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Abstract. We review the semiclassical analysis of strings in AdS5 ×S5 with a focus on the
relationship to the underlying integrable structures. We discuss the perturbative calculation
of energies for strings with large charges, using the folded string spinning in AdS3 ⊂AdS5
as our main example. Furthermore, we review the perturbative light-cone quantisation of
the string theory and the calculation of the worldsheet S-matrix.
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1. Introduction

The semiclassical study of strings in AdS5 × S5 has played a key role in extend-
ing our understanding of the AdS/CFT correspondence beyond the supergravity
approximation. The analysis of quantum corrections to the energies of strings with
large charges has gone hand in hand with the discovery and application of the
integrable structures present in the duality. In particular, it has been important for
comparison with the Bethe ansatz predictions for the anomalous dimensions of
long operators and to understand the finite size corrections of short operators.

Due to the presence of Ramond–Ramond fields, one must make use of the
Green-Schwarz formalism for the string action, adapted to the AdS5 ×S5 geometry
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[1] (see [2] for a brief introduction),1 which to quadratic order in fermionic fields is

I =−
√
λ

4π

∫
d2σhab Gμν∂a xμ∂bxν − i

√
λ

2π

∫
d2σ(habδ I J − εabs I J )θ̄ Iρa Dbθ

J .

(1.1)

Here, we have used the rescaled worldsheet metric hab = √−ggab, the induced
Dirac matrices ρa =∂a xμEμA
A and the covariant derivative

Daθ
I =

(
∂a + 1

4
∂a xμωμ

AB
AB

)
θ I + 1

2
ρa
01234ε

I J θ J . (1.2)

Directly quantising this action is beyond current methods and one must take a
perturbative approach, expanding about a given classical solution in powers of the
effective string tension,

√
λ. A classical solution is characterised by the conserved

charges corresponding to the AdS energy, E , two AdS spins, Si , and three angular
momenta of the sphere, Js , in addition to any parameters specifying further prop-
erties of the string such as non-trivial winding. The Virasoro conditions provide a
constraint on these parameters, and for the solutions we are interested in we can
express the string energy as a function of the remaining charges: E = E(Si , Js; kr ).
In the semiclassical approach, one takes a string solution where one or more of
the rescaled charges, Si = Si√

λ
or Js = Js√

λ
, are finite and computes the worldsheet

loop corrections to the energy as an expansion in large tension,

E =√
λ

[
E0(Si , Js; kr )+ 1√

λ
E1(Si , Js; kr )+ 1

λ
E2(Si , Js; kr )+· · ·

]
. (1.3)

In general, calculating these corrections involves gauge-fixing the diffeomorphism
and kappa-gauge invariance, and studying the fluctuations of the fields – bosonic,
fermionic and conformal ghosts from gauge fixing – about the classical solution.
An important point is that all UV divergences of the worldsheet theory cancel and,
relatedly, the conformal anomaly vanishes once the contribution from the path
integral measure is accounted for; thus, the semiclassical expansion is well defined.
On general grounds, this is expected as the string theory is of critical dimension
and it was explicitly shown at one loop in [4,5].2 A solution which has played
a particularly important role in our quantitative understanding of the AdS/CFT
duality is the spinning folded string in AdS5, introduced in [6] and the semiclas-
sical analysis of which was initiated in [5]. In the large spin limit [6–8], the dif-
ference between its energy E and spin S scales as ln S with the coefficient being
the universal scaling function, f (λ). This function provided the first example of
a result interpolating between weak and strong coupling which can be calculated

1One can also study strings in different backgrounds; of particular interest is AdS4 ×CP3 where
many results parallel the AdS5 ×S5 case. See [3].

2Particular care must be taken with the fermionic fields. Importantly, they couple to the world-
sheet metric rather than the zweibein and so contribute to the conformal anomaly four times the
usual 2-d Majorana fermion amount.
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from the all-order asymptotic Bethe ansatz (ABA) [9,10] (see [11–13] for a review
of the all-order ABA). The one- and two-loop semiclassical calculations [5,14–16]
have been shown to match the predictions of the string ABA [17–19] using the
one-loop phase factor [20–22] and its all-order generalisation [23,10] in a very non-
trivial test of the duality and its quantum integrability (see [24] for a review of
the ABA calculation and references). We will discuss this solution, its generalisa-
tions and related solutions in Section 2.3. While for the most part we focus on
closed strings, similar semiclassical analysis has also been applied to open strings:
duals to cuspy Wilson loops, to Wilson loops describing “quark–anti-quark” sys-
tems, [4,25–28], to Wilson loops describing high energy scattering [29,30] and more
recently, dimensionally reduced amplitudes [31].

