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Abstract

We propose a recursive formula for super Yang–Mills color–ordered n–point tree am-

plitudes based on the cohomology of pure spinor superspace in ten space–time dimensions.

The amplitudes are organized into BRST covariant building blocks with diagrammatic

interpretation. Manifestly cyclic expressions (no longer than one line each) are explicitly

given up to n = 10 and higher leg generalizations are straightforward.
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1. Introduction

Elementary particle physics relies on the computation of scattering amplitudes in

Yang-Mills theory. Parke and Taylor found compact and simple expressions for maximally

helicity violating (MHV) amplitudes in four space-time dimensions [1], which provide an

important milestone in discovering hidden structures underlying the S–matrix. Many

formal as well as phenomenological advances followed since then, see [2,3] for some reviews.

In this letter we use the framework of the pure spinor formalism [4] to reduce the

computation of n–point tree amplitudes in ten-dimensional super-Yang-Mills theory to a

recursive cohomology problem in pure spinor superspace. This admits the compact formula

(2.1) for the supersymmetric color-ordered n–point scattering amplitude at tree level.

Although the pure spinor framework is initially adapted to ten space-time dimensions,

one can still dimensionally reduce the results and extract the physics from any lower

dimensional point of view. At any rate, the striking simplicity of our results is exhibited

without the need of four–dimensional spinor helicity formalism. Moreover, the simplicity is

furnished both for MHV and NMHV helicity configurations in four space–time dimensions.

2. Pure spinor cohomology formula for An(1, 2, . . ., n)

The color-ordered tree-level massless super-Yang-Mills amplitudes in ten dimensions

will be argued to be determined by the pure spinor superspace cohomology formula1,

An = 〈Ei1...in−1
Vn〉 , (2.1)

where the bosonic superfields of ghost-number two Ei1...im are BRST-closed but not BRST-

exact in the momentum phase space of an n−point massless amplitude where si1...in−1
= 0,

QEi1...ip = 0, Ei1...ip = QMi1...ip if si1...ip 6= 0 , (2.2)

as will be further explained in the following subsections. The 〈. . .〉 bracket denotes a zero

mode integration prescription automated in [5] which extracts a certain tensor structure

of order λ3θ5 from the enclosed superfields [4].

1 The n−point color-ordered formulæ in this letter are all for the ordering 1, 2, . . ., n.
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2.1. Recursion relations

With the notation where Mi ≡ Vi and assuming QMi1...ip = Ei1...ip , ∀p < n− 1, the

superfields Ei1...in−1
can be constructed recursively as

Ei1...in−1
=

n−2
∑

p=1

Mi1...ipMip+1...in−1
(2.3)

in terms of Grassmann odd superfields Mi1...ip . The latter carry p − 1 inverse powers of

Mandelstam invariants si1...ip = 1
2
(ki1+. . .+kip)

2 and can be associated with the collection

of Feynman diagrams entering a color ordered p + 1 point amplitude, see subsection 2.2

for further details. The p sum in (2.3) runs over different partitions of the first n− 1 legs,

so one can interpret (2.1) as a recursive formula for An, factorized into (p+ 1)- point and

(n − p)- point subamplitudes. Apart from a diagrammatic method to construct Mi1...ip ,

we will give a string-inspired formula in the last section 4.

Fig. 1 Cohomology factorization of the n−point amplitude

Let us denote the number of kinematic poles configurations in Mi1...ip or Ei1...ip by

Pp+1, then it follows from (2.1) and (2.3) that the number Pn of diagrams with cubic

vertices in the color-ordered n−point amplitude An can be computed recursively as

Pn =

n−1
∑

i=2

PiPn−i+1, P2 = P3 ≡ 1, n ≥ 4. (2.4)

The explicit solution to (2.4) agrees with the formula Pn = 2n−2 (2n−5)!!
(n−1)! of [6].
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2.2. Feynman diagrams and BRST building blocks

In this subsection, we give more details about the fermionic superfields Mi1...ip and

in particular explain their pole structure. They are constructed from ghost number one

superfields Tj1...jp divided by the p−1 Mandelstam invariants sj1j2 , sj1j2j3 , . . . , sj1...jp which

appear in the BRST variation of Tj1...jp – this makes sure that each term in QTj1...jp cancels

one of the poles and different terms conspire to yield an overall BRST closed amplitude.

We will define the Tj1...jp in terms of SYM superfields in the next subsection 2.3; they

will turn out to follow naturally from OPE contractions of the SYM vertex operators. The

overall poleMi1...in−1
∼ s−1

i1...in−1
preventsAn from being written asAn = 〈Q[Mi1...in−1

Vn]〉

because the kinematics for n massless particles implies that si1...in−1
= 0. Hence, An =

〈Ei1...in−1
Vn〉 belongs to the BRST cohomology as required.

