the NAM to explain a

The cat a log in a lie

cattle 

catalogue inner 

library 

eye 

login 

The cat a log in a lie 

cattle

catalogue inner 

library 

eye 

login 

TR

Figure 1. Recognition of the phrase “The catalogue in a library,” as spoken by speaker of British English:
/ðəkætəlɒgInəlaIbrI]. The upper panel shows the competitive inhibition process that occurs among activated
candidate words in an interactive-activation model, such as Shortlist A. Words that compete for the same stretch
of input inhibit each other via direct, bidirectional inhibitory connections. Only a subset of the best-matching
candidates is shown. The lower panel illustrates the path-based search through a word lattice used in automatic
speech recognition and Shortlist B. Paths connect sequences of lexical hypotheses from a root node (R) to a
terminal node (T); not all paths or words are shown. The dashed and dotted arrows are examples of connections
between noncontiguous words (see text for details).
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wide range of data on lexical neighborhoods and word frequency
in tasks such as perceptual identification and lexical decision.

The confusion data driving the NAM is derived entirely from
errors that listeners make in identifying words in noise (see also
Benki, 2003; Miller & Nicely, 1955; Pickett, 1957; Wang &
Bilger, 1973). This is a significant limitation because most of the
psycholinguistic data one would wish to model are collected under
relatively noise-free listening conditions. These confusion data
also provide no information about how listeners accumulate per-
ceptual evidence as the acoustic waveform arrives over time. This
is again a serious problem because many aspects of the word-
recognition data to be modeled concern the time-course of lexical
processing and the speed of responding in RT tasks.

The input to Shortlist B is similar in spirit to that in NAM, in the
sense that it too is based on perceptual confusion data. But, unlike
the data used by NAM, those data are not based on identification
of words in noise and do provide information about how confu-
sions change over time. Specifically, they are derived from a
gating task in Dutch (Smits, Warner, McQueen, & Cutler, 2003;
Warner, Smits, McQueen, & Cutler, 2005). These gating data
provide fine-grained information about how listeners accumulate
perceptual information from the speech signal over time. These
data are also very extensive in that they cover confusions about
almost all possible diphones in Dutch.

Given the Bayesian principles of Shortlist B, its input should
consist of probability values rather than, for example, phoneme
activations. The confusion data from the gating task are ideal in
this regard. As will be described in more detail later, it is straight-
forward to derive, from the responses of the listeners in the gating
task, a sequence of multiple phoneme probabilities over three time
slices per segment. This forms the input to the word-recognition
process in the new model.

Shortlist B

In summary, Shortlist B makes two significant advances over its
predecessor. First, the new model is based on Bayesian principles
rather than on interactive activation. These principles, based on
path probabilities rather than simple word probabilities, are applied
to the problem of word recognition in continuous speech. Second,
the input to the new model is based on phonetic confusion data,
derived from a large-scale gating study. Thus, in contrast to
Shortlist A, Shortlist B has a much more realistic input.

We will show that the new model can simulate key findings in
spoken-word recognition. These results establish the viability of
Shortlist B and, perhaps more importantly, show how a Bayesian
perspective can offer valuable insights into the problems of speech
recognition. For example, Shortlist B offers new and principled
accounts of word frequency effects and the effects of perceptual
match and mismatch. First, however, we present the model itself.

Bayesian Assumptions

Basic Equations

The most important equation is Equation 2, which specifies how
to compute the conditional probability of each word given the
evidence. In Equation 2, P(Wordi) represents the listener’s prior
belief, before any new perceptual evidence has been accumulated,

that Wordi will be present in the input. In all of the simulations
reported here we assume that P(Wordi) can be approximated by the
word’s frequency of occurrence in the language. However,
P(Wordi) will also be influenced by factors outside the scope of the
present model, such as semantic or syntactic context.

P(Evidence|Wordi) is calculated from the evidence for sublexi-
cal units of representation. Spoken-word recognition appears to be
mediated by the recognition of phonologically abstract sublexical
units at a prelexical level of processing (Healy & Cutting, 1976;
Massaro, 1975; McNeill & Lindig, 1973; McQueen, Cutler, &
Norris, 2006; Scharenborg et al., 2005). A number of units could
serve this function, including (bundles of) features, phonemes, and
position-specific allophones. It remains to be determined which of
these alternatives is the most plausible. In Shortlist B, as indeed in
Shortlist A, we make the assumption that these units are pho-
nemes. It is important to stress, however, that this is only a
working assumption; we have no reason to commit to phonemes as
the prelexical unit of representation. The following arguments, and
the implementation of Shortlist B, do not depend on the phonemic
status of the prelexical representations, only that there is a prel-
exical stage of processing involving abstract sublexical represen-
tations of phonological form that mediates between the speech
signal and the mental lexicon. The choice of phonemes as units is
also constrained by the choice of the diphone database as input to
the model.

Given the assumption of prelexical phonemes, therefore,
P(Evidence|Wordi) is derived from phoneme probabilities that, in
turn, using Bayes’s theorem, are derived from phoneme likeli-
hoods. First:

P(Phonemei�Evidence)

�
P(Evidence�Phonemei) � P(Phonemei)

�
j�1

j�m

P(Evidence�Phonemej) � P(Phonemej)

(3)

where m is the number of phonemes in the language. The likeli-
hood of Wordi is then given by the product of the probabilities of
the phonemes in that word, P(PhonemeStringi):

P(Evidence�Wordi) � P(PhonemeStringi)

� �
j�1

l

P(Phonemej�Evidence) (4)

where l is the length of the word. P(Word|Evidence) is then
computed as follows:

P(Wordi�Evidence) �
P(PhonemeStringi) � P(Wordi)

�
j�1

j�n

P(PhonemeStringj) � P(Wordj)

(5)

Note that these computations do not take directly into account any
statistical dependencies among phonemes (e.g., differences in their
transition probabilities). In the case of word recognition, however,
these dependencies are built into the lexicon (words with common
sequences will tend to have many lexical neighbors). Sequential
dependencies will thus modulate word recognition as a function of
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the influence of similar-sounding words on P(Word | Evidence);
see Equation 5. As we will see later, Shortlist B can indeed
simulate the negative effects of large and dense lexical neighbor-
hoods on word recognition (Luce & Pisoni, 1998; Vitevitch &
Luce, 1998, 1999). But if the task is phoneme identification or the
input does not consist of a word, one might also want to take
account of sequencing constraints. It has indeed been shown that
listeners are sensitive to phonotactic constraints (Massaro & Co-
hen, 1983b) and phoneme transition probabilities (Pitt & Mc-
Queen, 1998) in phonetic categorization and that transition prob-
ability effects are different for words and nonwords (Vitevitch &
Luce, 1998, 1999). A more complete model would therefore in-
clude modulation of the computation of P(PhonemeString) as a
function of transition probabilities. In the current version of Short-
list B, however, the probability of each phoneme in an input string
is computed independently of all other phonemes in that string.

Phoneme Likelihoods

Phoneme likelihoods—that is, P(Evidence|Phoneme); see Equa-
tion 3—are an essential component of the Bayesian theory under-
lying Shortlist B. Implicit in the use of Bayes’s theorem is the idea
that a particular input signal might possibly have been generated
by more than one phoneme, that is, that there is some ambiguity in
the input. If the input were unambiguous, it would correspond to a
sequence of phonemes, each of which having a probability of 1.0.
A single word would therefore also have a probability of 1.0, and,
at least in the case of isolated word recognition, successful word
recognition would be a rather trivial consequence of phoneme
recognition. The speech signal, however, is inherently ambiguous.
First, there is variability in the way phonemes are realized. A given

acoustic signal can be a possible realization of more than one
phoneme (e.g., Sawusch & Jusczyk, 1981). Second, ambiguities
can be introduced by noise in the environment. Additional ambi-
guities could arise as a consequence of noise within the perceptual
system itself.

In all of these cases a particular signal presented to the word-
recognition process might have been generated by more than one
phoneme. Figure 2 illustrates this by considering an idealized case
where there are only two phonemes, A and B, that differ along a
single perceptual dimension, I. I is a continuously valued variable
whose probability distribution for a particular phoneme is given by
the density function f(I|Phoneme). Figure 2 shows the probability
density functions (pdfs) of the values of tokens of the two pho-
nemes on that dimension. The broader distribution for phoneme B
indicates that the realization of phoneme B is much more variable
than the realization of phoneme A. Given the input Ix, the proba-
bility that the input is PhonemeA is given by Equation 6:

P(PhonemeA�Ix)

�
f (Ix�PhonemeA) � P(PhonemeA)

�
i�1

i�n

f (Ix�Phonemei) � P(Phonemei)

(6)

where f(Ix|Phonemex) corresponds to the height of the pdf at Ix and
n is the total number of phonemes. f(Ix|Phonemei) is called the
likelihood function of Phonemei. When different phonemes are
being compared on the basis of Ix, it is the ratio of the phoneme
likelihoods that influences the revision of the prior probabilities (as
shown in Equation 6). In general, of course, different speech

lik
el

ih
o

o
d

phoneme A

Ixperceptual input: j
phoneme B

Figure 2. Illustration of possible probability density functions of two phonemes on a perceptual dimension I.
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sounds are likely to vary on multiple physical or perceptual di-
mensions. In this case the variance of the likelihood functions in
the different dimensions will determine how the evidence from the
different dimensions is weighted. Because they are more diagnos-
tic, dimensions with small variance will have a greater influence
than more variable dimensions.

The underlying assumption here, therefore, is that listeners are
able to learn the likelihood functions for recurring units (e.g.,
phonemes) in their language. This is exactly the same assumption
that underlies the use of Hidden Markov Models in ASR and is
similar to the proposals for episodic theories of speech recognition
presented by Johnson (1997a; 1997b) and Pierrehumbert (2002),
although these theories are not expressed in terms of Bayes’s
theorem. There are several ways that listeners could learn to
characterize the likelihood functions of phonemes. For example,
each phoneme might be described in terms of Gaussian distribu-
tions over each perceptual dimension. Whatever way this learning
may be implemented, the central assumption is that listeners have
knowledge about the likelihood that speech-sound categories are
associated with particular perceptual events. The foundations of
this learning are put in place in the first year of life (Maye, Werker,
& Gerken, 2002; Werker & Tees, 1999). However, the listener’s
estimate of the likelihood function should not simply represent the
aggregate of past experience but should be updated in the light of
new experience. As we will see later, adjustments can still be made
even in adulthood.

A complete implementation of a Bayesian model of spoken
word recognition would compute phoneme probabilities in the
manner described above. Unfortunately, however, we have no
direct access to the representations of the likelihood functions that
listeners have acquired and, therefore, cannot estimate
f(Evidence|Phoneme), especially not across the multitude of per-
ceptual dimensions along which speech sounds vary. Indeed, we
cannot even be sure what all the relevant perceptual dimensions
may be. The only practical solution available, therefore, was to
find a way of estimating phoneme probabilities, while still pre-
serving the key theoretical assumption that listeners acquire
knowledge of phoneme likelihoods. The solution in the implemen-
tation in Shortlist B was to take advantage of the perceptual
confusion data from Smits et al. (2003). The listeners’ identifica-
tion responses are used to estimate directly P(Phonemei|Evidence),
and hence P(Evidence|Wordi); see Equation 4:

P(Evidence�Wordi)

� �
j�1

l

P(RespondPhonemej�StimulusPhonemej) (7)

where P(RespondPhonemej | StimulusPhonemej) is the probability
that the listeners identified the jth phoneme in the input as the jth
phoneme in the word. We specify in more detail below how
phoneme probabilities are derived from the perceptual confusion
data.

NAM and Shortlist B

Equation 7 has the same form as the Stimulus-Word-Probability
equation of Luce and Pisoni (1998), and inserting Equation 7 into
Equation 2 makes the latter take on the same form as Luce and

Pisoni’s Frequency-Weighted Neighborhood Probability Rule
(FWNPR). However, despite the superficial similarities, the inter-
pretation of these equations is different in NAM and Shortlist B.
First, in Shortlist B all of these probabilities depend on the as-
sumption that listeners are able to compute the likelihood
f(Evidence|Phoneme). This is central to our claim that listeners are
behaving as optimal Bayesian recognizers. As we will show later,
this has important implications for our analysis of perceptual
match and mismatch. Thus, although our use of the confusion data
from the diphone database is similar in spirit to the use of confu-
sion data in the NAM and this leads also to a computation based
on response probabilities (Equation 7), it is important to stress that
these similarities concern the way Shortlist B has been imple-
mented and not the underlying theory. In other words, if we did
have access to listeners’ likelihood functions, there would be less
similarity between the models. The core assumption that listeners
compute phoneme likelihoods is not made in the NAM.

Second, in Shortlist B the left-hand term in Equation 5 is a
posterior probability. In contrast, Luce and Pisoni (1998) interpret
their corresponding equation as being an application of the R. D.
Luce (1959) choice rule. That is, the FWNPR estimates P(ID), the
probability of correctly identifying a stimulus word. A response
probability is not the same as the posterior probability of a hy-
pothesis given the evidence. For example, in the NAM, if P(ID) �
0.95, this implies that the listener will respond with the stimulus
word 95% of the time. Shortlist B, however, employs the optimal
Bayesian decision rule; and thus, if P(Wordx|Evidence) � 0.95,
Shortlist B will always respond with Wordx because Wordx has the
maximum posterior probability.

The NAM and Shortlist B therefore have important similari-
ties—in particular the use of perceptual confusion data, weighted
by word frequency, and the use of a relative evaluation metric.
Both models are based on the key idea that optimal word recog-
nition depends on the combination of bottom-up evidence and
prior lexical probabilities. Finally, as we will see later, contextual
information is considered to influence lexical priors in Shortlist B
just as word frequency does. This assumption was also prefigured
by the NAM. But the NAM and Shortlist B also have fundamental
differences—only Shortlist B is strictly Bayesian, and only Short-
list B is designed to recognize words in continuous speech.

Continuous Speech

In themselves, Equations 2 and 7 are not sufficient to assign
probabilities to words in continuous speech. Even if a word
matches the input extremely well, it will not be recognized if it
overlaps with competitors or is not, with other words, part of a path
through the input which fully accounts for that input. Furthermore,
we cannot simply try to calculate probabilities by comparing a
word only with other words that it overlaps with. Those words
may, in turn, overlap with yet other words that influence their
probabilities. What we need is a measure of word probability that
takes account of whether or not the word is on a high or low
probability path. For that we first need to calculate path probabil-
ities.

Given any possible path (string of phonemes), the probability of
observing that path will largely be determined by the product of
the probabilities of the phonemes on the path. But because paths
are also sequences of words, we must also take into account the
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fact that some sequences of phonemes (those consisting of con-
catenations of higher frequency words) will be more likely than
others. As shown in Equation 8, therefore, path likelihoods are
based on word likelihoods. The likelihood of a path is given by:

P(Evidence�Pathi) � �
j�1

w

P(Evidence�Wordj) � P(Wordj) (8)

where w is the number of words in the path. The probability of
each path is then given by normalizing over the sum of the path
likelihoods:

P(Pathi�Evidence) �
P(Evidence�Pathi)

�
j�1

j�p

P(Evidence�Pathj)

(9)

where p is the number of paths through the lattice.
P(Wordi|Evidence) is then given by summing the
P(Pathi|Evidence) for all paths in which that word occurs in that
position:

P(Wordi�Evidence) � �
j�1

j�n

P(Pathj�Evidence) (10)

where n is the number of paths the word lies on. This means, for
example, that if there were two paths with the same probabilities,
both of which contained the same word in the same position, the
word probability would be twice what it would be if it appeared on
only one of those paths.

We can now summarize the chain of probability estimations in
Shortlist B that lead to the estimates of the probability of individ-
ual words given a continuous speech input, that is,
P(Wordi|Evidence). P(Evidence|Wordi) is derived from the di-
phone database using Equation 7, and P(Wordi) is derived from the
frequency of occurrence counts in the CELEX database (Baayen,
Piepenbrock, & Gulikers, 1995). These terms, across multiple
words and paths, influence P(Path|Evidence), as in Equations 8
and 9. Finally, P(Path|Evidence) determines P(Wordi|Evidence),
via Equation 10.