Another solution that has played a crucial role in our understanding of the
quantum string in AdS5 × S5 is the BMN string, [6,32] see also [2], which is
the BPS solution dual to the ferromagnetic vacuum of the spin chain description
of the gauge theory. This solution is the natural vacuum state for the light-cone
quantisation of the worldsheet theory where the physical Hamiltonian, Hl.c., is pro-
portional to P− = E − J , with J one of the sphere angular momenta.3 Finding
quantum string energies, E , corresponds to computing the spectrum of the Hl.c..
Unfortunately, the exact light-cone Hamiltonian has a non-polynomial form [36,
40] and is not a suitable starting point for “first-principles” quantisation. One can,
however, solve for the spectrum perturbatively. At leading order, the theory is sim-
ply that of free massive fields [32,41,42], while at subleading orders [35,36,38,43–
45] the interactions are somewhat more complicated and, due to the gauge fixing,
do not respect worldsheet Lorentz invariance. Alternatively, as the worldsheet the-
ory is integrable, it is possible to find the spectrum of the decompactified theory,
via the ABA, by calculating the worldsheet S-matrix [18,17,19]. A review of the
exact form of this S-matrix and its properties can be found [12,13]; in this review
we will restrict ourselves to briefly describing its perturbative calculation (for a
more thorough review see [46]).

2. Quantum Spinning Strings

We will, as an illustrative example, consider the folded spinning string [5,6], see
also [2]. This solution describes a string extended and rotating with spin, S, in an
AdS3 subspace of AdS5, while additionally moving along a great circle of the S5

with angular momentum J (see Figure 1). In terms of the global coordinates

ds2
AdS5

=− cosh2 ρ dt2 +dρ2 + sinh2 ρ(dθ2 + cos2 θ dφ2
1 + sin2 θ dφ2

2), (2.1)

ds2
S5=+ cos2 γ dϕ2

3 +dγ 2 + sin2 γ (dψ2 + cos2ψ dϕ2
1 + sin2ψ dϕ2

2), (2.2)

3There are essentially two ways to fix the light-cone gauge in AdS5 ×S5, which differ by picking
inequivalent light-cone geodesics. In one case, which is possible only in the Poincaré patch, the light-
cone directions lie entirely in AdS5 [33,34]. In our case, the light-cone is shared between AdS5 and
S5 e.g. [35–39].
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Figure 1. In a we show the classical folded spinning string moving in AdS3 ⊂ AdS5 at a
certain time (dark solid line) and earlier/later times (dashed lines). The quantum fluctuations,
corresponding to oscillations transverse (light wavy lines) to the classical solution and acquire
mass due to the background curvature. In b, we show the motion of the string on the sphere,
essentially a point moving along a great circle, with its fluctuations again seeing more of the
geometry.

the string solution is given by θ =γ =ψ= π
2 ,

t =κτ, φ2 =ωτ, ρ=ρ(σ)=ρ(σ +2π), ϕ2 =ντ. (2.3)

The equations of motion and the conformal constraints are satisfied provided

ρ′′ = (κ2 −ω2) sinhρ coshρ, ρ′2 =κ2 cosh2 ρ−ω2 sinh2 ρ−ν2, (2.4)

and the other fields are zero. This string can be thought of as four segments: the
first, for 0≤σ ≤ π

2 , extends from the origin of the AdS5 space along the radial
direction to a maximum ρ(π2 )= ρ0 i.e. ρ′(π2 )= 0. The string then turns and runs
back along itself to the origin; this then repeats before the string closes on itself.
In fact, this solution is generically rather complicated; however, in various limits it
simplifies.

2.1. QUANTUM CORRECTIONS

It is possible to extract the one-loop correction to the energy by various means,
though, of course, all give identical results. The most direct method is to fix a
physical gauge, solve the resulting constraints and quantise the remaining degrees
of freedom; the correction to the AdS energy of the string is the correction
to the two-dimensional energy of the vacuum state. Another method, essen-
tially a generalisation of the WKB formula, for finding the leading quantum
correction to quasi periodic solutions is due to Daschen, Hasslacher and Neveu
[47]. These methods are quite powerful and can be used to derive a general for-
mula for the fluctuation energies around generic finite-gap solutions; see [48,49] for
a general discussion. Such methods were applied to the semiclassical quantisation
of the giant magnon [50] in [51–53] and the rigid pulsating string in [54].
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However, for many purposes, and particularly for more complicated solutions at
higher orders, the most convenient method, introduced in this context by [14,15,31]
and most completely described in [55,56], is to relate the correction to the energy
to the calculation of the worldsheet effective action. As in standard QFT, and in
analogy with the thermodynamic Gibbs free energy, in the presence of a non-trivial
background solution, ϕc(x), the expectation value of the conjugate source, J (x), is
given by the functional derivative of the effective action, 
[ϕc(x)], which is itself
simply the Legendre transform of the vacuum energy functional. For the world-
sheet theory, the sources are simply the conserved charge densities, such as E, S
and J . These are conjugate to time derivatives of the fields and so the background
is specified by the constant parameters e.g. κ, ω, and ν. Thus,

1
T

(κ,ω, ν)=− i

T
ln 〈ei H2d T 〉+κ〈E〉−ω〈S〉−ν〈J 〉 (2.5)

where T → ∞ is the worldsheet time interval. Due to the classical Virasoro con-
straints, not all parameters are independent, e.g. κ = κ(ω, ν). Furthermore, the
energy functional vanishes as 〈H2d〉=0 due to the quantum conformal constraint.
The charges are thus found from the effective action by e.g.