Let us give explicit lower order examples p = 2, 3, 4, 5 to further specify the Mi1...ip .

The p = 2 case is governed by QTi1i2 = si1i2Vi1Vi2 such that Mi1i2 := Ti1i2/si1i2 satisfies

QMi1i2 = Vi1Vi2 =: Ei1i2 . The next examples p ≥ 3 involve Pp+1 = 2, 5, 14, ... terms

according to the color ordered (p+ 1) point amplitudes A4, A5 and A6:

Mijk ≡
1

sijk

(

Tijk

sij
−

Tjki

sjk

)

Mijkl ≡
1

sijkl

(

Tijkl

sijsijk
−

Tjkil

sjksijk
−

Tjkli

sjksjkl
+

Tklji

sklsjkl
+

Tlkij − Tlkji

sijskl

)

(2.5)

Mijklm ≡
1

sijklm

[ Tijklm

sijsijksijkl
−

Tjkilm

sjksijksijkl
−

Tjklim

sjksjklsijkl
+

Tkljim

sklsjklsijkl
−

Tjklmi

sjksjklsjklm

+
Tkljmi

sklsjklsjklm
+

Tklmji

sklsklmsjklm
−

Tlmkji

slmsklmsjklm
+

(Tkljim − Tklijm)

sijsklsijkl
+

(Tlmjki − Tlmkji)

sjkslmsjklm

]

+
1

sijklm

[ (Tijklm + Tjikml)

sijslmsijk
−

(Tjkilm + Tkjiml)

sjkslmsijk
−

(Tklmij + Tlkmji)

sijsklsklm
+

(Tlmkij + Tmlkji)

sijslmsklm

]

We have obtained explicit solutions for the system (2.2) and (2.3) up to Mi1...i7 [7].

Using the BRST variations of Tijk and Tijkl,

QTijk = sijkTijVk − sij(TijVk + TjkVi + TkiVj)

QTijkl = sijklTijkVl + sijk (TijlVk − TijkVl + TijTkl)

+sij (ViTjkl + TiklVj − TijlVk + TikTjl + TilTjk − TijTkl) , (2.6)
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one can check that QMijk and QMijkl indeed reproduce the Eijk and Eijkl which are

recursively defined by (2.3). Higher order generalizations of (2.6) are straightforward.

Since each Ti1...ip requires a specific poles structure dictated by QTi1...ip , we can

interpret it as the endpiece of a color ordered Feynman diagram made of cubic vertices

only. The s12, s23 and s123 poles in M123 give rise to the dictionary of Figure 2. According

to P5 = 5, there are five diagrams collected in M1234 and the last one makes use of the

facts that T12[34] = −T34[12] and QT12[34] cancels poles in s12, s34 and s1234.

Fig. 2 The M123 Feynman diagrams

Fig. 3 The M1234 Feynman diagrams

For consistency with the diagrammatic interpretation, the T12...p are required to satisfy

the symmetry properties present in the corresponding Feynman diagrams. These are

Tij = T[ij], Tijk = T[ij]k, T[ijk] = 0 (2.7)
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at p = 2, 3, in lines with the BRST variations (2.6). The property T12[34] + T34[12] = 0 is

crucial to preserve the reflection symmetry (1, 2, 3, 4) ↔ (4, 3, 2, 1) of the fifth diagram in

Figure 3. More generally, each Ti1...ip inherits all the symmetries of Ti1...ip−1
in the first

p − 1 labels, so there is one new identity at each rank p (such as T12[34] + T34[12] = 0 at

p = 4) which cannot be inferred from lower order relatives. It can be determined from the

symmetries of the diagrams described by Ti1...ip , e.g.

Tijklm − Tijkml + Tlmijk − Tlmjik − Tlmkij + Tlmkji = 0 (2.8)

at p = 5. Higher order generalizations of (2.8) will be listed in [7].

2.3. Superfield realization of BRST building blocks

This subsection completes the definition of the Mi1...ip constituents of An by express-

ing their building blocks Ti1...ip in terms of SYM superfields. They are closely related to

the OPE residues L2131...p1 when p− 1 integrated vertex operators U j(zj) approach their

unintegrated counterpart V i(zi):

lim
z2→z1

V 1(z1)U
2(z2) →

L21

z21
, lim

zp→z1
L2131...p1(z1)U

p(zp) →
L2131...p1(p+1)1

zp1
.