Consequences of Bayesian Assumptions

Several things follow from this Bayesian path-based approach.
First, if there is only one path with a nonzero likelihood,
P(Path|Evidence) will have a probability of 1.0, and all words on
that path will have a probability of 1.0. This follows from the fact
that what we are doing here is deriving the probability of words,
given that the input really is a sequence of real words. If a path is
the only possible one that is consistent with the input, then its
probability, and the probability of all words on that path, must be
1.0, regardless of how well the words fit the input. The model thus
follows the advice of Sherlock Holmes with which we began this
article: “How often have I said to you that when you have elimi-
nated the impossible, whatever remains, however improbable,
must be the truth?” (Doyle, 1890, Ch. 6, p. 93). One might object
that the word probability derived from path probabilities takes no
account of the fact that listeners obviously can judge the goodness
of a particular token of a word, even when there is no doubt as to

which word is presented. The fact that listeners can make judg-
ments about goodness of fit does not imply, however, that these
judgments are based on exactly the same information as that used
to determine recognition. For example, goodness of fit might be
based on likelihoods (P(Input|Word). In effect, when a listener is
presented with a word that is poorly articulated, they might be in
a position to be completely certain what the word must be but, at
the same time, be certain that this is an unusual exemplar of that
word.

Second, although all words on a path can have a probability of
1.0, this does not mean that the model always behaves in a
winner-takes-all fashion. For example, if paths differ only in terms
of two words with nonzero probabilities, the final probability of
the better matching word will be reduced because of the presence
of its competitor. This illustrates the fact that although the model
does not have direct inhibition between alternative lexical candi-
dates as in the original Shortlist model (and TRACE), there is,
nevertheless, a form of lexical competition. The more probable one
word is, the less probable overlapping words will be.

Third, a strictly Bayesian approach requires the computation of
exact probabilities. In order to assign exact probabilities2 to words
we would need to calculate all possible paths through the lattice,
because the denominator in Equation 9 corresponds to the sum of
the probabilities of all paths. In fact, the denominator is equivalent
to P(Evidence), the probability of observing that particular input.
In ASR systems, it is generally impractical to calculate all paths, so
only the best few paths are computed. Because the main require-
ment is simply to identify the best path, there is little need to assign
meaningful probability values to either the paths or the words. This
is fortunate because the total number of possible paths can be
enormous, in part because of limitations in the performance of the
phoneme or word recognition techniques used. Another reason for
the large number of possible paths is that it is often necessary in
ASR to compare paths containing overlapping tokens of the same
word or phoneme beginning at slightly different times, and this
leads both to more paths and to problems in pooling evidence from
the same words on different paths. (Note that these problems do
not arise here, because, in Shortlist B, all phoneme and word
candidates are aligned with fixed phoneme boundaries.) ASR
systems, therefore, are usually designed to discover the path (se-
quence of words) that is most likely to have produced the observed
input, that is, they use maximum likelihood methods that are
designed to find the path that maximizes P(Evidence|Path). For
this, only the best few paths need to be computed. In some ASR
applications, however, it is helpful to be able to assign confidence
measures to individual words, and various techniques have been
developed to approximate Bayesian word probabilities (cf. Bouw-
man, Boves, & Koolwaaij, 2000; Wessel, Schlueter, Macherey, &
Ney, 2001).

2 There is a long-running philosophical debate among Bayesians con-
cerning whether probabilities are subjective or objective. People must
necessarily operate on the basis of subjective probabilities; but, for the
purposes of exposition, we also assume that the subjective probabilities
approximate objective probabilities that could be calculated from empirical
data. However, we acknowledge that in the context of natural language, it
is unlikely to be possible to compute exact objective probabilities.
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We adopt the same pragmatic approach in Shortlist B. In prac-
tice there is no need to consider words and paths with very low
probabilities, as these will not make a significant contribution to
the probabilities of more likely candidates. In fact the simulations
to be described later are set up so that we can limit the number of
candidate words starting at each position, exactly the constraint on
which the name of the original Shortlist model was based. These
hard limits on the candidate set in Shortlist B are purely for
practical convenience, however: They allow the simulations to run
more rapidly. Nevertheless, the idea that only a shortlist of candi-
dates is considered at any point in time is more strongly motivated
in the new model than in Shortlist A. Even if there were no
practical limit imposed on set size, the Bayesian computations
would guarantee that low probability words (and paths) effectively
remove themselves from the running, so that only the shortlist of
best candidates influences recognition performance.

A fourth consequence of the Bayesian approach in Shortlist B is
that unknown words require special treatment. As described so far,
an assumption behind our use of Bayes’s theorem is that the input
consists of a sequence of known words. For the posterior word
probabilities in the model to have a direct interpretation as real
probabilities, the input must be interpreted as a sequence of known
words in the lexicon, where the probability of each input word is
the same as its prior probability (i.e., the frequency as indicated in
the lexicon). But clearly there will be occasions when the input (or
part of it) will not consist of words in the lexicon. The input may
contain, for example, a genuinely unknown word (such as a
foreign name) or a word that is so badly mispronounced as to be
unrecognizable. Under these conditions the product of the candi-
date word probabilities on all paths will be zero. Consequently, a
single unrecognizable word could prevent recognition of any word
in the utterance.

The problem here is that the model’s prior belief is wrong: the
input will not always be a sequence of known words, properly
pronounced. As noted earlier, a Bayesian system (listener or
model) will only make optimal decisions to the extent that prior
beliefs accurately reflect the structure of the real world. The set of
hypotheses under consideration must therefore be extended be-
yond the set of known words in the language. The model has to
consider the hypothesis that the input is not a known word. We will
refer to such hypotheses as dummy words. The dummy word
serves a similar function to the garbage model used in ASR
systems. A dummy word is a hypothesis that matches any stretch
of the input to some extent. Dummy words can therefore fill in the
gaps in incomplete paths (e.g., the paths including dotted and
dashed arrows in the lower panel of Figure 1). This means that
there will always be at least one complete path with a finite
probability. Now consider what will happen when a nonword is
inserted into a sentence. Assume that all paths pass through the
nonword. The raw accumulated path scores of all paths would
therefore be multiplied by the probability of the dummy word.
Actual path probabilities depend on the ratio of a given path score
to the sum of the path scores for all paths (Equation 9). As both the
numerator and denominator of Equation 9 will be multiplied by the
probability of the dummy word (cf. Equation 8), the effect of the
dummy probability will cancel out, and the final word probabilities
in any given path will therefore be unaffected by the presence of
the nonword. In practice, it would be almost impossible to insert a
nonword into a sentence without creating additional paths, but this

example does illustrate how the use of a dummy word can make a
path-based system behave robustly when faced with unknown
words. Without the dummy word, Shortlist B would have the
wrong prior beliefs and would make the wrong decisions.

The dummy word has two other important functions. First, as
we discuss in detail when we present the simulations, the dummy
plays a critical role in word segmentation. Second, it can be used
to perform lexical decision. If a listener in a lexical-decision
experiment is presented with a nonword, the only fully spanning
path will contain a dummy word. The listener can therefore judge
whether a stimulus is a word or not simply by determining whether
the best path contains a dummy word (or is a dummy word). If a
path containing a dummy word is much more probable than paths
consisting only of words, the stimulus is a nonword; otherwise it
is a word. The general procedure for performing lexical decisions
using Bayesian techniques is discussed in more detail in Norris
(2006). Although that article deals only with the case of visual
word recognition, the principles apply equally to spoken word
recognition.

At this point, we should note that the dummy words, and lexical
candidates in general, are all tokens representing phonological
forms. A lexical candidate represents the hypothesis that the input
corresponds to at least one word in the lexicon with that phono-
logical form. If the phonological form matches more than one
lexical entry (i.e., homophonous words), higher-level syntactic,
semantic, or contextual information would have to be brought to
bear to determine the appropriate interpretation of that phonolog-
ical form. A dummy word represents the hypothesis that a partic-
ular sequence of segments does not correspond to any word in the
lexicon.

Model Input: The Diphone Database

The input to Shortlist B is derived from a database of perceptual
confusions collected in a gating task (for discussion of the gating
task, see Grosjean, 1996). Smits et al. (2003) presented Dutch
listeners with 2,294 diphone sequences in Dutch—effectively all
possible diphones in the language (1,179 different diphones se-
quences, most recorded in multiple stress contexts). Each diphone
was presented at six gates, corresponding roughly to each third of
each of the two phonemes in the diphone. On each trial, listeners
were presented with one of the six possible gates of one of the
diphones and were required to identify both phonemes of the
diphone as members of the standard inventory of 38 Dutch speech
sounds. All stimuli were presented in pseudorandom order such
that listeners never heard the same diphone on successive trials.
That is, listeners were not exposed to each diphone gated incre-
mentally. A detailed statistical analysis of the pattern of confusions
obtained is presented in Warner et al. (2005).

The data from this gating task tell us, for each input phoneme,
in each diphone context, what the probability is that that phoneme
will be identified as each possible Dutch phoneme. This database
therefore has three major advantages over other confusion data.
First, it gives information about how confusions change over time.
Second, it tells us how confusions for a particular phoneme vary
according to their phonetic context (i.e., as a function of the other
phoneme of the diphone). Finally, at gates corresponding to the
first phoneme in the diphone (Gates 1–3) it tells us how coarticu-
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latory information present during that phoneme can start to specify
the identity of the upcoming phoneme.

Computing Probabilities from the Diphone Database

There are 37 phonemes in Shortlist B, 22 consonants and 15
vowels. There were 16 vowels in the stimulus and response sets in
the diphone identification experiment, but, as discussed by Smits
et al. (2003), the vowels /ə/ and /�/] effectively formed a single
category in the listeners’ responses. One vowel, /}/, thus represents
this compound category both in the diphone database and in
Shortlist B. The phoneme inventory of the model is listed in
Appendix A. The input for any simulation consists of a sequence
of these phonemes (and, optionally, a silence marker, “[“).Unless
noted otherwise, examples throughout this article of input to the
model and output from it will be based on the machine-readable
(DIstinct Single Character; DISC) transcriptions used by the model
rather than IPA transcriptions.

We assume that the average responses of the listeners in the
gating experiment correspond to the output of prelexical process-
ing. Any phonotactically legal sequence of phonemes can be
represented as a concatenation of diphones. We can therefore use
the database to estimate the similarity of phoneme sequences of
arbitrary length to any word in Dutch. For each phoneme at a
particular gate and in a particular diphone context, we know the
probability that listeners will identify that phoneme as each pos-
sible phoneme, that is, P(RespondPhonemej | StimulusPhonemej),
as required for Equation 7.

The prelexical stage of processing is therefore simulated by
retrieving these conditional probabilities from the diphone data-
base. These probabilities then form the input to the word-
recognition component of the model. Posterior word probabilities
are derived from this input (and from the prior word probabilities)
using Equations 7–10. These computations are carried out cycli-
cally for each of the three gates within each phoneme.

For all but the first and last phoneme in a sequence, the diphone
database provides two estimates of phoneme confusability. Con-
sider, for example, the case where a single consonant-vowel-
consonant (CVC) word, p1p2p3, is presented. The word can be
represented by the overlapping diphones /p1,p2/ and /p2,p3/, with
each diphone corresponding to six gates. For the vowel p2 (and,
more generally, any nonterminal phoneme) we therefore have
responses to overlapping gates contributed from both diphones.
The probabilities used in the calculations in Shortlist B are derived
by taking the maximum of the probabilities from each pair of
overlapping gates, and then renormalizing those values so that they
sum to 1.0. Using another procedure, such as taking the average
probability or always using the probability for either the first or
second diphones, would make little difference to the behavior of
the model. The most reliable evidence for a given phoneme usually
comes from the response at the last gate of the diphone where that
phoneme is the first half of that diphone. As the final phoneme of
a word is necessarily the final phoneme in a diphone, however,
there is no option for word-final phonemes but to use the proba-
bility derived from the last gate of the final diphone (i.e., where
that phoneme is the second half of that diphone).

As a concrete example, the probabilities of correctly identifying
the phonemes of the input /b}s/ (the Dutch word meaning “bus”)
are shown in Table 1. The sharp increase in the probability of

correctly identifying the /}/ between gates 3 and 4 (and the /s/
between gates 6 and 7) is typical of the database (see Figures 1–3
in Smits et al., 2003). This corresponds to the point where the input
changes from providing information based on anticipatory coar-
ticulation alone to providing information from the segment itself
(e.g., gate 3 is the last gate of the /b/, containing the stop release
burst, with relatively little information about the upcoming vowel,
while gate 4, in contrast, is the first third of the vocalic portion of
the vowel itself). This example also illustrates that the probability
of the correct phoneme can sometimes go down as well as up. Note
also that once the diphone containing a particular phoneme has
finished (e.g., gate 6 for /b/), the probability of the phoneme
remains fixed at its final value throughout the rest of the input.

P(Evidence|Word) for the word /b}s/ is given by multiplying the
phoneme probabilities over the row corresponding to the current
gate. At Gates 1–3, therefore, the probability is determined by only
the first two phonemes. If the input really is the word /b}s/ then,
after two phonemes, P(Evidence|Word) is given entirely by the
probabilities of those two phonemes.

Limitations of the Diphone Database

Although using the diphone database to generate the input to a
model of speech recognition represents a considerable advance
over Shortlist A, it still has a number of limitations. The first is that
the procedure for collecting the diphone confusions allowed par-
ticipants as much time as they liked to make responses (perfor-
mance on the task was self-paced, and participants were not put
under any time pressure). This means that the data indicate how
much information listeners can potentially extract from a stimulus
of a particular duration, but this will not necessarily be an exact
reflection of how much information they have extracted at the time
the stimulus ends. It seems reasonable to assume that there must be
some lag between presentation of the input and complete percep-
tual processing of the input. If this lag were constant for all stimuli,
it would not really be a source of concern. It seems more than
likely, however, that some speech sounds will take longer to
process than others. Because this is not captured in the diphone
data, there is almost certainly an undesirable source of error in the
simulations.

Another element of noise in the diphone data is that, although
listeners in the gating study performed extremely well, they were

Table 1
The Probabilities of Identifying /b/, /}/, and /s/ Across the Nine
Gates (Three per Phoneme) of the Input /b}s/; There Are No
Values for P(s) During the First Three Gates as the Data There
Come Only From the Diphone /b}/

Gate P(b) P(}) P(s)

1 0.53 0.12
2 0.70 0.07
3 0.94 0.19
4 0.83 1.00 0.30
5 0.94 0.92 0.08
6 0.86 0.92 0.06
7 0.86 0.92 0.94
8 0.86 0.92 0.97
9 0.86 0.97 0.97
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not perfect (they were approximately 90% correct on final gates
overall; Smits et al., 2003). There are many reasons for this,
including errors arising from ambiguities in the speech materials,
errors due to perceptual noise, and random errors in participants’
responses. It is impossible to distinguish among these types of
error or, especially at early gates, between errors and the percep-
tual confusions we are interested in here. The high overall accu-
racy rates, and the orderliness in the diphone data (Smits et al.,
2003; Warner et al., 2005) indicate that there are relatively few
such errors, but those that are in the database cannot be avoided;
they can only be passed on to the model.

There is also no noise or moment-by-moment variability in
processing in Shortlist B. This makes it hard to simulate both RT
and error rate together. Later we will present simulations using a
variant of the model based on the stimulus sampling mechanism
used in the Bayesian Reader (Norris, 2006). In this version of the
model, the same input can generate different response probabilities
on different trials. These simulations show that it is possible to
give a principled account of how a Bayesian model should operate
with noise in perceptual processing. Unfortunately it is not yet
practical to do this with the diphone input. For these later simu-
lations we will therefore have to use hand-crafted input.

Model Overview

The processing architecture of Shortlist B is the same as that of
Shortlist A. Specifically, there is in both models a prelexical and a
lexical level of processing, and information flows forward from the
prelexical to the lexical level but not back from the lexical to the
prelexical level during on-line processing. The two models also
agree with respect to key representational assumptions. In Shortlist
A, prelexical representations are phonemes, whereas in Shortlist B
the prelexical level outputs phoneme probabilities. Furthermore,
lexical representations in both models are phonologically abstract
(they are strings of phonemes in both cases). Importantly, both
models also make a distinction between type representations of
words (lexical representations stored in long-term memory) and
token representations of words (those standing for current hypoth-
eses about what is being heard). Thus, in common with the token
word units that are wired on the fly into the lexical network of
Shortlist A, the word nodes in the word lattice of Shortlist B are
also all temporary token representations. Token representations are
necessary so that multiple versions of the same word can simul-
taneously stand for hypotheses that instances of that word appear
at different locations in an utterance (see Norris, Cutler, McQueen,
& Butterfield, 2006).

Word recognition proceeds phoneme by phoneme and within
each phoneme using the data from the diphone database, gate by
gate. At each gate, the model performs the following sequence of
operations to compute word probabilities:

1. Derive phoneme probabilities from the diphone responses
corresponding to that gate.

2. For every segment, calculate P(Evidence|Word) for all words
beginning at that segment according to Equation 7.

3. Construct or update the word lattice.
4. Calculate path probabilities according to Equations 8 and 9.
5. Sum word probabilities over paths to compute

P(Word|Evidence) for all words, as in Equation 10.
6. Input next gate and return to Step 1.