1
T

∂
(ω, ν)

∂ν
= ∂κ(ω, ν)

∂ν
〈E〉−〈J 〉. (2.6)

Hence, we need only calculate the worldsheet effective action to determine the cor-
rections to the string charges. In general, the leading quantum correction to the
effective action, 
1, is found by expanding the Lagrangian, L, about a classical
solution, ϕ=ϕc + ϕ̃, and performing the Gaussian integral


1 = i

2
log det

[
− δ2L

δϕ̃δϕ̃

]
= i

2
Tr log

[
− δ2L

δϕ̃δϕ̃

]
. (2.7)

For the string theory, we must include not only the bosonic fluctuations, but also
those of the fermionic and the ghost fields which give inverses of determinants.

In general, the effective action is an extrinsic quantity.4 This can be seen by con-
sidering the simple case where the quadratic fluctuation operator is given by K =
−∂2 +m2 with constant masses, m. Fourier transformed, this is K̃ =−ω2 +n2 +m2,
and so


1 = iT

2

∫
dω

2π

∑
n

log(−ω2 +n2 +m2)= lT

2

∫
d2 pE

(2π)2
log(p2

E +m2) (2.8)

where in the last identity we have Wick rotated to Euclidean signature and taken
the extent of the spatial direction, l, to also be large. Note that by performing the
integration over ω in this constant mass case, or in fact for any stationary solution,

4Strictly speaking, all our considerations are only valid in the large volume limit and under the
assumption that interactions are local.
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one recovers the sum over fluctuation frequencies, which gives the more common
expression for the correction to the string energy c.f. Appendix A of [5].5

2.2. POINT-LIKE BMN STRING

If we consider the case ω= 0, κ = ν, for Equation (2.3), this forces ρ0 = 0 and so
corresponds to the point-like BMN string rotating only in the S5 (see Figure 1 (b)).
As mentioned in the introduction, this solution plays a fundamental role in our
understanding the quantum string. Here, we merely calculate the one-loop correc-
tion to its classical AdS energy E0 = J =√

λκ.
It is convenient to switch to Cartesian coordinates: (ρ, θ, φ1, φ2) → zk, k =

1, . . . ,4 and (γ,ψ,ϕ1, ϕ3)→ ys, s =1, . . . ,4 such that

ds2 =− (1+ 1
4 z2)2

(1− 1
4 z2)2

dt2 + dzkdzk

(1− 1
4 z2)2

+ (1− 1
4 y2)2

(1+ 1
4 y2)2

dϕ2
3 + dysdys

(1+ 1
4 y2)2

. (2.9)

Now, expanding near zk = ys =0,

t =ντ + t̃

λ1/4
, zk = z̃k

λ1/4
, ϕ2 =ντ + ϕ̃

λ1/4
, ys = ỹs

λ1/4
, (2.10)

the bosonic terms of the action Equation (1.1), in conformal gauge, give the
quadratic term6

IB =− 1
4π

∫
d2σ [−∂a t̃∂a t̃ +∂ϕ̃∂a ϕ̃+ν2(z̃2 + ỹ2)+∂a z̃k∂

a z̃k +∂a ỹs∂
a ỹs].

(2.11)

This action corresponds to two massless longitudinal fluctuations t̃ and ϕ̃, plus
eight free, massive scalars, with mass m = ν. For the fermions, we find for the
induced Dirac matrices ρ0 =κ
− and ρ1 =0 so that the action becomes

IF = iν

2π

∫
d2σ [θ̄1
−∂+θ1 + θ̄2
−∂−θ2 −2νθ̄1
−�θ2] (2.12)

where we have defined ∂± = ∂0 ± ∂1, 

± = ∓
0 +
9 and �=
1234. Furthermore,

because of the form of the fermionic kinetic operator, it was natural to choose
the kappa-gauge fixing 
+θ I = 0, which simplified the mass term. This action
corresponds to eight free, massive fermionic excitations, with m =±ν. Finally, one
must include contributions from the conformal bosonic ghosts; however, for the

5It is also possible to make use of the integrable structure and extract the fluctuation frequencies
from the string algebraic curve. While this powerful method is widely used in the calculation of
quantum corrections, we will not discuss it here, but simply refer the reader to [57] for a review
and references.

6We note that this is essentially the same action as that found by expanding the action for a
string in the plane-wave geometry, [41,42], ds2 =dx+dx− + 1

4 x2dx+dx+ +dxi dxi about the solution
x+ =2ντ [32,41,42].
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cases in which we are interested, as shown in [4,5], the ghost contribution is essen-
tially trivial. Its only effect is to cancel the two massless longitudinal bosonic fluc-
tuations.