Using the explicit form of V i, U j and their OPEs we find

L21 = −A1
m(λγmW 2)− V 1(k1 ·A2)

L2131 = −L21((k
1 + k2) ·A3) + (λγmW 3)

[

A1
m(k1 ·A2) +A1nF2

mn − (W 1γmW 2)
]

for two and three legs respectively.

The p-leg residues L2131...p1 by themselves do transform BRST covariantly, e.g.

QLji = sijViVj , QLjiki = sijkLjiVk − sij
[

LkjVi − LkiVj + LijVk

]

,

but they do not exhibit any symmetry properties in the labels i, j, k as required for a

diagrammatic interpretation. However, many irreducibles of the symmetric group turn

out to be BRST exact, e.g. Q(Ai · Aj) = 2L(ij). Only truly BRST cohomological pieces

are kept,

Tij := L[ji] = Lji − L(ji) = Lji −
1

2
Q(Ai ·Aj).
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Any higher rank residue L21...p1 with p ≥ 3 requires a redefinition in two steps to form the

building blocks T12...p of M12...p as follows: L2131...p1 −→ T̃123...p −→ T123...p. A first step

T̃123...p = L2131...p1 + . . . removes the BRST trivial parts in QT̃123...p, e.g.

T̃ijk ≡ Ljiki +
sij
2

[

(Aj ·Ak)Vi − (Ai ·Ak)Vj + (Ai ·Aj)Vk

]

−
sijk
2

(Ai ·Aj)Vk

QT̃ijk = sijkTijVk − sij
[

TjkVi − TikVj + TijVk

]

such that the BRST variation of T̃123...p involves Ti1...iq<p
rather than Li2i1...iq<pi1 . But

there will be BRST exact components in T̃123...p which still have to be subtracted in a

second step. For example, there exist superfields Rijk and Oijk such that [8]

QRijk = 2T̃(ij)k, QOijk = −3T[ijk].

The following redefinition yields the hook Young tableau Tijk = T[ij]k with T[ijk] = 0

Tijk = T̃ijk −
1

2
QRijk +

1

3
QOijk

suitable to represent the diagrams in Mijk. Similarly, one has to remove p−1 BRST trivial

irreducibles from T12..p = T̃12...p + . . . where the higher order generalizations of Ai · Aj,

Rijk and Oijk superfields are related to zij double poles in the OPE of U i(zi)U
j(zj).

2.4. BRST equivalent expressions for An and cyclic invariance

It follows from (2.3) that p = n − 2 is the maximum rank of Mi1...ip appearing in

the n-point amplitude cohomology formula (2.1). However, these terms are of the form

〈Mi1...in−2
Vin−1

Vin〉 and can be rewritten as 〈Ei1...in−2
Min−1in〉 due to ViVj = Eij = QMij

and BRST integration by parts

〈Mi1...ipEi1...iq 〉 = 〈Ei1...ipMi1...iq〉. (2.9)

The decomposition of Ei1...in−2
involves at most Mi1...in−3

, so BRST integration by parts

reduces the maximum rank p of Mi1...ip by one. It turns out that the n−point cohomology

formula (2.1) allows enough BRST integrations by parts as to reduce the maximum rank

to p = [n/2]. This yields a more economic expression for An.

Another benefit of the BRST equivalent An representation in terms of Mi1...ip with

p ≤ [n/2] lies in the manifest cyclic symmetry. The last leg Vn being singled out in (2.1)

obscures the amplitudes’ cyclicity. Performing k integrations by parts includes Vn into

bigger blocks Mi1...ik+1
such that the n’th leg appears on the same footing as any other

one in the end. We will give examples in the following section 3.
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3. n−point amplitudes up to n = 10

The three-point amplitude [4] is trivially reproduced by (2.1) and (2.3),

A3 = 〈E12V3〉 = 〈V1V2V3〉. (3.1)

Similarly, (2.1) and (2.3) reproduces the results of [9,10,11] for the four-point amplitude

A4 = 〈E123V4〉 = 〈V1M23V4〉+ 〈M12V3V4〉 =
1

s23
〈V1T23V4〉+

1

s12
〈T12V3V4〉. (3.2)

For n = 5, the formulæ (2.1) and (2.3) lead to

A5 = 〈E1234V5〉 = 〈V1M234V5〉+ 〈M12M34V5〉+ 〈M123V4V5〉,

=
〈T123V4V5〉

s1s4
−

〈T234V1V5〉

s2s5
+

〈T12T34V5〉

s1s3
−

〈T231V4V5〉

s2s4
+

〈T342V1V5〉

s3s5
. (3.3)

As discussed in the previous section, identifying Eij in (3.3) and using (2.9) leads to a

manifestly cyclic-invariant form proved in [11]

A5 = 〈M12V3M45〉+ cyclic(12345) =
〈T12V3T45〉

s12s45
+ cyclic(12345). (3.4)