Some additional housekeeping during the simulations is also
required. The number of word candidates considered at any one
phoneme (candidates always start on a phoneme boundary) is
limited to 50. When this limit is exceeded, the lowest scoring
candidate words are eliminated. Similarly, there is a limit of 500
paths, so low-scoring paths are pruned when this limit is passed.
These limits are quite generous and the model performs almost
identically with much smaller or larger numbers of phonemes,
words, or paths.3 These limits are therefore not free parameters,
strictly speaking. In its basic form, the model is parameter-free,
and its behavior follows directly from Bayesian principles. How-
ever, as will be discussed below, the complete model requires five
free parameters, three that influence the model’s segmentation and
lexical decision performance, one that influences how it deals with
mispronunciations, and one that deals with aligning the model to
eye-tracking data. In principle these should not be free parameters
at all. The first four are all probabilities that should accurately
reflect the statistical properties of the input. In effect, they repre-
sent the model’s prior beliefs about the input and the task that is
being performed. These parameters have fixed values across the
simulations we report; it was thus unnecessary to adjust these
values for each specific simulation nor, indeed to, choose the
particular values we use here (the model is stable across a range of
values). The fifth parameter is required to link the model to the
eye-tracking behavior. It simply shifts model output relative to the
data by a fixed amount, as motivated by the literature (see below).
It too is therefore not truly a free parameter.

Simulations

Shortlist B will now be evaluated via five sets of simulations. In
most simulations the model was run on an actual or possible set of
items from a listening experiment, and the model’s performance
was averaged over those full item sets. In a few cases, however, the
model was run on a single input in order to explicate an aspect of
its operation. The simulations are designed to reflect, as transpar-
ently as possible, the underlying principles of the model and the
way it is influenced by the properties of the diphone database.
Therefore, we have not added additional parameters or modifica-
tions to improve the fit of the model to particular data-sets.

All of the Shortlist B simulations use a lexicon of 20,250 Dutch
words. These word-forms, together with their frequency of occur-
rence, were extracted from the CELEX database (Baayen et al.,
1995). Phonemic transcriptions were adjusted where necessary so
that all words could be described in terms of the 37 phonemes in
the model’s inventory (see Appendix A). This involved collapsing
the vowels /�/ and /ə/ to /}/ (see above), and the voiced and
voiceless velar fricatives /x/ and /γ/ to one voiceless category /x/
(the voicing distinction for velar fricatives is preserved in CELEX,
but many Dutch speakers now neutralize the distinction (Gussen-
hoven, 1992); only the voiceless variant was therefore included in
the Smits et al., 2003, study). The lexicon consists of the 20,000

3 For example, in the first simulation we report, increasing the number
of candidates to 100, and the number of paths to 10,000, does not change
any of the calculated word probabilities by more than .02. Even reducing
the number of word candidates (excluding dummy words) and paths both
to 10 does not change the final probabilities of the critical words (plotted
in Figure 3b) by more than .0001.
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most frequent words in CELEX, plus 250 additional words that
were added as required for specific simulations (e.g., if an exper-
iment used a word which was not in the top 20,000). Like its
predecessor, Shortlist B is therefore able to simulate listeners’
performance across a range of actual items in an experiment, using
a realistically large lexicon.4

Recognizing Continuous Speech

The first critical test of Shortlist B is whether it can indeed
recognize words in continuous speech. As we have already argued,
any plausible model of spoken-word recognition must have a
means of segmenting the speech stream into words in the absence
of any segmentation cues. In interactive-activation models, such as
TRACE and Shortlist A, inhibitory competition among activated
lexical hypotheses has this role. We have suggested that path-
based Bayesian evaluation can serve the same function. Can Short-
list B therefore recognize words in continuous speech when no
lexical boundaries are marked?

A related question concerns the model’s ability to revise inter-
pretations on the basis of following context. A listener’s interpre-
tation of an utterance can certainly change in the light of informa-
tion arriving later in time (Bard, Shillcock, & Altmann, 1988;
Connine, Blasko, & Hall, 1991; Grosjean, 1985). To varying
degrees, the interactive activation networks in TRACE and Short-
list A allow them to account for these retroactive effects. In Norris
(1994), this was illustrated by presenting Shortlist A with the input
“shippingquiry.” This input first activates ship, but then shipping
dominates the activation landscape. When inquiry becomes
strongly activated, however, it competes with shipping, and the
interpretation of the input is finally revised to the correct segmen-
tation ship inquiry. That is, a word boundary is finally postulated
in the right place, even though the input to the simulation did not
mark that boundary in any way. An example like this thus serves
not only to test whether subsequent context can modulate word
recognition but also, more fundamentally, whether the model can
segment continuous speech.

Norris (1994) pointed out that the optimal interpretation of an
input like ship inquiry could be obtained by resetting the network
activations in Shortlist A after every phoneme. When activations
are reset, the network recomputes a near optimal interpretation of
the input taking both new and old information into account. If
activations are not reset, the network can lock into a state where
the high activations of words favored by the initial interpretation of
the input prevent that interpretation being revised by the later
context. Norris et al. (1995, 1997) showed that simulations of a
number of effects were more accurate when Shortlist A employed
an activation reset. Shortlist B also needs to recompute word
probabilities as path probabilities change over time. For example,
if a path reaches an impasse and its probability drops, then the
probabilities of all words on that path need to be modified, and this
will alter the final probabilities of all of the words on all other
paths. The need to recompute probabilities is an inevitable conse-
quence of the need to revise interpretations. The only alternative
(in any model) is to wait until the end of the utterance and then
perform a single computation. Given the strong evidence on the
continuity of spoken-word recognition (see McQueen, 2007, for
review), this alternative is very implausible.

In the first simulation, therefore, we tested Shortlist B on a
Dutch version of ship inquiry. We also took the opportunity to
compare the new model with the old. Furthermore, to facilitate
direct comparison between the new and old models and to high-
light the effect of word frequency on the new model, we also ran
simulations using the new model, but with the effect of frequency
disabled.

The input kar personen, cart people, was therefore presented to
Shortlist B and, using the same Dutch lexicon, to a version of the
1994 Shortlist A model. Like shipping in ship inquiry,
/kArp}rson}/ contains karper, carp. The results are shown in
Figure 3. For clarity, only a selection of candidates is plotted. In
both models many other words are considered.

At the broadest level, the two models produce similar output: the
same candidates are considered at the same times. The most
obvious difference between the two is that Shortlist B reaches a
completely unambiguous interpretation of the input: at the offset of
the input only the intended words have a probability greater than
0.01. In contrast, although the two intended words are activated
most strongly in Shortlist A, the unintended word /kArp}r/ is
almost as strongly activated as the intended word /kAr/ at the end
of the input. This has two causes. In Shortlist A, the activations are
partly determined by the amount of bottom-up evidence. The
longer word has more evidence than the shorter word, and this
partly compensates for the fact that /kArp}r/ is being inhibited by
both /kAr/ and /p}rson}/. A second factor is that the final inter-
pretation in Shortlist B is strongly influenced by frequency,
whereas there is no frequency effect in Shortlist A. The effect of
frequency can be seen most clearly in the comparison between
Figures 3b and 3c. /p}rson}/ ( personen, people) is much higher in
frequency than /p}rson/ ( persoon, person), and /kAr/ is higher in
frequency than /kArp}r/. The difference in probability between the
words on the /kAr/ /p}rson}/ parsing and their competitors is
therefore more extreme in the simulation incorporating frequency
than in the simulation without frequency.

Shortlist B can thus segment continuous speech successfully and
use following context to revise earlier interpretations.

Word Frequency

Spoken word recognition is strongly influenced by the fre-
quency with which a word occurs in the language (Connine,
Mullennix, Shernoff, & Yelen, 1990; Dahan et al., 2001; Howes,
1957; Luce, 1986; Marslen-Wilson, 1987; Pollack, Rubenstein, &
Decker, 1959; Savin, 1963; Taft & Hambly, 1986). However,
neither TRACE nor Shortlist A gives any account of how fre-
quency influences spoken-word recognition. Even though Dahan
et al. (2001) have investigated ways of incorporating frequency
into TRACE, there is no principled reason for preferring one of
those methods over another.

The Bayesian approach, in contrast, forces a specific account of
word frequency effects. The essence of Bayesian statistics is to use
evidence to revise prior beliefs. The expected frequency with
which a word occurs in the language generally provides our best

4 The source code for running Shortlist B simulations (and Merge B
simulations, see below) is available at http: http://www.mrc-cbu.cam
.ac.uk/�dennis/ShortlistB
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Figure 3. Patterns of lexical activation in Shortlist A (3A) compared with patterns of word probabilities in Shortlist
B (3B and 3C) given the input kar personen (“kArp}rson}”, ending with two silent segments “[[”). 3C shows
probabilities from Shortlist B with sensitivity to word frequency disabled (by setting all word priors to the same value).
Note that there is one input time slice per segment in Shortlist A, but three per segment in Shortlist B.
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initial estimate of the prior probability of encountering a particular
word. In the present simulations we simply assume that P(Word)
is given by the frequency of the word in the CELEX database. But
many factors other than frequency can alter the probability of
encountering a word in a particular context. The most obvious of
these are the local semantic and syntactic context. In ASR systems,
these contextual prior probabilities are usually incorporated into
what is known as a language model. Frequency itself is a unigram
language model. In the Bayesian approach, frequency and context
are therefore given a unified explanation.

Norris (2006) provides an in-depth discussion of the advantages
of a Bayesian interpretation of word frequency effects along with
a number of simulations of word-frequency effects in visual word
recognition. For example, he shows that the commonly observed
logarithmic relationship between identification time and frequency
(e.g., Whaley, 1978) falls directly out of a Bayesian model, even
though the model is driven by standard linear probabilities (as it
must be for Bayes’s theorem to be valid).

An important feature of the way frequency influences
P(Word|Input) in Bayes’s rule is how frequency trades off against
perceptual information. The better the perceptual information, the
less the effect of frequency (Luce & Pisoni, 1998). As the percep-
tual evidence for a word increases, the denominator in Equation 2
tends to become dominated by the frequency-weighted evidence
for that particular word. The overall probability of identifying the
word therefore asymptotes to 1.0, regardless of the frequency of
the word. That is, word frequency has a potentially large effect
when perceptual evidence is poor, but this decreases as the per-
ceptual evidence improves. This is a highly desirable state of
affairs. In the absence of reliable perceptual evidence, it makes
sense to be influenced by prior knowledge of the probability of the
word. In the limiting case, when there is no perceptual evidence,
frequency is the only available basis for responding. However,
once the perceptual evidence becomes completely unambiguous,
frequency should never override it. Because frequency and context
are treated identically in the Bayesian approach, in that they both
alter prior probabilities, the influence of context will also be
dependent on the reliability of perceptual evidence. Although
context will influence recognition when the perceptual evidence is
poor, context will never be able to override reliable perceptual
evidence. This provides the ideal way of taking full advantage of
contextual information without running the risk of hallucinating.

This interplay between perceptual and contextual information
has been studied extensively by Massaro and colleagues (Massaro,
1979; Massaro & Cohen, 1983a, 1983b; Massaro & Friedman,
1990; Massaro & Oden, 1995). The trade-off in Shortlist B be-
tween perceptual evidence on the one hand and frequency/
contextual evidence on the other has a direct parallel with a similar
trade-off in the FLMP model. Indeed, the “American football”
pattern (e.g., Massaro, 1987), where context plays a greater role in
the ambiguous region in the middle of a phonetic continuum than
at the unambiguous endpoints, has been taken as a kind of trade-
mark for the FLMP.

The Bayesian procedure for combining perceptual and fre-
quency information has significant advantages over other ways of
incorporating a frequency bias in models of word recognition. In
the logogen model (Morton, 1969), frequency is represented as a
constant additive bias on resting levels or thresholds. The effect of
frequency is to reduce the amount of perceptual evidence required

for recognition, regardless of the absolute amount of perceptual
evidence for either that word, or for any other word. This way of
incorporating a frequency bias into a model runs the risk that, if the
frequency bias is too strong, low-frequency words might never be
recognized. Forster (1976) pointed out that if a low-frequency
word has a high frequency neighbor, then the higher frequency
word could always have more activation than the low-frequency
word. This might be a particular problem in speech recognition
where many words do not become unique until their final pho-
neme. If the frequency bias were sufficient to make a high-
frequency word be recognized early, then low-frequency words in
the same cohort would be likely to be misidentified as the high-
frequency word. Equally badly, a very high-frequency word, if it
were embedded in a sequence of very low-frequency words, might
dominate its competitors and lead to a complete misanalysis of the
input. The Bayesian approach to word frequency in Shortlist B
avoids these problems.

Although this approach is an important feature of the new
model, there are no data on frequency using Dutch materials that
we can simulate directly. Instead, we illustrate the behavior of the
model by constructing sets of Dutch stimuli modeled as closely as
possible on the English stimuli used in experiments by Luce and
Pisoni (1998) and by Dahan et al. (2001). All subsequent Shortlist
B simulations will be of experiments carried out in Dutch. These
simulations therefore use the exact stimuli used in those experi-
ments.

Frequency and Neighborhood Effects

Luce and Pisoni (1998) reported a lexical decision experiment
(Experiment 2) where they orthogonally manipulated word-
frequency, neighborhood density, and neighborhood frequency of
CVC words. We selected eight sets of 34 Dutch CVC words that
mirrored Luce and Pisoni’s original English stimuli. The charac-
teristics of the English and Dutch stimuli are given in Table 2 and
Luce and Pisoni’s lexical decision data are shown in Table 3. The
frequency difference between high- and low-frequency words is
much smaller for our stimuli than for those of Luce and Pisoni.
This is because of the constraints imposed by matching our stimuli
closely across conditions. We thought it more important to produce
matched sets of stimuli than to equate our frequencies with those
of Luce and Pisoni.

The main points to note about their data are that there were
significant effects of both word frequency and neighborhood fre-
quency in both RTs and errors, but the effect of neighborhood
density was less consistent. For low-frequency words, the effect of
neighborhood density was inhibitory in RTs but facilitatory in
errors. The results of simulations using the Dutch stimuli are
plotted in Figure 4.

Shortlist B simulates the human data well. The probability of
high-frequency words is higher than that of low-frequency words.
In addition, there are smaller effects of both neighborhood fre-
quency (word probability is higher for words in low-frequency
neighborhoods) and neighborhood density (word probability is
higher for words in low-density neighborhoods). We confirmed
that these patterns were robust across items by performing an
analysis of variance on item probabilities for all input slices. The
effects of frequency (F2(1, 264) � 25.01, p � .0001), neighbor-
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hood frequency (F2(1, 264) � 7.37, p � .01) and neighborhood
density (F2(1, 264) � 4.00, p � .05) were all significant.

Luce and Pisoni (1998) did not in fact present any NAM
simulations of their lexical decision data. Simulations using NAM
would produce only a single probability value for each word.
Because the confusion data collected by Luce and Pisoni come
from identification in noise, phonemes are never identified with a
probability near 1.0. In NAM, factors such as lexical neighborhood
size and word frequency therefore have their effect on the overall
probability of correct identification. However, with some excep-
tions, listeners can identify the input very reliably by the end of a
diphone. Consequently, by their end, most words in Shortlist B are
identified almost perfectly, and competing words become com-
pletely inconsistent with the input. This means that almost all of
the interitem variability in Shortlist B occurs before the end of the
word, very much as it does in TRACE and Shortlist A. As can be

seen in Figure 4, the effects of frequency, neighborhood frequency,
and neighborhood density mainly influence how quickly the prob-
abilities rise over time and not their asymptotic value. A more
general point is that in longer stretches of input, most alternative
paths or interpretations of the input die out quite quickly, and there
are only multiple paths covering the last few phonemes on the
input. Informal observation suggests that multiple paths rarely
extend more than two words back. However, if the input is de-
graded in any way, multiple paths will become far more prevalent.
The effects of stimulus quality on identification can be seen in the
next simulation.

Word Frequency and Stimulus Quality

The Dutch words selected to match the stimuli used by Luce and
Pisoni (1998) can also be used to illustrate the way that the
influence of frequency in the Bayesian framework varies as a
function of the reliability of perceptual information. We can do this
by modifying the phoneme confusion probabilities. That is, we can
calculate the confusion probabilities that we would expect to
obtain if the listening conditions were to permit listeners to make
more accurate responses. The details of the procedure are given in
Appendix B. Figure 5 shows simulations averaged over all high-
and all low-frequency words. The upper panel shows the separate
probabilities for high- and low-frequency words with both the
empirically determined confusion probabilities and the modified
probabilities that make the phonemes less confusable. The lower
panel shows the difference between high- and low-frequency items
under the two conditions.