As the masses of the transverse bosons and physical fermions are equal, one
immediately sees that the ratio of fluctuation determinants cancels and the one-
loop effective action is zero. Thus the correction to the AdS energy, Equation (2.5),
〈E − J 〉= 1

κT 
 is zero, which is exactly as expected as this state is BPS. As we will
see later, it provides a sensible vacuum about which to study fluctuation interac-
tions.

2.3. SPINNING FOLDED STRING

While for the BPS solution we find no correction to the classical string energy,
a generic spinning string solution spontaneously breaks supersymmetry and we
expect to find a non-trivial correction at one loop. We will consider the so-called
“semi-classical scaling” or long-string limit of the spinning string solutions, see
[7,8] and also [55],

S � J �1, with �≡ J

2 ln S
. (2.13)

As discussed at length in [8,55], upon taking ω=κ, the solution simplifies dramat-
ically becoming homogeneous so that ρ(σ)=μσ . The conformal gauge condition
becomes κ=√

μ2 +ν2, and in this limit of large spin, μ= 1
π

ln S and �= ν
μ

.
As μ is thus very large, by rescaling the worldsheet coordinate σ such that

ρ = σ , we find the string length l = 2πμ becomes infinite. The folded string
becomes two overlapping, infinite, open strings. One can further expand in small
�, the so-called “slow long string limit”, [8,55]. In this further limit, the quantum
string energy is given by

E − S =
√
λ

π
f (λ) ln S, (2.14)

where f (λ) is the universal scaling function. At leading order, this can be checked
by expanding the classical energy which is given by E0 − S =μ

√
1+�2. We will

see this form persists at subleading orders in the semiclassical expansion, i.e. there
are no lnk S terms, and furthermore we can calculate the numerical coefficients
[5,8,14,55]

f (
√
λ)=1− 3 ln 2√

λ
− K

λ
+· · · (2.15)

where K is the Catalan constant.
To calculate these coefficients, we expand about the homogeneous, J = 0

solution, t̂ =κτ, ρ̂=κσ, θ̂= π
2 , φ̂2 =κτ , and (following [5] closely, where full details

can be found) we again consider the conformal gauge action.
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Bosons. The bosonic action, Equation (1.1), to quadratic order in fluctuations
(using the coordinates of Equation (2.1) for the AdS5 space but Equation (2.9) for
the sphere) is

IB =− 1
4π

∫
d2σ

[
− cosh2 ρ̂(∂t̃)2 + sinh2 ρ̂(∂φ̃2)

2 +2κ sinh ρ̂ρ̃(∂0 t̃ −∂0φ̃2)

+(∂ρ̃)2 + sinh2 ρ̂((∂θ̃ )2 + θ̃2(∂φ1)
2 +κ2θ̃2)+ (∂φ̃3)

2 +
∑

s

(∂ỹs)
2

]
(2.16)

where e.g. (∂t)2 =∂at∂at . In this expression, the coefficients depend on the world-
sheet coordinates; however by making the field redefinitions

χ̄ = 1
2

sinh 2ρ̂ (φ̃2 − t̃), ξ̄ =− sinh2 ρ̂ φ̃2 + cosh2 ρ̂ t̃, θ̄ = sinh ρ̂ θ̃ ,

ρ̄= ρ̃, x̄1 = θ̃ cosφ1, x̄2 = θ̃ sinφ1,

(2.17)

this can be put in the form

IB =− 1
4π

∫
d2σ

[
(∂χ̄)2 − (∂ξ̄ )2 + (∂ρ̄)2 +4κ(∂1χ̄ )ξ̄ −4κ(∂0χ̄ )ρ̄

+
∑

i

((∂x̄i )
2 +2κ2x2

i )+ (∂φ̃3)
2 +

∑
s

(∂ỹs)
2

]
. (2.18)

It is now straightforward to calculate the determinant of the fluctuation operator

det K B =−(∂2)7(∂2 +2κ2)2(∂+4κ2) (2.19)

corresponding to two scalars with mass
√

2κ, one with mass 2κ and seven massless
scalars – two from the AdS space and five from the sphere.