For n = 6 the formula (2.1) reads

A6 = 〈E12345V6〉 = 〈V1M2345V6〉+ 〈M12M345V6〉+ 〈M123M45V6〉+ 〈M1234V5V6〉. (3.5)

Integrating the BRST-charge by parts in the first and last terms using (2.9) leads to

A6 = 〈M12M34M56〉+ 〈M23M45M61〉+ 〈M123(M45V6 + V4M56)〉

+〈M234(V5M61 +M56V1)〉+ 〈M345(V6M12 +M61V2)〉,

=
〈T12T34T56〉

3s12s34s56
+

1

2
〈

(

T123

s12s123
−

T231

s23s123

)(

T45V6

s45
+

V4T56

s56

)

〉+ cyclic(1. . .6). (3.6)

The amplitude (3.6) was first proposed in [11] by using BRST cohomology arguments and

proved by the field theory limit of the six-point superstring amplitude in [8]. For n = 7,

A7 = 〈V1M23456V7〉+ 〈M12M3456V7〉+ 〈M123M456V7〉+ 〈M1234M56V7〉+ 〈M12345V6V7〉.

Identifying ViVj = Eij = QMij and using (2.9) leads to

A7 = 〈M123M45M67〉+〈M123M456V7〉+〈M234M56M71〉+〈M345M67M12〉+〈M456M71M23〉
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+〈M1234(V5M67 +M56V7)〉+ 〈M2345(V6M71 +M67V1)〉+ 〈M3456(V7M12 +M71V2)〉,

where the generated factors of E12345 and E23456 have been replaced by M ’s using the

definition (2.3). The maximum rank Mi1...i4 only appear in combination with the BRST-

exact superfield Eijk = ViMjk +MijVk = QMijk. Using (2.9) once again leads to a more

compact expression with manifest cyclic symmetry,

A7 = 〈M123M45M67〉+ 〈V1M234M567〉+ cyclic(1. . .7). (3.7)

Plugging the solutions (2.5) in (3.7) leads to the Ansatz of [11],

A7 = 〈V1

(

T234

s23s234
−

T342

s34s234

)(

T567

s56s567
−

T675

s67s567

)

〉

+〈

(

T123

s12s123
−

T231

s23s123

)

T45T67

s45s67
〉+ cyclic(1. . .7). (3.8)

It is easy to check that (3.8) is expanded in terms of 42 kinematic poles.

The procedure to obtain manifestly cyclic symmetric higher-point amplitudes using

(2.1) and (2.3) is straightforward and follows the same steps as above. Increasing the

number of legs allows further BRST integrations by parts to be performed by identifying

and integrating Eij , Eijk, . . . sucessively at each step, leading to

A8 = 〈M123M456M78〉+
1

2
〈M1234E5678〉+ cyclic(1. . .8),

A9 =
1

3
〈M123M456M789〉+ 〈M1234(M567M89 +M56M789 +M5678V9)〉+ cyclic(1. . .9),

A10 = 〈M1234(M567M89;10 +M5678M9;10)〉+
1

2
〈M12345E6789;10〉+ cyclic(1. . .10). (3.9)

4. Connection to superstring theory

Supersymmetric field theory tree–amplitudes can also be obtained from the low–energy

limit of superstring theory where the dimensionless combinations α′si1...ip of Regge slope α′

and Mandelstam bilinears are formally sent to zero. Using the pure spinor formalism [4],

we will argue in [7] that the full superstring n−point amplitude is given by

Astring
n (α′) =

n−2
∏

i=2

∫ 1

zi−1

dzi
∏

j<k

|zjk|
−2α′sjk

n−2
∑

p=1

〈T12...p Tn−1,p+1,...,n−2 Vn〉

(z12z23...zp−1,p)(zn−1,p+1zp+1,p+2...zn−3,n−2)
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+permutations in (2, 3, ..., n− 2) (4.1)

in terms of the ubiquitous building blocks T12...p, with zjk = zj − zk. The α′ → 0 limit

of (4.1) reproduces An =
∑n−2

p=1 〈Mi1...ipMip+1...in−1
Vn〉 term by term in the individual p

sums. Therefore considering p = n− 2 ≡ q yields an explicit formula for Mi1...ip :

M12...q = lim
α′

→0

q
∏

i=2

∫ 1

zi−1

dzi
∏

j<k

|zjk|
−2α′sjk

(

T12...q

z12z23...zq−1,q
+ permutations in (2, 3, ..., q)

)

.

(4.2)

It has been checked up to q = 6 that the string inspired computation (4.2) of M12...q is

consistent with its construction from the Feynman diagrams in Aq+1.
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