The critical feature of these simulations is that the frequency
effect decreases as the perceptual evidence improves. This is
particularly apparent in the asymptotic levels of performance.
Using the empirically determined probabilities, there is residual
ambiguity at the end of the word that allows room for an influence
of word frequency. In contrast, when using the modified proba-
bilities, the ambiguity is effectively removed, so frequency plays a

Table 2
Properties of the English Materials from Luce & Pisoni (1998) and the Matched Dutch Materials Used in Shortlist B Simulations

Property

English Dutch

Mean word frequency
(per million)

Mean
density

Mean neighbor
frequency (per million)

Mean word frequency
(per million)

Mean
density

Mean neighbor
frequency (per million)

High word frequency
High density

High neighborhood frequency 254 22 370 47 24 320
Low neighborhood frequency 254 22 46 48 22 73

Low density
High neighborhood frequency 254 11 370 47 16 447
Low neighborhood frequency 254 11 46 47 12 43

Low word frequency
High density

High neighborhood frequency 5 22 370 3 21 304
Low neighborhood frequency 5 22 46 3 21 121

Low density
High neighborhood frequency 5 11 370 2 15 443
Low neighborhood frequency 5 11 46 2 13 161

Note. Luce and Pisoni (1998) provide only the means for each pair of conditions, not the individual cell means; here we are assuming that there was no
variability among cells within conditions.

Table 3
Mean Reaction Time (RT; in ms from Word Offset) and Mean
Error Rate (%) in Auditory Lexical Decision, From Luce &
Pisoni (1998)

Property Mean RT Mean error

High word frequency
High neighborhood density

High neighborhood frequency 409 7
Low neighborhood frequency 392 5

Low neighborhood density
High neighborhood frequency 382 7
Low neighborhood frequency 377 6

Low word frequency
High neighborhood density

High neighborhood frequency 451 11
Low neighborhood frequency 445 10

Low neighborhood density
High neighborhood frequency 463 18
Low neighborhood frequency 421 16

372 NORRIS AND MCQUEEN



smaller role in recognition. In terms of Equation 1,
P(Evidence|Hypothesis) tends towards zero for all competitor
words, therefore the numerator and denominator both reduce to-
wards P(Evidence|target word) � P(target word), so that P(target
word|Evidence) tends towards 1.0.

Shortlist B can therefore simulate word frequency effects and
how these effects interact with lexical neighborhood character-
istics and with stimulus quality. We now turn to a detailed
examination of how the influence of word frequency changes
over time.

The Time-Course of Word-Frequency Effects

Dahan et al. (2001) studied the effect of word frequency of a
target word and its neighbors in an eye-tracking study. On each
trial participants saw a display containing pictures of four objects.
In the critical conditions, the names of three of the objects over-
lapped phonologically, and the name of the fourth object was
phonologically unrelated. For example, on one trial, participants
saw pictures of a bench, a bed, a bell and a lobster. Participants
were instructed to “Pick up the bench.” The target words had a
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Figure 4. Mean word probabilities in Shortlist B for Dutch materials based on the Luce and Pisoni (1998)
study. The upper panel shows the average results for four sets of 34 high-frequency CVC words: those with high
density and high frequency neighborhoods, those with high density but low frequency neighborhoods, those in
low density but high frequency neighborhoods, and those in low density and low frequency neighborhoods. The
lower panel shows the average results for four sets of 34 low-frequency CVC words in the same four conditions.
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mean frequency of 14.5 per million (Francis & Kucera, 1982). One
of the nontarget competitors was low frequency (10 per million)
and one was high frequency (138 per million).

Dahan et al.’s (2001) data (from their Set A items) are repro-
duced in Figure 6 along with simulations from Shortlist B. Once
again, it was necessary to generate a set of Dutch stimuli that were
matched to the English materials in the original study. Twenty

triplets consisting of three words that shared their first two or three
phonemes were selected from CELEX. One of the words in each
triplet was the analogue of the target word (mean frequency 9 per
million), a second was the low-frequency competitor (mean fre-
quency 9 per million), and the third was the high-frequency com-
petitor (mean frequency 139 per million). Because these materials
were not intended for use in an actual eye-tracking study, it was
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Figure 5. Mean word probabilities in Shortlist B for Dutch high- and low-frequency materials based on the
Luce and Pisoni (1998) study, averaged over the neighborhood density and frequency conditions. The upper
panel shows the mean word probabilities for these two sets of words using the model’s default parameters (as
in Figure 4), that is, using the confusion probabilities derived from Smits et al. (2003), with no changes to
phoneme likelihoods (empirical probabilities), and also where the estimated variance of the probability density
functions for the empirically determined phoneme likelihoods was halved and the likelihoods recomputed
(improved probabilities), simulating the effect of perceptually clearer input (see Appendix B). The lower panel
shows the mean probability difference between the two sets of words for the same two simulation runs.
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not necessary that all of them refer to picturable objects. The
unrelated distractor in each triplet was a target from one of the
other triplets that began with a different phoneme. Mean proba-
bilities derived from Shortlist B for these 20 sets of items are
shown in Figure 6.

In presenting their TRACE simulations, Dahan et al. (2001)
corrected for the fact that, because there are only 4 visual targets,
the baseline fixation probability for each visual target is 0.25. In
the Shortlist B simulations, the probabilities shown are therefore
calculated as follows: Corrected fixation probability � ((1.0—
sum of raw word probabilities for all 4 targets)/4) � raw word
probability. That is, we assume that any probability not taken up
by one of the four target words is distributed equally among all of
the targets.

Note also that, in common with Dahan et al. (2001) and with
other simulations of eye-movement data (e.g., Allopenna et al.,
1998), we have adjusted the position of the simulated results on the
time axis to allow for lag in initiation of eye movements. As noted
earlier, because of the nature of the diphone database, changes in
probability in the model are likely to occur earlier than probabil-
ities computed by listeners. Listeners in the Smits et al. (2003)
study were not required to identify the diphones quickly, so the
database tells us how much information listeners can extract from
the input at a given point and not how long it takes listeners to
actually extract that information. The simulated results are shifted
back in time by eight slices. The time scale is mapped onto the data
using the same procedure as in Dahan et al. Our targets were, on
average, 5.3 phonemes long; their targets were, on average, 5.4
phonemes long. This corresponds to about 16 time-slices in Short-
list B. Because Dahan et al.’s Set A items were 498-ms long, on

average, one time-slice in Shortlist B is thus equivalent to about 31
ms. Each slice in the model therefore maps almost exactly onto one
of the 33-ms time-slices in the Dahan et al. data.

The simulations in Figure 6 closely parallel the Dahan et al.
data. Fixations to the high-frequency competitors are most prob-
able (in the model and the data) until the effect of the phonological
divergence of the target from the competitors starts to emerge in
the eye-movement record. Furthermore, there is little difference in
fixation probabilities between targets and low-frequency compet-
itors in either the data or the model until the target starts to
dominate the fixation pattern. The only difference between the data
and the model is that the model tends to overestimate the propor-
tion of fixations to the unrelated distractor. With respect to the
three phonologically related conditions, Shortlist B thus captures
the time-course of fixation probabilities very accurately.

Dahan et al. presented simulations of their data using TRACE
and contrasted three different methods of implementing word
frequency in TRACE. They compared implementing frequency in
terms of resting level, connection weights, or in a postactivation
decision stage. In terms of ability to simulate the overall pattern of
data, all three methods were roughly equivalent and little different
from simulations with no word frequency mechanism. The main
difference between the simulations was in terms of their ability to
account for the difference between high- and low-frequency com-
petitors. Here the best fit was obtained when frequency was
implemented by varying the connection weights to words. In the
data, fixation probabilities only become greater for high- than
low-frequency competitors after about 100 ms. In fact, before that,
there is a slight reversal. However, the resting level and postacti-
vation decision simulations both show a high-frequency advantage
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from the outset. Only in the connection weight simulation does the
frequency difference build up over time. Shortlist B shows the
same pattern.

Figure 7 shows the Shortlist B simulations of the difference
between high- and low-frequency competitors along with the
equivalent data from Dahan et al. (2001) and their connection-
weight simulation of these data in TRACE. The Shortlist B sim-
ulation is very similar to the data and close to the TRACE simu-
lations. The main difference is that the peak is narrower in the
Shortlist B simulation. As noted earlier, a more complete model
would include internal noise in the simulations. One effect of
including noise would be to smooth this peak.

The TRACE simulations use 20 parameters, and the connection-
weight mechanism is just one of a number of possible procedures
that might be added to TRACE to make it sensitive to frequency.
Significantly, there is no theoretical basis to prefer the connection-
weight procedure to any other. In contrast, the Shortlist B simu-
lation depends only on a single free parameter, representing the
time-alignment between the simulation and the data. This param-
eter, which corresponds to 264 ms (eight 33-ms slices), is roughly
what would be expected on the basis of eye-movement research.
Even the simplest eye movements have a latency of 150–175 ms
(Rayner, Slowiaczek, Clifton, & Bertera, 1983). In the context of
a more complex linguistic task, such as reading, the time to
program and execute saccades is generally estimated to take about
100 ms more. For example, Version 7 of the E-Z Reader model
(Reichle, Rayner, & Pollatsek, 2003) uses an estimate of 245 ms as
the time required to program a saccade. Furthermore, a common
assumption in visual-world studies (including that of Dahan et al.,
2001) is that programming and launching a saccade introduces a
delay of at least 200 ms between auditory stimulation and a
resulting eye movement. Other than this fixed time-alignment
parameter, there are no free parameters in the Shortlist B simula-

tion. For example, the way the model simulates frequency effects
is independent of the number of candidates or the number of paths.
The behavior of the model follows entirely from the underlying
assumption of optimality. There is really nothing we could do to
make the model behave differently.

Speech Segmentation: The Possible Word Constraint

Although segmentation can be achieved using only a lexical
competition mechanism (either the interactive-activation type in
Shortlist A or TRACE or the path-based search in Shortlist B, as
the kar personen simulation showed), there is more to segmenta-
tion than this. Human listeners are able to make use of a range of
cues to help them segment the input into words. Shortlist A has
been extended to simulate the effect of segmentation cues, such as
those provided by metrical information (Cutler & Norris, 1988;
McQueen et al., 1994; Vroomen & de Gelder, 1995) and phono-
tactic information (McQueen, 1998). A unified account of seg-
mentation effects in a competition-based model was presented by
Norris et al. (1997). In these Shortlist A simulations, segmentation
cues affected word recognition by modulating lexical activation.
Specifically, words that are misaligned with cued lexical bound-
aries had their activation levels reduced according to the operation
of what Norris et al. termed the Possible Word Constraint (PWC).

In experiments using the word-spotting task, Norris et al. (1997)
showed that listeners found it far harder to spot words (e.g., sea)
embedded in nonsense words, such as “seash,” than in nonsense
words such as “seashub.” In the former case, the nonsense word
has to be parsed into the word “sea” plus the single phoneme
residue /ʃ/. In the latter case, the residue is a syllable. Norris et al.
therefore proposed that segmentation is driven by the PWC: The
preferred segmentation of the input is always in terms of units that
are possible words. The single consonant /ʃ/ is not a possible word
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in English, whereas the syllable /ʃ�b/ is. The word “sea” in
“seash” is therefore penalized because it is not part of a segmen-
tation consisting of possible words.

In the experiment just described, the PWC applies to the residue
between the end of the candidate word and the silence at the end
of the nonsense word. More generally, however, the PWC operates
between the ends of candidates (their onsets or their offsets) and
the nearest likely word boundary. Such a boundary can be indi-
cated by any one of a number of different segmentation cues (e.g.,
a phonotactically signaled boundary, McQueen, 1998, or the onset
of a strong syllable, Cutler & Norris, 1988). The extent to which
a candidate that violates the PWC is inhibited is assumed to
depend on the reliability of the segmentation cue (cf. Mattys et al.,
2005).

One of the central motivations for postulating the PWC was that
it would help deal with unknown words. To some extent the
competition process in Shortlist A will break down if parts of the
input do not correspond to known words. The PWC ensures that
the input is always parsed in terms of units that could possibly be
words. Norris, McQueen, Cutler, Butterfield and Kearns (2001)
and Cutler, Demuth, & McQueen (2002) have shown that the PWC
appears to be a language-universal constraint. That is, the residue
does not need to be a possible word in the listener’s language; it
need only be a syllable. Johnson, Jusczyk, Cutler, and Norris
(2003) have also shown that 12-month-old infants behave as if
they are observing the PWC. Infants should indeed benefit from
the PWC as, in the course of acquiring the vocabulary of their
native language, they continually encounter words that are un-
known to them.

How can the PWC be implemented in Shortlist B? The central
requirement of the PWC is to penalize paths containing words
whose boundaries are misaligned with known syllable boundaries
in the input. That is, even if a path consists of a series of contig-
uous words that fully span the input, that path should be penalized
if one or more of those words violates the PWC. This can be
achieved straightforwardly by reducing the probability of words
that violate the PWC. This, in turn, will reduce the probability of
the paths those words lie on. This procedure applies both to real
words and to dummy words. In practice, the path probability is
multiplied by a very small number (the PWC parameter, 10�9).
This has exactly the same effect as inserting a very low-frequency
word into the path. The influence of the PWC has parallels with the
effect of dummy words: The PWC parameter penalizes paths that
violate the constraint; but, if the only possible path is one that
violates the PWC, that path will still be assigned a high probabil-
ity.

In the example in Figure 1, the connections shown with dashed
arrows are parts of paths which contain dummy words which fail
the PWC (e.g., the single segment /l/ between inner and eye is a
dummy word, but this path violates the PWC). The connections
shown with dotted arrows, however, are parts of paths with
dummy words that pass the PWC (e.g., the vowel-consonant
sequence /DG/ between cattle and in is a dummy word with a
vowel, on a path that is consistent with the PWC). Consequently,
paths leaving a syllable as a residue have a far larger probability
than paths leaving a consonant as a residue.

Earlier we saw that, in order to deal with unknown words, the
model’s beliefs had to be modified to include a dummy word. The
model’s beliefs also have to be modified to allow it to carry out

experimental tasks where the input has different statistical prop-
erties from normal speech. One example of this is the word-
spotting task. The word-spotting task is unusual in that the input
never corresponds to a complete word. All word targets are em-
bedded in nonword carriers and there is never a path consisting of
a sequence of words that fully spans the input.

In the study by Norris et al. (1997), the target “sea” in “seash”
can only be recognized by parsing the input in terms of “sea” �
“sh,” where “sea” violates the PWC. In contrast, the dummy word
“seash” matches the input (by definition) and does not violate the
PWC. Given that the probability of “sea” will thus be less than that
of “seash” (because “sea” violates the PWC), the embedded word
will never be recognized. Outside of the context of a word-spotting
experiment, this seems to be exactly the right behavior. Try ran-
domly interjecting “seash” into conversations and count the num-
ber of times someone says ‘Oh, you mean “sea,” but you’ve added
“sh” onto the end.’

Participants in word-spotting experiments, however, need to
revise their prior beliefs about where words might be located in the
input. In the following simulations, we do this by reducing the
probability of dummy words that fully span the input, so as to
increase the probabilities of embedded words. That is, we reduce
the probability that the entire input (e.g., “seash” or “seashub”)
will be a dummy word. We do so using a fully-spanning-path
parameter: any path that consists of a single dummy word has its
probability multiplied by a very small number (10�10). This pa-
rameter would not apply in normal listening situations, nor indeed
in an auditory lexical decision task, where the listener is told that
some inputs will not be real words.

A third parameter reflects the probability that the input will
contain sequences that will not correspond to known words (irre-
spective of whether those sequences span some or all of a complete
input utterance). This dummy-word parameter in the following
simulations is again a very small number (10�12): All dummy
words have this prior probability assigned to them, just as if they
were words with an extremely low frequency of occurrence (the
parameter thus acts in the model in exactly the same way as word
frequency does for real words). As with the fully-spanning-path
parameter, the dummy-word parameter will have to change de-
pending on the nature of the linguistic input. In the lexical-decision
simulations reported below, for example, the probability of a
dummy-word interpretation of the input becomes much higher
because half of the stimuli are nonwords. Listeners need to take
this kind of prior knowledge into account when computing re-
sponse probabilities in different experimental tasks. This flexibility
is required not only for listeners to perform optimally in different
psycholinguistic experiments, but also in different real-world lis-
tening conditions. In a commentary on an international football
match, for example, the names of many of the players may be
unknown words. It would be easier to parse this kind of input if the
probability of dummy words were increased to reflect this in-
creased frequency of novel words. The Bayesian approach in
Shortlist B thus provides a straightforward and theoretically mo-
tivated account of the way in which listeners respond to different
probabilities of encountering unknown words in different listening
situations.