Fermions. Substituting the classical solution in the expressions for the induced
Dirac matrices, we find (where the flat index 0 is the homologue of t , 1 corre-
sponds to ρ, and 2 to φ2)

ρ0 =κ 
0(cosh ρ̂− sinh ρ̂ 
02), ρ1 =κ 
1. (2.20)

Using the expression for the quadratic action Equation (1.1), we again find
that the dependence on the worldsheet coordinates can be removed by a field
redefinition

θ I = S� I , with S = exp
(κσ

2

02

)
, (2.21)

such that the corresponding transformations of the induced Dirac matrices are

τ0 = S−1ρ0S =κ 
0, and τ1 = S−1ρ1S =κ 
1. (2.22)
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Making use of the relevant terms of the spin connection, ωt
01 = sinhρ and ωφ2

21 =
coshρ sin θ , one can show that the portion of the covariant derivative that cou-
ples to the background curvature, Da =∂a + 1

4ω
AB
a 
AB , essentially becomes trivial:

S−1Da S =∂a + Ba where ηabτa Bb = εabτa Bb = 0. Thus the fermionic action can be
written as

IF = i
√
λ

2π

∫
d2σ (ηabδ I J − εabs I J )

(
�̄ I τa∂b�

J + 1
2
εJ K �̄ I τa
01234τb�

K
)
.

(2.23)

As can be seen from the form of the kinetic operator, one can fix the fermionic
kappa-symmetry by imposing �1 =�2 =�, resulting in the fermion action7

IF = i
√
λ

π

∫
d2σ �̄ I (τ a∂a + i M)�, where M = iκ2
234. (2.24)

Of the eight physical fermions four have mass κ and four have −κ, thus

det KF = (∂2 +κ2)8. (2.25)

Energy Correction. To determine the correction to the energy, we must evaluate
the sum over momenta. As we are interested in the leading term in the large κ
expansion, we can treat the worldsheet after rescaling by κ as having infinite extent
and so the worldsheet momenta are continuous. In momentum space, the one-loop
effective action is (having taken into account the conformal ghosts which cancel
two massless bosons)


1 = 1
2

V2

∫
d2 p

(2π)2
[ln(p2 +4)+2 ln(p2 +2)+5 ln p2 −8 ln(p2 +1)] (2.26)

where we recall that the two-dimensional volume is given by V2 = 2πκ2T . While
the complete expression is finite, the individual terms are divergent so we introduce
a cut-off at intermediate stages to perform the integration. The quadratic and log-
arithmic divergences cancel and the finite result is

〈E − S〉 |one−loop = 1
κT


1 =−3 ln 2
π

ln S (2.27)

which is the leading correction to the universal scaling function. We note that the
ln S dependence arises from the fact that the effective action is proportional to
the worldsheet volume as, in the scaling limit, we can completely remove κ from
the action. This remains true at all orders.

7While it is not relevant for the case at hand, in general, one must be careful with the bound-
ary conditions imposed on the fermions which can be subtle. See [58] for a discussion.
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Generalisations. The two-loop calculation of the universal scaling function was
carried out in [14–16]. The equivalence [31] of the spinning folded string, in the
l → ∞ limit, to the null cusp Wilson loop solution [59] plays a key role in these
calculations, as does a form of the action with particularly simple fermions [60].
One can obviously include the effects of non-zero J by keeping finite ν, or equiv-
alently �, dependence. The generalised one-loop calculation in the “long string”
limit was performed in [8] and the two-loop analysis in [55,56,61]. Here, it is
necessary to take into account the quantum corrections to the Virasoro condi-
tion and to the relations between solution parameters and charges, as described in
Section 2.1. Furthermore, the calculation is simplified by using a light-cone gauge
[33,34] adapted to a geodesic entirely in the AdS5 space. These results match those
found from the ABA [62–64]. These calculations thus provide vigorous checks
of the two-loop finiteness of the worldsheet theory and the underlying quantum
integrability.

2.4. CIRCULAR SPINNING STRINGS

While the energies of spinning folded strings have provided stringent checks of
ABA, the relationship is slightly complicated. It is a separate class of solutions,
rigid circular spinning strings (see [2] for a review and further references), whose
energies are most transparently related to the strong coupling expression for the S-
matrix entering the ABA. The simplest circular strings come in two types: the so-
called su(2) circular strings moving on a S3 ⊂S5, [65], and the sl(2) circular strings
lying in AdS3 ×S1 ⊂AdS5 ×S5 [66].

The computation of the one-loop correction to the energies of the su(2) [67–69]
and sl(2) [20,70–72] strings8 played a key part in discovering the presence of the
one-loop term [21] in the phase in the strong-coupling (or “string”) form of the
Bethe Ansatz [17–19].

The (S, J ) string solution of [66] has a spiral-like shape, with projection to Ad S3

being a constant radius circle (with winding number k), and projection to S5 – a
big circle (with winding number m). The corresponding spins are, respectively, S
and J with the Virasoro condition implying that u ≡ S

J =−m
k . Expanding the clas-

sical energy in large semiclassical parameters S and J with fixed k and u [66,70],
we have

E0 = S + J + λ

J
e1(u, k)+ λ2

J 3
e3(u, k)+ λ2

J 5 e5(u, k)+· · · (2.28)

For circular strings, the expressions for the fluctuation frequencies are sufficiently
complicated that they must be expanded in J to be evaluated, and subsequently
summing over modes becomes slightly subtle [20,69–72,74–76]. The correct proce-
dure, given in [20] for the sl(2) case (see also [72] for the su(2) case), gives two