The PWC, fully-spanning-path and dummy-word parameters
thus control the segmentation behavior of Shortlist B. The first
parameter is essential for the model to be able to capture effects of
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the viability of sequences of the input as possible words, but
simulations show that the model’s behavior was stable when this
parameter was varied over a range of numerical values. The other
two parameters are less critical to the model’s segmentation per-
formance per se, but are required for the model to be able to give
an adequate account of performance across a range of tasks. Once
again, model behavior does not depend on precise numerical
values for these parameters, other than that the fully-spanning-path
parameter must be nonzero for the model to simulate word-
spotting data. Note that the same values for all three parameters are
used in all Shortlist B simulations reported in this article. The
value of these parameters has a negligible effect in the simulations
where there is a fully spanning path consisting entirely of words.

We now turn to simulations of segmentation experiments. Mc-
Queen and Cutler (1998) examined the operation of the PWC in
Dutch. Their materials can therefore be used in Shortlist B simu-
lations. As in Norris et al. (1997), listeners were asked to spot real
words embedded in either single consonant or syllabic nonsense
contexts. Target words were 24 bisyllabic verbs and 24 bisyllabic
nouns, with preceding consonant, bisyllabic, strong-syllable or
weak-syllable contexts, as shown with examples in Table 4. A
further 24 targets were included in contexts that did not test the
PWC, and there were 144 fillers that did not contain embedded
words. As in the Norris et al. study, therefore, the probability that
a trial would include a real word target was .33. As shown in Table
4, both types of target word were harder to spot in single-
consonant contexts than in any type of syllabic context.

Simulations were carried out using the same 48 target words,
each in three nonsense contexts. The results of these simulations
are shown in Figure 8. As in the human data, the model performs
much better on verbs and nouns in syllabic contexts than on these
same words in single-consonant contexts. These simulations thus
show that Shortlist B, with its implementation of the PWC, can
segment continuous speech into words. Path-based probability
computations provide the basic means by which continuous speech
can be segmented, even when there are no cues to the location of
word boundaries that could help. These cues are nonetheless used,
when available, via the PWC, to reduce the probability of paths
that contain impossible words.

Vroomen and de Gelder (1995) also examined segmentation of
continuous Dutch. They used a cross-modal identity-priming tech-
nique to examine the joint influence of metrical structure and
lexical competition on segmentation. Participants heard bisyllabic
spoken sequences containing a Dutch CVCC word followed by a

VC sequence with either a strong or a weak vowel. The strong
second syllables were either consistent with many other Dutch
words or with few Dutch words (see Table 5 for examples), and the
weak syllables were consistent with no Dutch words. Participants
saw visual letter strings 250 ms after the end of the embedded
CVCC words and made lexical decisions to those visual stimuli.
Relative to an unrelated control condition, lexical decisions were
faster when the visual targets matched the spoken prime words, but
the amount of priming showed a stepwise pattern. Priming was
largest when the second syllables of the spoken sequences con-
tained weak vowels, smaller when they contained strong vowels
with few lexical competitors, and smallest when they contained
strong vowels with many competitors. We have previously inter-
preted these results as being consistent with the operation of the
PWC in Shortlist A (Norris et al., 1997). Words are poorer hy-
potheses (and thus generate weaker priming) in strong-strong than
in strong-weak sequences because the onset of the second strong
syllable is a likely word boundary but that of the weak syllable is
not (Cutler & Norris, 1988). The CVCC words are thus misaligned
with those boundaries and have the PWC penalty applied to them.
For example, melk, milk, in melkaam is misaligned with the likely
word boundary before the /k/ because the /k/ is not a vowel and
thus not a possible word. In addition, the number of words begin-
ning at that segmentation point influence recognition: The more
words there are beginning at the second syllable, the stronger the
competition between them and the target CVCC words.

The results of the Shortlist B simulations using the Vroomen
and de Gelder (1995) stimuli are shown in Figure 9. The model
captures the pattern in the human data. Thus, although the simu-
lations of the McQueen & Cutler (1998) study show how the
operation of the PWC in Shortlist B influences how the model
segments continuous speech, the present simulations show in ad-
dition how this segmentation process is modulated by lexical
competition. Prime probabilities in both strong–strong conditions
are lower than in the strong–weak condition because of the appli-
cation of the PWC penalty. In addition, the more paths there are
with different words beginning at the onset of the second strong
syllable, the lower the probability of the prime.

Note that the data being simulated here come from a cross-
modal identity priming task. That is, responses cannot have been
driven directly by the probabilities of the spoken words. Instead we
assume that the probabilities of the spoken prime words can
modulate the prior probabilities of the visually presented target
words, and it is this change in priors that produces priming. This
is exactly the account of priming in visual word recognition
proposed in the Bayesian Reader model (Norris, 2006). As we
explained earlier, the critical factor influencing recognition in the
Bayesian framework is the prior probability of each of the lexical
hypotheses. Although our main emphasis here has been on priors
determined by frequency of occurrence, they will also be altered
by the context in which the word appears. If information in the
speech signal makes a particular word more probable, then this
change in priors will speed recognition of that word when it
appears visually. The changes in word probabilities observed in the
Shortlist B simulations should therefore lead to parallel changes in
the speed of recognition of the visual target words given the three
types of speech context tested by Vroomen & de Gelder (1995).

Table 4
Design, Example Stimuli, and Data (Mean Reaction Times in ms
and Mean Percentage Error Rates in Parentheses) from
McQueen and Cutler (1998)

Item type

Context

Consonant Bisyllable
Strong
syllable

Weak
syllable

Verb targets
(wonen � to live)

dwonen dukewonen kewonen
739 (16%) 432 (8%) 413 (5%)

Noun targets
(lepel � spoon)

blepel kulepel selepel
667 (9%) 435 (5%) 380 (4%)
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Shortlist B can thus simulate how segmentation is influenced by
competition among spoken words and can, in principle, account
for priming effects.

Perceptual Match and Goodness of Fit

Word recognition necessarily involves a comparison of the
evidence in the current acoustic input with stored knowledge about
the phonological form of words. Models of speech recognition
generally assume that the degree of match between the signal and
a lexical representation is determined by a similarity metric re-
flecting the perceptual distance between the input and the lexical

representation. Experiments examining the effect of mispronunci-
ations on lexical access, for example, have shown that the degree
of disruption caused by the mispronunciation depends on the
phonetic similarity of the mispronounced segment to the correct
segment. The substitution of a phonetically unrelated segment can
completely block lexical access (Marslen-Wilson & Zwitserlood,
1989), whereas substitution of phonetically similar segments does
not necessarily do so (Connine, Blasko, & Titone, 1993). There
appears to be more support for lexical hypotheses as the phonetic
similarity of the mispronounced segment to that in the intended
word increases (Connine, Titone, Deelman, & Blasko, 1997;
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Marslen-Wilson, Moss, & van Halen, 1996), and distortions of the
phonetic properties of a segment that do not change the segment’s
identity influence lexical processing as a function of the size of
those distortions (Andruski, Blumstein, & Burton, 1994; McMur-
ray, Tanenhaus, & Aslin, 2002; but see van Alphen & McQueen,
2006).

Models of spoken-word recognition account for these findings
using similarity metrics based on perceptual distances. In TRACE,
for example, overlap in terms of features and phonemes between
the signal and the lexicon determines degree of lexical activation.
In contrast, in a Bayesian approach, posterior probabilities are
driven by likelihoods and not by any simple measure of perceptual
or physical similarity. In Figure 2, whether or not the input Ix

provides more support for phoneme A or phoneme B does not
depend on the distance between Ix and the mean of the likelihood
functions for A and B but only on the likelihoods (the height of the
pdf) at Ix. That is, the critical measure is how likely we are to
observe a particular acoustic-phonetic signal, given that the signal

was generated by that phoneme, and not by how similar the
representations of the phoneme and the signal are (though of
course similarity and likelihood measures may often be closely
related). This means that the pattern of variation in the realization
of a particular word or phoneme is more important than any
measure of absolute distance in some physical or perceptual space
(cf. Newman, Clouse, & Burnham, 2001). In fact, if decisions are
to be Bayesian optimal, posterior probabilities must be driven by
the likelihood functions and not by perceptual distance or similar-
ity.

As an illustration of this, consider the case of a phoneme that is
always realized in almost exactly the same way. As shown in
Figure 2, there is little variability between tokens of Phoneme A.
In contrast, for another phoneme there might be wide variation in
how it is realized (Phoneme B in Figure 2). In the former case,
even a small deviation from the modal representation of that
phoneme will greatly reduce f(Evidence|Phoneme). That is, even a
small deviation will make it very unlikely that the input signal
originated from that phoneme. But in the latter case, a similar
deviation may do little to alter f(Evidence|Phoneme) because prior
experience has shown that that phoneme can be produced in a
larger variety of different ways. If follows that an input that falls
exactly half way between the peak values of A and B will not give
equally strong support for A and B. P(Phoneme B|Input) will be
greater than P(Phoneme A|Input) because at that point the likeli-
hood of B is greater than A. Note that although there is no
guarantee that the likelihood functions that listeners learn will take
the simple Gaussian form shown in Figure 2, this argument does
not depend on these distributions being strictly Gaussian.

The critical difference between computation of goodness of fit
based on perceptual similarity versus likelihoods becomes clear

Table 5
Design, Example Stimuli, and Data, Mean Reaction Times (RTs)
in ms, From Vroomen and de Gelder (1995)

Condition Spoken prime Visual target RT

Control lastem MELK 621
SS-many melkaam MELK 602
SS-few melkeum MELK 589
SW melkem MELK 578

Note. Conditions are defined in the text; melk means “milk,” and last
means “load.”
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Figure 9. Mean word probabilities in Shortlist B for the materials from Vroomen and de Gelder (1995).
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when one considers asymmetries in perceptual confusions. For
instance, one phoneme may be more often misperceived as another
phoneme than the reverse (as indeed occurred, e.g., in the diphone
gating study, Smits et al., 2003; Warner et al., 2005). This cannot
be explained in the simplest version of a model in which goodness
of fit is based only on perceptual distance. On any similarity metric
(e.g., the number of shared acoustic-phonetic features or the dif-
ference in a value of a continuous phonetic variable), one phoneme
will be as different from another as the reverse. Any explanation of
asymmetries in perceptual confusions about these phonemes
would thus require some additional mechanism in a model based
on perceptual distance, such as a decision bias. In a model in which
perception is based on phoneme likelihoods, however, asymmetric
patterns of confusion will arise naturally whenever the relevant
likelihoods are asymmetric. In Figure 2, because of the difference
in the width of the two functions (and not simply the distance
between the peaks of the distributions), there is a wider range of
values on the perceptual dimension for which Phoneme B is likely
to be misrecognized as Phoneme A than the reverse. Tenenbaum
and Griffiths (2001) explain how distributional properties of ex-
emplars can give rise to different patterns of generalization in a
Bayesian category-learning model. This explanation for asymme-
tries in phonetic perception is an important motivation for the
assumption in Shortlist B that phoneme recognition is based on
likelihood functions.

As we have already suggested, the knowledge necessary to
compute likelihoods is probably initially acquired in infancy, as a
result of exposure to the distribution of phonetic variability of
phonological categories in the language the infant hears (Maye et
al., 2002). But because this knowledge reflects the cumulative
effect of prior experience with speech sounds, it should continue to
change over the listener’s lifetime. Importantly, in order to main-
tain optimal performance, the listener’s estimate of the distribu-
tions of speech sounds should be continuously updated. Recent
results indeed suggest that speech perception can be altered in
response to the current input. That is, perceptual learning about
speech sounds can occur in adulthood. For example, adult listeners
appear to be able to adjust their phonetic categories as a result of
the combination of prior lexical knowledge and very limited ex-
posure to a talker speaking in an unusual way (Norris, McQueen,
& Cutler, 2003). After a group of listeners were exposed to an
ambiguous sound, midway between /f/ and /s/, in lexical contexts
that indicated that the sound should be interpreted as /f/, those
listeners interpreted more sounds on an /f/–s/ continuum as /f/ than
another group of listeners who had been exposed to the same
ambiguous sound but in /s/-biased lexical contexts. In terms of the
density functions sketched in Figure 2, the distributions of phone-
mic categories were altered given lexical knowledge and only brief
exposure to an idiosyncratic talker. These listeners had thus
learned to adjust the estimate of the density functions that we argue
are used to compute f(Evidence|Phoneme).

Clayards, Aslin, Tanenhaus, and Jacobs (2007) have recently
shown that adult listeners are sensitive to the distribution of
phonetic cues. Listeners who were exposed to more strongly
peaked bimodal distributions of voiced and voiceless stops on a
VOT continuum produced a sharper category boundary in their
identification responses to that continuum than listeners exposed to
broader distributions. As Shortlist B predicts, as the variability of
two phonemes on a phonetic dimension decreases, those pho-

nemes’ likelihood functions will become steeper; and, thus, for
values on the dimension spanned by either of those functions,
f(Evidence|Phoneme) will increase, leading in turn to a sharper
category boundary between those phonemes. Clayards et al., thus,
show that adult listeners are tracking the distribution of the pho-
netic realization of phonemes exactly as is required in a model in
which word recognition is based on calculation of likelihoods,
such as Shortlist B. Feldman and Griffiths (2007) illustrate the
value of a Bayesian approach in understanding categorical percep-
tion and, more specifically, the perceptual magnet effect (Kuhl,
Williams, Lacerda, Stevens, & Lindblom, 1992). They assume that
in phonetic discrimination tasks, in addition to simply identifying
the appropriate phonetic category of a speech sound, listeners
attempt to extract phonetic detail and to recover the speaker’s
original target production. In order to perform optimally, the
listener’s inferences must be influenced by their prior knowledge
of the structure of their phonetic categories. Feldman and Griffiths
present simulations of data from Iverson and Kuhl (1995) to show
that this leads to the perceptual warping characteristic of the
perceptual magnet effect, whereby speech sounds near the center
of a category are treated as being closer together in perceptual
space whereas sounds near category boundaries are perceived as
being further apart. Once again, it is worth pointing out that the
Bayesian approach is not restricted to speech perception. Hutten-
locher, Hedges, and Vevea (2000) have presented a similar Bayes-
ian analysis of category effects in the judgment of visual stimuli.

The suggestion that f(Evidence|Phoneme), or f(Evidence|Word),
should play a role in speech recognition has important implications
for how we should explain psycholinguistic data on the conse-
quences of a mismatch between input and the canonical form of
words. Using a cross-modal priming task in Dutch, Marslen-
Wilson and Zwitserlood (1989) showed that words such as honing
(honey) were not reliably accessed when nonwords with a different
initial sound (e.g., foning) were presented. That is, the mismatch-
ing phoneme appeared effectively to block lexical access. At least
subjectively, however, it seems quite easy to appreciate that ‘shi-
garette’ is an instance of cigarette. Whether this is true or not is
ultimately an empirical issue, but there is an important difference
between the two cases. Listeners are unlikely to ever have heard
honing pronounced as /fonIN/. That is, P(Evidence is like /f/ |
intended phoneme is /h/) is likely to be close to zero, and so
P(Evidence is /fonIN/ | Word is honing) is also likely to be near
zero. In contrast, given suitable experience of listening to drunks,
P(Evidence is like /S/ | stimulus is /s/) might be nonzero. If this
probability is nonzero, and the probability of alternative words is
zero, /SIg{rEt/ should be recognized as cigarette. In this specific
example it happens to be the case that there is phonetic similarity
between /s/ and /S/, caused by drunks’ poor control over their
articulators. But the same effect (recognizing cigarette given
/SIg{rEt/) would hold even if /s/ and /S/ were highly distinctive.
That is, there need be no correlation between mismatch and sim-
ilarity. Furthermore, this is an example of the asymmetries that can
arise in perceptual confusability that we discussed earlier. Speak-
ers sometimes produce tokens of /s/ as /S/, but rarely produce /S/
as /s/. /S/ should therefore be more confusable with /s/ than /S/ is
with /s/.

The question, then, is whether Shortlist B will be able to
recognize a word with an initial mispronunciation (like cigarette
given shigarette) or not (like honing given foning). Simulations of
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the recognition of two word-initial mispronunciations are shown in
Figure 10. As can be seen from the solid probability functions,
Shortlist B successfully recognizes chianti, chianti, when pre-
sented with /pijAnti/, but does not recognize sigaret, cigarette,
when presented with /SixarEt/. This might appear surprising, given
that the phonetic differences between the correct and mispronounced
are well matched (both changes involve alteration of only one pho-
netic feature, that of place of articulation). The reason for this differ-

ence is not that Shortlist B is privy to knowledge that Dutch drunks
are more likely to mispronounce their alcohol than their tobacco
(should that even be true). The radically different behavior of the
model on the two mispronunciations is due instead to differences in
probabilistic knowledge. It happens to be the case that, on the last gate
of the /Si/ diphone, the listeners in the Smits et al. (2003) study made
no /s/ responses, while on the last gate of the /pi/ diphone there was
at least one /k/ response. Because P(response /s/ | /Si/) � 0 when all
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Figure 10. Patterns of word probabilities in Shortlist B given the mispronunciations pianti (pijAnti[[; upper
panel) and shigaret (SixarEt[[; lower panel), with the minimum probability parameter set to zero or to a nonzero
value (10�18). The word chianti, chianti, is recognized in both cases, but sigaret, cigarette, is recognized only
when minimum phoneme probability is greater than zero.
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of the diphone has been heard, then, following Equation 7, the
probability of sigaret will also be zero. Even though P(response/k/ |
/pi/) is very small (0.028), it is still enough to keep chianti in the
running; ultimately, because there are no other plausible paths, chianti
dominates the probability landscape.

This difference between examples is clearly a consequence of a
rather arbitrary difference in the diphone database. It could easily
have been the case that the response probabilities in the two
contexts were reversed. But the difference nevertheless serves to
exemplify the point that word recognition in Shortlist B is deter-
mined by likelihood, that is, P(Evidence|Word), and not simply by
perceptual similarity. It is of course the case that the model is
strongly influenced by the patterns of perceptual confusions in the
diphone database, such that P(Evidence|Word) is modulated by
phonetic similarity; but, as we have just shown, this is not the only
modulating factor. It is reasonable to assume that the participants’
responses in the diphone experiment were driven in part by prior
probabilistic knowledge. For example, when listeners heard a
sound that was consistent with two alternatives, they may well
have chosen one based on a probabilistic bias (e.g., that one of
those two sounds is more often confusable; though note that
Warner et al., 2005, showed that simple transition probabilities did
not have a strong influence on listener behavior in the diphone
study). These biases are part of the diphone database and, thus, of
the operation of the model. Thus, although the model does not
have specific knowledge that some mispronunciations may be
more likely than others nor that they may be more likely in some
situations than others (e.g., listening to a sober vs. a drunk person),
we can see how the model would work if the model were enriched
in that way. Critically, the Bayesian approach offers a principled
account of how recovery from mispronunciations in word recog-
nition can vary as a function of the mispronunciation involved and
as a function of different listening situations. When there is a
change in the likelihood that the source of an input is a given word,
the probability of recognizing that word changes.

It is clear from the sigaret example, however, that the proba-
bilities in the diphone database are inappropriate for the modeling
of experiments on the recognition of mispronounced words. Spe-
cifically, the forced-choice nature of the task in the diphone gating
task resulted in many situations (particularly at later gates) where
the probabilities of many responses are zero. It is plausible to
assume that, although the probabilities of some responses for a
given input may be very small, they should not be zero. That is,
there is some nonzero probability that any apparent phoneme in the
input could in fact be any other phoneme. A minimum-probability
parameter was therefore added to the model. All phonemes for
which P(response|input) is zero are assigned that probability value
(10�18). As can be seen from the dashed probability functions in
Figure 10, this small adjustment has no effect on the recognition of
chianti given /pijAnti/, but now allows sigaret to be recognized
given the input /SixarEt/. That is, as soon as the probability that the
initial segment is /s/ is not zero, the word sigaret easily becomes
the most likely interpretation of this input. The minimum-
probability parameter was switched off in all other simulations
presented here, but, with the limitation that the parameter value
must be very small, model behavior in those simulations does not
change substantially across parameter values. Note that it is ap-
propriate for the parameter to be switched off when modeling

experiments (other than those on mispronunciations) where high-
quality laboratory speech was used.

The key insight offered by Shortlist B into how listeners deal
with mispronunciations, therefore, is that recognition of a mispro-
nounced word is determined ultimately not by perceptual similar-
ity but by the listener’s estimate of the probability that that type of
mispronunciation might occur. Thus, although perceptual similar-
ity can of course influence such likelihoods, it can also be the case
that the likelihood of a mispronounced word can change across
contexts where perceptual similarity is the same. Just as there may
be differences in likelihoods under different listening conditions in
the everyday world (e.g., listening to drunks rather than sober
people) and adjustments in these probabilities due to perceptual
learning (Norris et al., 2003), there can also be differences across
experiments as a function, for example, of changes in experiment-
internal probabilities of particular events (Clayards et al., 2007).
This analysis suggests that an important issue for future research
will be to establish the range of tolerance that listeners have for
perceptual mismatches.

Lexical Influences on Phoneme Identification

One of the central theoretical motivations driving Shortlist A
was to demonstrate the viability of a completely bottom-up model
of spoken word recognition. This argument was developed further
by Norris, McQueen, and Cutler (2000a, 2000b), who argued that
many phenomena that appeared to be attributable to a top-down
effect of lexical information on prelexical processing were actually
fully consistent with a completely bottom-up feed-forward archi-
tecture. In support of this argument, they developed the Merge
model. Merge is an elaboration of Shortlist A designed to simulate
the effects of lexical knowledge in tasks such as phoneme identi-
fication and categorization. In Merge, there are phoneme decision
units that integrate information from lexical and prelexical levels
(see Figure 11). Responses in tasks requiring phoneme identifica-
tion are determined by these decision units and not by the prel-
exical phoneme units themselves. Prelexical processing is there-
fore completely independent of lexical processing: There is no
feedback from lexical to prelexical processing.

In this section we show that Merge is compatible with the
Bayesian approach taken in Shortlist B. It is in fact more than
compatible: the Bayesian approach necessarily forces us to adopt
the same feedforward in Shortlist B as in Merge. Furthermore, the
Bayesian approach provides a more principled motivation for the
Merge architecture and leads to a model (Merge B) that is com-
putationally simpler than the original network implementation
(Merge A).

The central argument that Norris et al. (2000a) presented against
the use of top-down lexical feedback in prelexical processing was
that it can be of no benefit. The best that any recognition system
can do is to match its input against the representations in memory
and to select the closest match. Feedback cannot improve this
process. Note, however, that our discussion of Bayesian decision
making should make it clear that there is an important qualification
to this statement: The decision process should also take prior
probability into account.

If feedback cannot improve the process of matching perceptual
input onto lexical representations, why should there be lexical
effects on phoneme identification at all? The answer is that, under

383SHORTLIST B



some circumstances, lexical information can improve phoneme
identification. This possibility is a key feature of Merge B. An
essential restriction on this Bayesian model, however, is that any
lexical influences on phoneme identification must not form part of
a feedback loop. Lexical information should not feed back to alter
any prelexical processes involved in word recognition itself. That
is, word recognition must remain a feed-forward process.

Consider what should happen if a listener is required to identify
the final phoneme in a word like /fIʃ/. If the listener believes that
the input is a word, there are two sources of information that could
be used to identify the phoneme. The first is the bottom-up
perceptual evidence for /ʃ/. The second is lexical information. If
the first two phonemes have been identified as /fI/, then this places
constraints on the identity of the final phoneme. The two sources
of information are quite independent (/f/I/ and /ʃ/) and can there-
fore be combined. The standard way of viewing this is in terms of
multiplying likelihood ratios. Any number of independent sources
of information can be combined by multiplying the corresponding
likelihood ratios. Another way to think about the process is that
one source of evidence can revise the prior probabilities, and the
second source of evidence can then revise the priors once again.
Lexical information can update the prior probability of the occur-
rence of the phonemes (e.g., making /ʃ/ more probable than /s/),
and these probabilities can then be revised again in the light of the
perceptual evidence. In other words, the optimum way to identify
phonemes is to combine the independent sources of evidence from
lexical and prelexical processing, exactly as in Merge A and Merge
B. This is also the basic principle underlying the account of context
effects in phoneme identification given by the FLMP (Massaro,
1989b; Massaro & Oden, 1995). This is to be expected as the
FLMP has the same basic form as Bayes’s theorem (Massaro,
1987; Massaro & Friedman, 1990; for further discussion, see the
section FLMP and Shortlist B).

The idea that phoneme identification might be a Bayesian de-
cision process has also been suggested by Mirman, McClelland,
and Holt (2005), but they also advocate feedback from lexical to
prelexical processes. So, what would happen if the lexical infor-
mation were allowed to feed back to modify the prior probabilities
on the prelexical representations driving word recognition? If
lexical information revised a prelexical prior, this would increase
the posterior probability of the phoneme for a given input. This in
turn would increase the posterior probability for the word. If this
feedback were allowed to continue, the input would always be
identified as the most frequent word and as containing the pho-
neme most consistent with that word. Far from improving recog-
nition, any feedback at all will therefore make word recognition
suboptimal. This analysis reinforces the claim made by Norris et
al. (2000b) that feedback can never help word recognition unless
prelexical processing is somehow suboptimal. Optimal recognition
is achieved by pooling relevant sources of information without
feedback. An important implication of this analysis is that any
claim that word recognition does involve on-line feedback implies
that the word recognition system is suboptimal.

To illustrate the importance of preventing lexical information
from feeding back to modify prelexical prior probabilities (as
opposed to feeding forward to influence decision priors), let us
consider the case where a listener must determine whether the final
phoneme of an ambiguous stimulus such as /fI?/ is /ʃ/ or /s/. First
of all consider the case of word identification where the task is to
discriminate between the words /fIʃ/ and /fIn/, and where fish is
higher in frequency than fin. Other things being equal, there will be
a bias to identify the input as the higher frequency word. If that
information were used to modulate the prelexical priors, then it
would induce a further bias towards fish. That is, the lexical-level
bias would be exaggerated by the feedback. If the lexical infor-
mation were then fed back through the system again (as in an

Figure 11. The architecture of the Merge model (Norris et al., 2000b). Information is fed forward (lines with
arrows) from input nodes to lexical and phoneme decision nodes and from the lexical nodes to the decision
nodes. Inhibitory competition (lines with closed circles) operates at the lexical and decision levels but not at the
input level.
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interactive-activation model) there would be a positive feedback
loop, and presenting only the two phonemes /fI/ would always
activate the word fish as much as all three phonemes in /fIʃ/. This
would make it harder to recognize fin, and its final /n/. Feedback
can therefore make both word recognition and phoneme identifi-
cation worse.

This analysis shows that the optimal way to combine evidence
from word and phoneme levels is to process the two sources of
evidence independently, as can be done either using Bayes’s
theorem, using fuzzy logic—as in the FLMP— or using an
interactive-activation network such as that in Merge A. As we will
now show, however, the Bayesian approach makes it is possible to
implement Merge in a far simpler and more principled way. To
illustrate the operation of Merge B, we will show how it can
simulate the data on subcategorical mismatch that was critical for
the evaluation of Merge A. We will not review all the literature on
the modularity debate here; it is presented in detail in Norris et al.
(2000b) and McQueen, Norris, and Cutler (2006). As McQueen et
al. argue, first, no data have yet been found which show convinc-
ingly that there is feedback from the lexicon to the prelexical level,
and, second, the data of Pitt and McQueen (1998) directly chal-
lenge the notion of lexical-prelexical feedback. Thus, although the
debate about the data on feedback is still ongoing (see, e.g.,
McClelland, Mirman, & Holt, 2006), there are, in addition to the
theoretical arguments just discussed, also empirical grounds to
reject lexical–prelexical feedback.

Please note also that the current version of Shortlist B does not
lend itself directly to the fine-grained simulations of RT and error
rate that are required in this analysis. That is why we developed
Merge B instead.

Merge B

Subcategorical mismatch data. Norris et al. (2000b) used
Merge A to simulate data from studies by Marslen-Wilson and
Warren (1994) and McQueen, Norris, & Cutler (1999). These two
studies examined the effects of subcategorical phonetic mismatch
on phoneme categorization and lexical decision. The critical ma-
nipulation was to cross-splice stimuli such that the initial portion
of a word or nonword provided misleading phonetic cues as to the
identity of its final consonant. The details of the materials are
shown in Table 6. All items consisted of the first part of one item,
up to the end of the vowel spliced onto the final consonant from

another item. Critically, the stimuli could form words or nonwords,
and their initial portions could be derived from either a word or
nonword. For example, the word job could be made by cross-
splicing the initial portion of another word (e.g., jo from jog) onto
a final /b/ release, creating what we label as a W2W1 item, or by
cross-splicing the initial portion of a nonword (e.g., jo from jod)
onto the same /b/ release (an N3W1 item). In addition to the
cross-spliced items, there were identity-spliced items (W1W1 and
N1N1) which were made by splicing together different tokens of
the same word or nonword.

The critical result was that the lexical status of the initial portion
of the stimulus had an effect on phonetic categorization responses
to nonwords but not to words. When the first part of a nonword
stimulus was derived from a word (W2N1), responses were slower
than when it was derived from another nonword (N3N1). There
was no such difference for the two types of cross-spliced word
(W2W1 and N3W1). Thus, although for both words and nonwords
there was an inhibitory effect of the subcategorical mismatch in the
cross-spliced items (relative to the identity-spliced items), there
was in addition a lexical effect on the nonwords. This interaction
can be attributed to lexical competition. When the entire string
ends up sounding like a word, that word is the dominant lexical
hypothesis; and other lexical hypotheses, including critically the
word matching the initial portion of the stimulus (i.e., the W2
word), tend to lose the competition. There is thus an effect of
cross-splicing (responses are slowed because of the misleading
phonetic information) but no additional lexical effect. But when
the entire string ends up being a nonword, W2 words in W2N1
sequences remain as viable lexical hypotheses, and these words
thus exert an effect on phonetic categorization (i.e., over and above
the bottom-up effect of the phonetic mismatch, the lexicon also
indicates that the final sound is not what the postsplice information
suggests). These data are important because they do more than
show simply that lexical knowledge can influence phonetic deci-
sion making. They show further that there is a complex interaction
between the effects of lexical knowledge and the effects of detailed
phonetic information. They thus impose much stronger constraints
on models; and their simulation is thus more valuable than simu-
lation of a simple lexical effect of phonetic decision making, such
as the Ganong effect in phonetic categorization (Ganong, 1980).
These data thus serve as a key test of the adequacy of Merge B.

Model details. Relative to Shortlist B, Merge B is a simplified
Bayesian model based on the sampling process used in the Bayes-
ian Reader (Norris, 2006). In the Bayesian Reader, visual words
are represented as points in perceptual space. Any letter string (a
word or a nonword) can be represented as a point in that space.
Input to the model consists of a series of samples generated by
adding noise to the input. Both the input and the samples are
vectors corresponding to points in perceptual space. The model
calculates the standard error of the mean (	m) of the samples based
on the distances between individual samples and the sample mean.
(See Appendix A of Norris, 2006, for details and equations). Given
the mean and 	m at any time, the probability of each word, given
the perceptual input, can be calculated on the basis of the likeli-
hood and frequency of that word.

A critical difference between applying the principles of the
Bayesian Reader to reading and applying them to speech concerns
how information arrives over time. The Bayesian Reader assumes
that all of the letters in a word are presented simultaneously. To

Table 6
Design and Example Stimuli From the Subcategorical Mismatch
Studies (Marslen-Wilson & Warren, 1994; McQueen, Norris &
Cutler, 1999)

Item type Notation Example

Word job
1. Word 1 � Word 1 W1W1 job � job
2. Word 2 � Word 1 W2W1 jog � job
3. Nonword 3 � Word 1 N3W1 jod � job

Nonword smob
1. Nonword 1 � Nonword 1 N1N1 smob � smob
2. Word 2 � Nonword 1 W2N1 smog � smob
3. Nonword 3 � Nonword 1 N3N1 smod � smob

Note. The underlined portions of the examples were spliced together.
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simulate the arrival of the speech signal over time in Merge B,
each successive phoneme vector is presented every N steps. In the
current simulations, new phonemes are presented every 100 steps.
As with the Shortlist B simulations, each new phoneme remains
present throughout the word. A phoneme at the beginning of a
word can therefore carry on receiving further samples right
through the word. In fact, in order to avoid making any assump-
tions about the duration of memory for perceptual input, the
simulations allow samples to continue to be accumulated until a
response is made. Other than this difference in timing, Merge B
calculates phoneme probabilities in exactly the same way that the
Bayesian Reader calculates word probabilities. Once phoneme
probabilities have been calculated, the model can compute word
probabilities in just the same way as in Shortlist B.