8An early semiclassical analysis of circular strings in AdS was performed in [73].
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types of terms for the one-loop correction, E1 = Eeven
1 + Eodd

1 , where

Eeven
1 = λ

J 2
g2(u, k)+ λ2

J 4
g4(u, k)+· · · , Eodd

1 = λ5/2

J 5 g5(u, k)+· · · (2.29)

The absence of the 1
J and 1

J 3 terms suggests that the two leading λ
J and λ2

J 3 terms
receive no quantum corrections and their coefficients should directly match weak
coupling gauge theory results. Indeed, the coefficient g2 of the “even” 1

J 2 term
in (2.29) can be reproduced as a leading 1

J (finite spin chain length) correction
from the one-loop gauge theory Bethe Ansatz [69,74]. At the same time, the pres-
ence of the non-analytic term λ5/2

J 5 in (2.29) implies that a similar 1
J 5 term in the

classical energy (2.28) is not protected so that its coefficient cannot be directly
compared to three-loop result on the gauge theory side which implies [20] that the
corresponding “string” Bethe Ansatz [17] should be modified to contain a non-triv-
ial one-loop correction to the phase. This phase was determined by directly match-
ing to higher orders in this expansion [21,22].

2.5. FINITE SIZE EFFECTS AND SHORT OPERATORS

Semiclassical analysis can also be applied to strings of finite length and even, to a
certain degree, short strings. For the folded spinning string, Section 2.3, the large
S corrections to the one-loop calculation were analysed in [77] and the exact one-
loop expression for the fluctuation determinants was found in [78] (for two-loop
results see [61]). The one-loop correction to the small spin or short string limit of
the string were calculated in [79] and the generalisation with non-zero J in [80].
Short, excited strings dual to operators in the Konishi multiplet are particularly
important in testing the conjectured exact results for the spectrum at finite vol-
ume. The correction to their energies at strong coupling was calculated semiclas-
sically, with caveats regarding the validity of these methods in this regime, in [81]
and more recently in [82,83]. For the circular spinning strings, in addition to the
energy correction Equation (2.29), a careful analysis shows the presence of expo-
nential corrections, O(e−J) [71,72,84]. Similar exponential corrections are found
for quantum corrections to finite-sized giant-magnons calculated using algebraic
curve methods (see [57]). Such corrections cannot be accounted for by modifying
the phase in the BA, but rather arise from finite volume effects. See [85,86] for
reviews and references.

3. Perturbative Light-Cone Quantisation

As we saw in Section 2.2, the string action expanded about the BMN string is
particularly simple and is exactly solvable to quadratic order in fluctuations. This
string solution provides a sensible vacuum about which to perturbatively quan-
tise the AdS5 × S5 Green-Schwarz string [35,36,38,43,87]. In this context, it is
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natural to make use of light-cone gauge,9 introducing the coordinates and momenta,
pμ=h0aGμν∂a xν ,

x+ = 1
2
(t +φ), x− =φ− t, p− = 1

2
(pφ − pt ), p+ = pφ + pt (3.1)

where we focus on the bosonic fields for simplicity. The Hamiltonian density H =
pμ ẋμ−L is given by

H =−hτσ

hττ
(x ′μ pμ)+ 1

2hττ
(pμGμν pν + x ′μGμνx ′ν), (3.2)

with the notation x ′ = ∂σ x and ẋ = ∂τ x . As is usual in theories with general
coordinate invariance, the Hamiltonian is a sum of constraints times Lagrange
multipliers. To impose light-cone gauge, one sets x+ =τ and p− =const. The metric
coefficients 1/hττ and hτσ /hττ act as Lagrange multipliers, generating delta func-
tions that impose two constraints which determine x− and p+ in terms of the
transverse variables (and the constant p−).10 The transverse coordinates, x A, and
momenta, pA, A = 1, . . . ,8 will then have dynamics which follow from the light-
cone Hamiltonian −p+ = Hlc. Solving the quadratic constraint equation for p+,
we obtain the somewhat dispiriting result

−Hlc = p−G+−
G−−

+ p−
√

G

G−−

√
1+ G−−

p2−
(pAG AB pB + x ′AG AB x ′B)+ G2−−

p4−
(x ′A pA)2,

(3.3)

with G ≡G2+− −G++G−−. Using the relation between the canonical momenta and
the target space charges, we have

E − J =−P+ =
√
λ

2π

2π∫

0

dσ Hlc,
1
2
(E + J )= P− =

√
λ

2π

2π∫

0

dσ p−. (3.4)

Perturbative expansion. To make progress, we perform the large tension expansion:
rescaling the transverse fields by λ−1/4 and expanding in large

√
λ, or equivalently

P− =√
λp− ∼ J , while keeping −P+ = E − J fixed. Being careful with the expansion

of the G−− terms, see e.g. [36], one finds the first two orders,

H
pp

lc = 1
2p−

[( ṗA)2 + (x ′ A
)2 + p2−(x A)2]

+ 1

4
√
λp−

(z2(p2
y + y′2)− y2(p2

z + z′2)+2z2z′2 −2y2 y′2), (3.5)

9See [88] for a more complete discussion of light-cone gauge fixing.
10In fact, the constraints determine the derivatives of x−, and so x− itself is non-local in this

gauge; this has important consequences for the “off-shell” symmetry algebra.
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where beyond the leading order, the eight transverse fields split into two sets of
four, x A = (zi , ys).