The task in these experiments is either to categorize the final
phoneme (e.g., is it /b/ or /G/) or to perform lexical decision. To
deal with the fact that half of the stimuli will be nonwords, the
lexicon also contains a dummy word. As discussed above, dummy
words match any input to some extent. If the input becomes
inconsistent with any word, the dummy word will dominate the
likelihood calculations and have a high probability. When the
dummy word has a high probability, the input is likely to be an
unknown word or nonword. In these simulations we use the
simplest possible lexical decision procedure: respond ‘Yes’ when
the probability of any word exceeds a ‘Yes’ threshold, and respond
‘No’ whenever the probability of the dummy word exceeds a ‘No’
threshold. Simulated RTs are given by the number of samples/
time-steps required to reach threshold. Error rates are simply the
proportion of trials on which the probability exceeds the wrong
threshold. The critical parameters for performing lexical decision
are therefore the ‘Yes’ and ‘No’ thresholds and a likelihood for the
dummy word. The model also needs a parameter reflecting the
standard deviation of the sampling noise. In the simulations pre-
sented here, this is always 0.5.

Simulations. Each phoneme is coded as a vector where one
element is set to 1.0 to represent that phoneme and all other
elements are set to 0. Words are simply a concatenation of pho-
neme vectors. At each time step in processing, the model receives
a sample from the input vectors of all phonemes presented to that
point. Each sample is constructed by adding zero-mean Gaussian
noise to each element of the input phoneme. As sampling pro-
ceeds, the model calculates the mean location of the input samples
in perceptual space, and the standard error of the mean of the
samples. This is computed on the basis of the distances between
each sample and the mean of the input samples. The next step is to
calculate the distance between the mean of the input samples (i.e.,
the vector in which every element is the mean of the corresponding
input elements) and each phoneme. This is then used to calculate
the likelihood of each phoneme (determined by the height of the
normal distribution with the calculated standard error of the mean
at the given distance from the mean). These likelihoods are then
used to calculate P(Phoneme|Input) values. P(Word|Input) is cal-
culated from these phoneme probabilities, exactly as described for
Shortlist B.

Cross-splicing is simulated by changing the vector representing
the final phoneme at the splice point. For example, at the splice
point, the vector representing /d/ might be replaced by the vector
representing /G/. Consequently, the calculated mean location of the
input vector will be a weighted sum of the samples from the /d/

vector and the /G/ vector. This will slow recognition of the final
phoneme, because recognition will be delayed until samples from
/G/ outweigh those from the /d/ in the presplice portion of the
stimulus. Cross-splicing in this way will also make the standard
error of the mean larger than it would be in the unspliced case,
which will also delay recognition. In the simulations reported here,
the splice point was 50 steps into the final phoneme.

Phoneme categorization is performed by combining the evi-
dence from both the phoneme and lexical levels. In the experi-
ments being simulated here, there are only two alternative pho-
nemes on each trial, and the task is simply to decide which of these
two phonemes has been presented. The probabilities of the two
output phonemes are calculated in exactly the same way as for the
prelexical phonemes, that is, from P(Evidence | Phoneme), but
using prior probabilities, that is, P(Phonemei), derived from the
lexicon and considering only the two critical phonemes.

The stimuli could be either words or nonwords. To reflect this,
we need to reduce the lexical influence on phoneme identification.
That is, the decision units should not assume that the input is a
word. This was achieved by taking a proportion of the lexically
determined prior probabilities for each phoneme and redistributing
it among all phonemes. For example, in the simulations here this
value was set to 0.2, so the probability of each phoneme was 0.2
multiplied by the original lexical prior plus 0.8 divided by the
number of phonemes.. In other words, only 20% of the lexically
determined priors were allowed to modulate the effective phoneme
priors. Each phoneme prior was therefore at least 80% of what it
would be in the absence of any lexical information. This parameter
and a parameter representing the response threshold are the only
two parameters specific to the phoneme categorization simula-
tions.

Once suitable values for the response thresholds and the dummy
word are selected so as to control the overall accuracy of the
model’s responses, the model reproduces the main features of both
the lexical decision data and the phoneme categorization data
reported by Marslen-Wilson and Warren (1994) and by McQueen
et al. (1999). The results of the simulations of both phoneme
categorization and lexical decision are shown in Table 7. These
numbers are the means of 1,000 trials of the model in each
condition. Each trial uses exactly the same input but a different
random number seed.

As can be seen in the left part of Table 7, the model’s behavior
on the words shows only a cross-splicing effect. Phonetic catego-
rization RTs estimated by Merge B to the identity-spliced W1W1
stimuli are faster than those to the cross-spliced W2W1 and N3W1
stimuli, and there is little difference between W2W1 and N3W1.
This is the pattern found in the human data—in both studies. But
in the nonwords, there is a lexical effect superimposed upon this
cross-splicing effect. RTs estimated by Merge B to the identity-
spliced N1N1 stimuli are faster than those to cross-spliced N3N1
stimuli, which in turn are faster than those to the W2N1 cross-
spliced stimuli. Again, this mirrors what was found across the two
studies in human listeners.

Merge B thus successfully captures this complex interaction of
lexical status and subcategorical phonetic mismatch. When the
sequence as a whole is consistent with a word, then that word
dominates the probability landscape, and thus the lexical status of
the first part of the cross-spliced stimuli does not influence pho-
netic categorization behavior. But when the sequence as a whole is
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a nonword, then the W2 word (i.e., the source of the initial portion
of a W2N1 item) remains as a plausible lexical interpretation; and,
thus, exerts its effect on behavior over and above the effect of the
phonetic mismatch, making phonetic decisions to these items even
slower than those to the N3N1 items. Merge B therefore simulates
a lexical influence on phonetic decision making without feedback.

As shown in the right half of Table 7, Merge B also accurately
simulates the same complex interaction of subcategorical mis-
match and lexical status in lexical decision. The account of the
model’s behavior in these simulations is exactly parallel to that just
given for phonetic categorization, except that it is based on the
probability of words (or, for nonwords, the dummy word) rather
than on the probability of phonemes.

The most important message from both of these simulations is
that the behavior of Merge B follows directly from the underlying
Bayesian principles. This contrasts with Merge A. Because Merge
A began as an interactive-activation network, it could equally well
have been set up to simulate a different pattern of data (see Pitt,
Kim, Navarro, & Myung, 2006). There was no principled reason
for Merge A to predict the detailed pattern of results actually
observed. Several of the design decisions in Merge A were simply
pragmatically determined to enable the model to simulate the data.
For example, there was a difference in the architecture of the
phoneme input units and that of the word and decision units.
Whereas the latter two had between-unit inhibition, the former did
not (see Figure 11). The reason for not having inhibition between
the phoneme input units was to make sure that the early stages did
not force categorical responses to ambiguous stimuli. However,
this is just a problem with interactive activation models and their
tendency towards winner-take-all behavior. It is not a general
problem with the notion of relative evaluation of perceptual hy-
potheses. As has already been noted, there is relative evaluation in
the Bayesian calculations. If the likelihood of one hypothesis
increases, then the probability of others will decrease. This is
equivalent, at a computational level, to inhibition in an interactive
activation model. But when there is ambiguity in the input, the
Bayesian calculations never behave in a winner-take-all fashion.
For example, even if a prelexical phoneme identification stage
assigned a phoneme a very low probability, this could still be
overcome at the decision stage by a strong lexical bias. The same

computational principles therefore apply to all components of
Merge B.

Model complexity. Table 3 of Norris et al. (2000b) lists 12
Merge A parameters with nonzero values. The model also has an
extra parameter corresponding to the activation level for producing
a ‘Yes’ response in lexical decision. Two additional parameters
would be required to control the threshold and deadline for a ‘No’
response, and a further parameter is required to determine the
threshold for a phoneme categorization response. This gives a total
of 16 parameters. As witnessed by the fact that most of the
parameters are reported to three significant digits, the exact value
of the parameters is quite critical (see Pitt et al., 2006, for a
discussion of the sensitivity of the model). The Bayesian imple-
mentation is very much simpler, and its parameters are shown in
Appendix C. The sampling noise is a scaling factor and mainly acts
to speed or slow responses. The number of samples per segment is
analogous to the number of cycles per input slice in Merge A. The
response threshold parameters are not critical and were simply
adjusted to produce approximately the correct levels of accuracy.
The model therefore has a total of 7 parameters. Note that the
parameter values were adjusted by hand and not optimized.

As well as allowing us to lose some of the parameters required
by Merge A, the Bayesian implementation also enables us to
eliminate some of the ad hoc assumptions in Merge A. For exam-
ple, Merge A required a bottom-up priority rule (Carpenter &
Grossberg, 1987) to ensure that decision units could never become
activated purely on the basis of lexical input. This is a property that
naturally follows from Bayes’s theorem. If the likelihood of the
phoneme is zero, then no amount of lexical evidence can raise its
probability above zero.

So, where have all the parameters gone? Remember that our
claim here is that people approximate optimal Bayesian recogniz-
ers and that this determines the functions that must be computed.
However, an interactive activation model can compute a wide
range of functions depending on the parameters. That is, models
like TRACE, Shortlist A, and Merge A all have a large parameter
space, but only part of that space comes close to reproducing the
correct pattern of data (Pitt et al., 2006). Without additional con-
straints, these are all free parameters. However, imagine there was
a network that could be configured to compute exactly the same

Table 7
Merge B Subcategorical Mismatch Simulation Latencies (in Samples) for Phonetic Categorization and Lexical Decision Compared to
the Results (in ms) from Marslen-Wilson & Warren (1994, MWW) and McQueen, Norris & Cutler (1999, MNC)

Item type

Phonetic categorization Lexical decision

Merge B
MWW

Experiment 3
MNC

Experiment 4 Merge B
MWW

Experiment 1
MNC

Experiment 3

Word
W1W1 263 497 668 373 487 340
W2W1 366 610 804 447 609 478
N3W1 364 588 802 433 610 470

Nonword
N1N1 338 521 706 389 537 425
W2N1 443 654 821 495 625 476
N3N1 403 590 794 442 553 451

Note. The model latencies have not been adjusted to account for any nondecision component of the human responses. The notation is explained in Table
6
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function as either Shortlist B or Merge B. The theoretical require-
ment to compute a specific function would effectively determine
what values the network parameters must take. That is, the param-
eters would no longer be free parameters. Such a model would just
have the same set of free parameters as the computational-level
theory. What allows us to dispense with so many free parameters
are the strong principles underlying the theory.

Lexical effects in Shortlist B without online feedback. We have
shown that Merge B can explain lexical involvement in phonetic
decision making without feedback from the lexical level to the
prelexical level. Further, we have argued that the success of the
model arises from its underlying Bayesian principles. Perhaps
most importantly, Merge B’s account of lexical effects is true to
our initial assumption that speech recognition is optimal: Given
this assumption, there should be no lexical–prelexical feedback.

Two questions remain. First, what is the relationship between
Merge B and Shortlist B? The answer is that it is the same as that
between Merge A and Shortlist A. Merge and Shortlist are really
just implementations of different components of the same theory.
All four of these implementations share key assumptions about
levels of processing, about prelexical and lexical representations,
and, of course, the assumption that there is no feedback from the
lexical level to the prelexical level. In addition, Merge B and
Shortlist B operate according to the same Bayesian principles. The
differences between the models thus do not lie in any differences
in theoretical assumptions; they instead lie in differences in the
scope of the simulations they can perform. On the one hand,
Shortlist B simulates word recognition in continuous speech, but
has no means, in its current implementation, to make phonetic
decisions. On the other hand, Merge B is a simplification of
Shortlist B, with a much smaller lexicon and no ability to deal with
continuous speech recognition, but it can make phonetic decisions.
In short, the present Merge B simulations show that if that model’s
phonetic decision component were added to Shortlist B, then
Shortlist B would be able to explain lexical effects on phonemic
decision making without feedback. Ideally Merge B and Shortlist
B would be combined into a single program, but the simulations
are much more tractable if they are kept distinct.

The second question concerns perceptual learning. As we have
previously discussed, Norris et al. (2003) have shown that listeners
can use lexical knowledge to retune their phonetic categories when
they encounter a talker speaking in an unusual way. How is this
possible in a model without feedback? The answer is that already
given by Norris et al.: If one accepts that there is a distinction
between on-line feedback and feedback for perceptual learning, the
findings on lexical retuning of perception are completely consis-
tent with Shortlist B (and Merge B). On-line feedback is what
Shortlist and Merge do not have: lexical knowledge cannot mod-
ulate the prelexical analysis of a word as that word is being heard.
We have just presented arguments why on-line feedback in speech
recognition is unnecessary and indeed undesirable.

Feedback for learning is another matter entirely. As Norris et al.
(2003) argued, perceptual learning can benefit speech processing,
for example where adjustments in response to a given talker’s
idiosyncratic speech sounds can make it easier to understand what
that talker is saying later. The input (Clayards et al., 2007) and the
lexicon (Norris et al., 2003) are both sources of knowledge that
listeners can use to make these adjustments, which, as we have
already suggested, could take the form of changes to the likelihood

functions of phonetic categories (cf. Figure 2). Such changes to
f(Evidence|Phoneme) over time that are directed by lexical knowl-
edge do not require there to be any effects of the lexicon on on-line
processing. That is, feedback for learning and on-line feedback can
involve distinct mechanisms and therefore do not entail one an-
other. Thus, although a future version of Shortlist B might well
include an implementation of lexical retuning of phonetic percep-
tion, that version could still have no on-line feedback.

As Norris et al. (2003) and McQueen, Norris, et al. (2006)
argue, should convincing data that there is on-line feedback ever
be forthcoming, it should probably best be taken as evidence for
how feedback for learning is implemented. One possibility is that
the mechanism for lexically guided learning would have subsidiary
consequences for on-line processing (see Mirman, McClelland, &
Holt, 2006, for one proposal). Lexical effects in on-line processing
could thus potentially arise as an epiphenomenon of lexical in-
volvement in perceptual learning. Such effects, should they ever be
found, would therefore better be seen not actually as evidence for
on-line interaction, which itself serves no useful function and may
indeed be detrimental to recognition, but rather as further evidence
for feedback for learning, which is beneficial for the listener.

FLMP and Shortlist B

In concluding this section on lexical influences on phoneme
identification, it is important to compare the account offered by
Shortlist B/Merge B with the FLMP (Massaro, 1987, 1989b; Oden
& Massaro, 1978). As we have already noted, the FLMP combines
lexical and prelexical evidence independently to perform phoneme
identification and categorization, just as in Merge B. Although the
equation underlying the FLMP has the same form as Bayes’s
theorem, the FLMP is assumed to generate a truth value rather than
a posterior probability. As Massaro and Friedman (1990) note
“Bayes’s theorem and the FLMP are conceptually equivalent if the
truth value can be interpreted as a conditional probability” (p.
232). However, in the FLMP, the truth values are interpreted as
response probabilities and not posterior probabilities. Conse-
quently, the FLMP is not strictly Bayesian and does not incorpo-
rate an optimal decision rule.

In the FLMP, responses are generated according to the R. D.
Luce (1959) choice rule. The Luce choice rule, shown in Equation
11, gives the probability of generating a particular response as a
function of the relative support for that response as a proportion of
the total support for all responses.

Pr�a� � v�a�
 �
b in R

v�b� (11)

The Luce choice rule is often used to generate probabilistic choice
behavior from deterministic systems. For example, it is used to
translate the activation values from interactive activation networks
into response probabilities (e.g., Dahan et al., 2001). As noted in
our earlier discussion of the NAM, the Luce choice rule gives the
probability of generating each response, not the posterior proba-
bility of the hypothesis given the evidence. That is, the choice rule
is interpreted as giving the proportion of responses in each cate-
gory and not the probability of the hypotheses. The Luce choice
rule can be used to describe the average behavior of an optimal
system, but it is not itself an optimal decision rule. The optimal
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decision rule is to always select the response with the largest
posterior probability. The Luce choice rule is a randomized deci-
sion rule that will always perform worse than the optimal Bayesian
decision rule (Ferguson, 1967). Thus, although there are close
formal similarities between the FLMP and Bayes’s theorem (com-
pare Equations 11 and 1), they are not identical. Most importantly,
if the FLMP decision rule is applied at the level of the single trial,
FLMP will not perform optimally.