The leading order term is simply the plane-wave Hamiltonian whose spectrum
consists of an infinite tower of non-interacting massive oscillators, a A

n , of frequency

ωn =
√

p2− +n2. One can straightforwardly include the fermions, though the sub-
leading interaction terms are somewhat involved [35,36,38]. At leading order, one
again gets massive oscillators, bαn , α=1, . . . ,8 and thus the full plane-wave Hamil-
tonian, Hpp, is

Hpp = 1
p−

∞∑
n=−∞

ωn(a
A
n

†
a A

n +bαn
†bαn ), (3.6)

where one can immediately see that the energy of the vacuum state, |Vac〉, corre-
sponding to a string with charge P− vanishes.

Near-BMN energy spectrum. The quartic terms give rise to corrections of order
O(1/J ), the effects of which can be perturbatively included in the spectrum. In the
simple case where we consider a single complex boson from the sphere y = y1 + iy2,
the leading correction to the two excitation state a†

na†
−n|P−〉 is

E − J =2
√

1+λ′n2 −2
λ′n2

J
+ NB(n2)

J
(3.7)

with λ′ =λ/J 2 an effective coupling. Due to the form of the interactions there are
normal ordering ambiguities, characterised by the arbitrary function NB(n2), which
can be fixed by demanding that the full spectrum possesses the global psu(2,2|4)
symmetry. This implies, for example, NB = 0. Equivalently, they could be fixed by
demanding that the algebra of generators, including the Hamiltonian, is satisfied
at this order. These expressions for string energies can be compared to the string
ABA [37,38,44,45,87] and were one of the first pieces of evidence for a non-trivial
dressing phase interpolating between strong and weak coupling.

3.1. WORLDSHEET S-MATRIX

As the theory in light-cone gauge has only massive particles, we can study the
interactions by calculating the worldsheet S-matrix. Modulo issues of gauge depen-
dence11 of this object should match the spin chain S-matrix introduced in [18], see
[12,13] for reviews. The perturbative study of the worldsheet S-matrix was initiated
in [90], while its symmetries and many properties were analysed in [91,92] (see [46]
for an extensive review). To define the S-matrix, one must consider the theory on

11The S-matrix is gauge dependent, since unlike the spectrum it is not a physical object with a
clear target-space interpretation. The differences between gauges can be attributed to the definition
of the string length [18]. The difference in the definition of length and the gauge dependence of the
S-matrix mutually cancel in the Bethe equations [38,89].
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the plane: this corresponds to scaling p− out of the action and taking the decom-
pactification limit p− →∞.12 In order to define free, asymptotic states for generic
momentum, one relaxes the level matching condition and then studies the interac-
tions in powers of

√
λ or equivalently in a small (worldsheet) momentum expan-

sion.

Asymptotic states. Of the global group, the light-cone gauge preserves a subset
PSU(2|2)L × PSU(2|2)R ⊂ PSU(2,2|4). The bosonic subgroup of each PSU(2|2)
factor consists of two SU(2) groups and it is useful to introduce a bispinor nota-
tion for the physical bosons Zαα̇= (σi )αα̇zi , Yaȧ = (σs)aȧ ys and fermions, �aα̇,ϒαȧ ,
which are charged under different combinations of the SU(2)’s. One may define su-
perindices A = (a|α) and Ȧ = (ȧ|α̇) combining all asymptotic fields creating incom-
ing or outgoing particles into a single bi-fundamental supermultiplet which we will
denote by �(in/out)

AȦ
.

The S-matrix. The two-particle S-matrix is a unitary operator relating in and out
states. On the basis �AȦ(p), so that |�AȦ(p)�B Ḃ(p

′)〉(in)=�(in)
AȦ
(p)�(in)

B Ḃ
(p′)|Vac〉,

its matrix representation is

S |�AȦ(p)�B Ḃ(p
′)〉(in)=|�CĊ (p)�DḊ(p

′)〉(out)
S

CĊ DḊ
AȦB Ḃ

(p, p′). (3.8)

Before gauge fixing, the worldsheet theory is classically integrable [93]; since fix-
ing light-cone may be interpreted as expanding about the BMN solution and solv-
ing some of the equations of motion, the gauge-fixed theory is also expected to be
integrable at the classical level. In such an integrable theory, the S-matrix, invari-
ant under a non-simple product group must be a tensor product of S-matrices for
each of the factors (see e.g. [94])13

S=S⊗S , S
CĊ DḊ
AȦB Ḃ

(p, p′)=SC D
AB (p, p′)SĊ Ḋ

Ȧ Ḃ
(p, p′). (3.9)

It is important to note that a factorised tensor structure does not follow solely
from the PSU(2|2)× PSU(2|2) symmetry considerations, confirming group facto-
risation is thus an important test of integrability.

The first nontrivial order in the expansion of the S-matrix in the coupling con-
stant 2π/

√
λ defines the T-matrix

S= I+ 2π i√
λ

T+O

(
1
λ

)
. (3.10)

12Again, see [88] for a more complete discussion of the decompactification limit.
13This can be understood as a requirement that the Faddeev-Zamolodchikov subalgebra gener-

ated by creation or annihilation is a direct product: the field �AȦ is represented by a bilinear in
oscillators, �AȦ ∼ z Az Ȧ, each transforming under one of the PSU(2|2) factors [92]. The two sets
of oscillators mutually commute. The braiding relations for each of these sets are determined by a
PSU(2|2)-invariant S-matrix S consistent with the Lagrangian of the theory.
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which inherits the factorised form T=I⊗T+T⊗I from the S-matrix. Furthermore,
since SU(2)×SU(2)⊂PSU(2|2) is a manifest symmetry of the gauge-fixed world-
sheet theory, T may be parameterised in terms of ten unknown functions of the
momenta p and p′. These functions, to leading order in 1/

√
λ, can be easily

extracted from the matrix elements of quartic terms of the light-cone Hamilto-
nian Equation (3.5) (see [90] where explicit expressions for T can be found). Equiv-
alently, one can Legendre transform with respect to the transverse fields to find
the light-cone Lagrangian and then use the usual LSZ reduction to calculate the
worldsheet scattering amplitudes perturbatively.

Properties of the S-matrix

• The explicit perturbative calculation does indeed show that the two-body
S-matrix has the factorised form of Equation (3.9). Furthermore, it can be
explicitly checked to leading order that the ten functions in the T-matrix agree
with the corresponding functions in the strong coupling BA S-matrix. It can be
shown explicitly that there is no two-to-four particle scattering [90].

• In calculating the S-matrix, we relax the level-matching constraint. In this “off-
shell” formulation of the theory, the symmetries become extended by two addi-
tional central charges related to the worldsheet momentum [91] (the same as
found in the spin chain [95]). Furthermore, as the supersymmetry generators,
Q ∼ ∫

eix−
�(Z ,Y,ϒ,�), depend on the zero mode of the longitudinal coordi-

nate, x− ∼ ∫
dσ∂σ x−, there is a mild non-locality in the action of the symme-

tries which thus satisfy a Hopf algebra [90,92].
• The integrable structures of the perturbative string S-matrix have been further

studied including the construction of the classical r-matrix e.g. [96]. Further-
more, assuming the quantum integrability of the full worldsheet theory, and
using the global symmetries, the worldsheet S-matrix was uniquely determined
up to an overall phase. We refer the reader to [12,13,97] for a more complete
discussion of these and other exact properties of the worldsheet S-matrix.

3.2. SIMPLIFYING LIMITS

Due to the complexity of the worldsheet theory, going beyond the leading pertur-
bative term is challenging. One simplifying limit which has proved useful is the
“near-flat limit” [98]. This limit corresponds to studying the worldsheet near a con-
stant density solution boosted with rapidity λ1/4 in the worldsheet light-cone direc-
tion, σ−. The left- and right-moving excitations on the worldsheet scale differently
and the right movers essentially decouple. The resulting theory has only quartic
interactions and is much more tractable. The one-loop and two-loop [99–101] cor-
rections to the S-matrix have been calculated and shown to match the all-order
conjecture [23]; furthermore, factorisation at one loop was explicitly shown. At
two loops, radiative corrections induce a modification of the relativistic dispersion
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relation, which corresponds to the expansion of the sine function, natural from a
spin chain perspective, which appears in the exact dispersion relation [95].

Another interesting formulation of the theory is found via a generalisation of
the Pohlmeyer reduction [102], which is used to relate, at a classical level, the
string theory on Ad S5 × S5 to a massive, Lorentz invariant theory only involving
the physical fields. Applied to strings on R × S3, this method consists of gauge
fixing and solving the Virasoro constraints so that the remaining degree of free-
dom satisfies the sine-Gordon equation of motion [103,104]. Generalised to the full
superstring [105–108], the reduced theory is a massive deformation of a gauged
WZW model with an integrable potential. The resulting model has been explicitly
shown to be UV finite to two loops and there is evidence that the equivalence to
the standard formulation persists at the quantum level [109–111]. The two-particle
S-matrix was calculated in this formalism in [112–114] where it was shown that it
has the appropriate group factorisation properties. Being manifestly Lorentz invari-
ant, this formalism may provide a better basis for understanding the quantum
theory.
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