In addition to these formal differences between the models, it is
important to note that there are also significant differences be-
tween the explanations of lexical effects given by FLMP and
Merge (Massaro, 2000; Norris et al. 2000a; Oden, 2000).

However, despite these differences, there is no doubt that the
FLMP is close in spirit to the ideas we advance here. In particular,
work within the FLMP framework has made some of the most
important contributions to the feedback debate. Both Merge and
FLMP incorporate the notion that perception involves combining
the independent contribution of different sources of information.
This is the hallmark of feedforward theories and the central con-
trast between them and interactive theories. Massaro (1989b) sim-
ulated the influence of lexical information on phoneme categori-
zation in both the FLMP and TRACE and demonstrated that only
the FLMP could simulate the data accurately. McClelland (1991)
responded by developing the stochastic interactive activation
model, which could account for the data by emulating the behavior
of classical models, like the FLMP. In other words, the interactive
model could only simulate the data to the extent that it behaved
exactly like a noninteractive model. In fact, Massaro and Cohen
(1991) argued that even this modified interactive model could not
simulate the data as well as the FLMP.

From Activation to Bayes

We have shown that Shortlist B can account for key findings on
segmentation, word frequency, and mispronunciations. The Merge
B simulations show in addition that a Bayesian model with the
same key assumptions as Shortlist B can explain data on lexical
involvement in phonemic decision making. We now compare
different versions of the model and, in particular, trace the devel-
opment from the activation-based Shortlist A to the Bayesian
Shortlist B.

Shortlist A and Shortlist B

The main aim of the Shortlist A article was to demonstrate the
viability of a strictly bottom-up model of spoken-word recognition.
As we have just seen, Merge B (and thus, by extension, Shortlist
B) can explain lexical effects in a strictly bottom-up fashion.
Norris (1994) also showed that, in contrast to TRACE, there was
no need to have a copy of the entire lexical network associated
with each segment in the input. In Shortlist A and in the new
model, only a small subset of possible candidates need be consid-
ered at each segment. Furthermore, there is a clear distinction in
both versions of the model between the process of lexical access,
which generates candidates, and the process of competition among
lexical candidates (Shortlist A) or paths (Shortlist B). This distinc-
tion corresponds to a contrast between representations of lexical
types in the lexicon, where there is only a single representation of
each word, and representations of candidate lexical tokens, where

there may be many tokens of any given lexical type. This distinc-
tion between type and token representations is discussed exten-
sively in Norris et al. (2006).

The two versions of the model thus share key assumptions about
lexical representations. They are not identical in every way, how-
ever. One way to appreciate the relationship between the two
versions of Shortlist is to separate out those properties of the
original model that were fundamental theoretical claims (T) and
those properties that were a consequence of pragmatic assumptions
made simply to make it possible to construct a functioning com-
putational model (M). Norris (2005) enumerated these two sets of
assumptions as follows.

Core Theoretical Assumptions

T1. The flow of information from prelexical to lexical levels is
bottom-up only. This was the central motivation for Shortlist A.

T2. Bottom-up selection of multiple lexical candidates is based
on both matching and mismatching information (i.e., a claim about
the procedure for computing a match between input and lexical
entries).

T3. Matching lexical candidates (and only those candidates)
enter into a competition process that optimizes the parsing of the
input into words.

T4. There is no need for explicit lexical segmentation (i.e., the
model does not need to be told where words begin and end in the
input).

Assumptions Required for the Implementation of Shortlist A

M1. The input to the model is a string of phonemes.
M2. The input contains no phoneme deletions, insertions or

substitutions (i.e., there are no errors in the perceptual analysis).
M3. The dictionary contains a single canonical representation of

each word (i.e., no account of pronunciation variation).
M4. Lexical lookup is by means of a serial search through a

dictionary.
M5. The match between the input and lexical entries is com-

puted by counting �1 for each matching phoneme in the correct
position, and �3 for each mismatching phoneme.

M6. Matches between input phonemes and the corresponding
phonemes in a lexical entry are all-or-none (i.e., there is no account
of phoneme similarity).

M7. The candidates are entered into the network just by wiring
them in as required.

M8. Overlapping candidates are connected by inhibitory links.
M9. Competition is performed by an interactive-activation net-

work.
M10. The model output is a pattern of lexical activations over

time.
The only one of the core theoretical assumptions that has been

revised in Shortlist B is the claim about the matching process being
based on both matching and mismatching evidence (T2). The new
model retains the spirit of this assumption, but, as we saw in the
fourth set of simulations, match in the Bayesian formulation is
determined by likelihood, rather than any simple similarity metric.
Shortlist B incorporates one new theoretical claim: Word recog-
nition is performed optimally. That is, word recognition is per-
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formed by computing probabilities as determined by Bayes’s the-
orem.

In contrast to the shared theoretical assumptions, most of the
modeling assumptions have changed. The only similarities be-
tween the two versions of Shortlist are M2 and M3, and possibly
M7 (but of course there is no network in the new model). Purely
for reasons of computational efficiency, the new model no longer
uses a strictly serial search of the lexicon (M4). The model is
programmed such that there is a list of words associated with each
diphone, so only words that really are potential candidates need be
considered. It should be clear that these differences are nothing
more than changes in the way the program is written. The precise
algorithm chosen to implement the computer program makes no
difference to the results of the simulations. Furthermore, these
programming decisions most definitely do not reflect any theoret-
ical claims about the nature of the lexical search process.

The most radical differences between Shortlist A and Shortlist B
are the modeling assumptions M8, M9, and M10. Shortlist B no
longer uses a connectionist network. It is important to emphasize
that these are modeling assumptions and not theoretical assump-
tions. The interactive activation model used in Shortlist A was
never anything more than a convenient algorithm for determining
a near-optimal segmentation, and it was certainly never intended to
be a claim about the neural implementation of the word recogni-
tion process. It might be possible to design a modified interactive
activation model that could compute the correct posterior proba-
bilities required by Shortlist B. However, an appropriately de-
signed network would, by definition, compute exactly the same
probabilities as the current computational implementation. A con-
nectionist implementation of Shortlist B would therefore add noth-
ing to the explanatory or predictive value of the theory. Worse still,
there would be the possibility that a connectionist implementation
might be a distraction from the critical insights provided by the
Bayesian approach.

If a model is expressed as a connectionist network, the fact that
the probability of one word is influenced by the probability of
overlapping words is most readily implemented in terms of inhib-
itory links between the representations of competing lexical can-
didates. A computational-level theory need make no assumptions
about the specific algorithms used to perform the computations or
about the way those algorithms might be implemented.

The computational-level approach to model building we have
adopted here is very different from connectionist models like
Shortlist A and TRACE. But it is important to note that there is no
deep philosophical incompatibility between the approaches.
Rumelhart and McClelland (1985, 1986) suggested that, in Marr’s
terms, connectionist models could be considered to offer explana-
tions at an algorithmic level. A complete account of human speech
recognition would encompass both the computational and algo-
rithmic levels. However, the only way to discover which algo-
rithms might be used is to know what functions those algorithms
need to compute. If theories are constrained to use the small set of
existing connectionist architectures, there is no guarantee that the
available architectures will be able to compute the necessary
functions. For example, the interactive activation networks in
Shortlist A and TRACE do not compute the functions required for
Bayesian inference. These models are the wrong place to start.
However, in principle, there might be infinitely many networks
that could compute those functions. (For examples of neurally

plausible Bayesian algorithms, see Rao, 2004, which contains
suggestions as to how the cerebral cortex might implement Bayes-
ian inference for an arbitrary hidden Markov model, and Bogacz
and Gurney, 2007, for an illustration of how the basal ganglia and
cortex might perform optimal decision making). So, why would
one choose one kind of connectionist algorithm over another?
Different algorithms might predict different behavior, and con-
straints from the implementational level might lead one to prefer
some algorithms over others. But first we need to know whether
algorithms that can compute Bayesian inference might have any-
thing at all to contribute to the explanation of spoken word rec-
ognition.

We end this section by summarizing the advantages of Shortlist
B over Shortlist A. First, the critical new theoretical claim in
Shortlist B is that listeners approximate optimal Bayesian classi-
fiers. As we have just argued, this computational-level claim is a
more principled starting point for model building than the inter-
active activation algorithm on which Shortlist A (and TRACE) is
founded. Second, the optimality assumption gives Shortlist B extra
explanatory power, scope, and simplicity compared with Shortlist
A. For example, the explanation of word frequency effects follows
directly from this assumption, without the need to add any extra
features or parameters. Of course, we might have been able to add
extra features to Shortlist A to make it give an accurate simulation
of frequency effects, in the same way that Dahan et al. (2001) did
for TRACE. However, as with the TRACE simulations, that would
still have fallen short of the achievement of Shortlist B, which is
to explain why listeners behave as they do in response to differ-
ences in word frequency. Third, the input to Shortlist B, based on
a very rich set of perceptual confusion data (Smits et al., 2003)
allows the model to pass information continuously on to the lexical
level of processing; this was not possible with the categorical
phonemic input in Shortlist A. Finally, the new framework links
the explanation of spoken-word recognition to a wider body of
research on Bayesian models of perception and learning (e.g.,
Feldman & Griffiths, 2007; Huttenlocher et al., 2000; Tenenbaum
& Griffiths, 2001; Tenenbaum, Griffiths & Kemp, 2006).

SpeM

The SpeM model of Scharenborg et al. (2005) is an implemen-
tation of Shortlist using techniques from ASR. It too shares the
same theoretical assumptions as Shortlist A and Shortlist B, but
has a very different implementation. It uses an automatic phone
recognizer to generate a phoneme lattice. The phoneme lattice is
used to generate a word lattice. A measure of word activation is
then derived from a combination of the scores for individual words
and the scores for the paths that they lie on. The word activation
scores therefore reflect both the bottom-up perceptual support for
the word and how well that word fits in with the best path through
the lattice. In architectural terms, SpeM is very similar to the
model being presented here, with the main difference being the
form of the input: real speech versus confusion data. This means
that SpeM can perform simulations by being fed with exactly the
same speech stimuli used in a psychological experiment. For
example, Scharenborg et al. demonstrated that SpeM can simulate
data from Norris et al. (1997). However, because of some of the
restrictions and complexities imposed by the need to recognize real
speech using currently available ASR techniques, SpeM incorpo-
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rates some necessary simplifications. In particular, the procedure it
employs to compute word activations is not strictly Bayesian. The
activations are not directly interpretable in terms of probabilities.
Shortlist B, in contrast, dispenses with the notion of activation
altogether, and the output of the model is a pattern of word
probabilities that changes over time. This enables us to give a more
thorough treatment of the implications of a Bayesian approach to
speech recognition. A further limitation of SpeM is that the per-
formance of the automatic phone recognizer is not perfect (see
Scharenborg et al., 2005, for discussion). Consequently, some
experimental stimuli are not correctly identified. Therefore, there
is still a need for a model that can work with a phonemic tran-
scription of the input.

Conclusions

The model presented here serves two purposes. First, it shows
how data from a gating task can be used provide a psychologically
plausible input to a model of continuous speech recognition. Sec-
ond, and more importantly, it illustrates the implications that a
Bayesian account of speech recognition has for a number of
important theoretical issues. Although Bayesian techniques are at
the heart of almost all statistical pattern recognition systems, they
have not previously been used in psychological models of spoken-
word recognition. The SpeM model of Scharenborg et al. was
motivated by Bayesian principles but is not fully Bayesian.

The power of the Bayesian approach is that it offers a principled
account of many phenomena that have previously been explained
in an entirely ad hoc fashion. For example, the effect of word
frequency can be simulated in an interactive activation model like
TRACE in terms of changes in resting levels or weights (Dahan et
al., 2001). However, there is no principled theoretical reason to
prefer one account over the other. Moreover, as discussed by
Norris (2006), most of the mechanisms proposed as explanations
of the word frequency effect are actually detrimental to efficient
recognition. In contrast, the use of frequency (or prior probability)
in the present model provides the optimum way of combining
perceptual evidence with knowledge of prior probabilities. Exactly
the same argument must also apply to the explanation of the effects
of context. Almost by definition, contextual constraints act to
make particular words more or less probable. The effects of
frequency and context must therefore both be modeled in terms of
their influence on prior probabilities.

Similarly, there has been considerable debate in the literature as
to the proper metric for computing the degree of perceptual match
between the speech input and lexical representations. The standard
approach has been to suggest that there is some perceptual simi-
larity metric that can provide a measure of the perceptual distance
between different segments, and that it is this distance that deter-
mines the degree of match. The Bayesian perspective shows that a
simple metric based on perceptual form is inadequate. What counts
is not perceptual distance itself but the likelihood that the input is
an instance of the particular word or segment—f(Evidence|Word)
or f(Evidence|Phoneme). Therefore a word or segment with a very
variable pronunciation may be much more tolerant of mismatch
than a word or segment that is always realized in the same way.

The effect of lexical competition in continuous speech recogni-
tion also follows inevitably from the assumption of optimality.
Given a particular input, there is only one way to calculate the

posterior probabilities of the words, and those probabilities must
be influenced by the presence of other overlapping word candi-
dates. More specifically, the effect of overlapping candidates must
also be influenced by the viability of the path(s) that the word lies
on. Overlapping candidates will only compete to the extent that
they lie on paths with a high probability.

Finally, Bayesian principles provide a firmer theoretical under-
pinning for the case that lexical information should not influence
prelexical processing during word recognition. In an optimally
designed system, lexical knowledge should be able to influence
decisions about the identity of phonemes in words, but that infor-
mation should not feed back so as to influence the word recogni-
tion process itself.

It remains to be seen whether the Shortlist B account will stand
up to future tests. Although the present analyses suggest that word
recognition closely approximates optimal Bayesian decision mak-
ing, new data may reveal that certain aspects of speech perception
are not optimal. Pelli, Farell, and Moore (2003) have shown, for
example, that visual word recognition is not as efficient as it could
be. We therefore hope that Shortlist B not only provides important
insights into speech recognition, but that it will also generate
empirical tests of the optimality of the word recognition process.
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Appendix B

The diphone confusion matrix can be assumed to be generated
from a noisy decision process operating on stimuli located in a
multidimensional perceptual space. As indicated in Figure 2, the
likelihood f(input|phoneme) will have a pdf. If we assume that the
pdf is a Gaussian distribution with the same variance for all
phonemes, then we can calculate the distances between pairs of
phonemes that would be required to produce a likelihood that
would result in the empirically determined P(response|input).
Given these distances, we can alter the variance of the pdf, and
recompute a new set of likelihoods and probabilities. If we make
the variance smaller, the new probabilities will correspond to what
we might expect with perceptually clearer input. If we make the
variance larger, the new probabilities will correspond to what we
might expect with perceptually more ambiguous input. A sharpen
variable was defined that controlled these variance adjustments. In
the simulations summarized in Figure 5, the model was run in two
ways. In one case, the model was run with its default parameters,
that is, with no sharpening or broadening of the pdf variance, and
thus with the empirically determined phoneme likelihoods

(sharpen � 1). In the other case the variance was halved, and
phoneme likelihoods were recomputed (improved probabilities;
sharpen � 0.5).

To perform the simulations, these calculations are performed on
the phoneme probabilities computed at each slice and not on the
complete confusion matrix. This simplifies the computations, as
the phonemes can then be treated as lying on a single perceptual
dimension. The effectiveness of this procedure depends on
whether the probabilities with which various phonemes are given
in response to a particular target remain in the same ordinal
relationship over changes in signal to noise ratio (variance). For
example, if listeners consistently misidentified a particular pho-
neme in the diphone experiment, increasing the signal to noise
ratio will exaggerate the error rather than make identification more
accurate. However, these technical limitations should be of little
concern here as the procedure is simply being used to illustrate the
general relationship between frequency and the reliability of per-
ceptual information.

Received April 6, 2007
Revision received January 16, 2008

Accepted January 17, 2008 �

Appendix C

Merge B Parameters

Parameter Value

Sampling noise 0.5
Lexical decision ‘Yes’ threshold 0.8
Lexical decision ‘No’ threshold 0.01
Phonetic categorization threshold 0.999
Lexical decision dummy word probability (set to zero in phonetic categorization) 0.15
Lexical attenuation factor (not used in lexical decision) 0.8
Samples per segment 100

Appendix A

The Phoneme Inventory of Shortlist B in IPA Transcription and in the Machine-Readable
Transcriptions Used by the Model

Consonants IPA b d G p t k m n ŋ l r o j f v s z ʃ � x,γ h �
Shortlist B b d g p t k m n N l r w j f v s z S Z x h _

Vowels IPA i y u e I d œ o e a ɑ εi œy ɑu �,ə
Shortlist B i y u e I E � o O a A K L M }
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