arXiv:1012.3981v1 [hep-th] 17 Dec 2010

AEI-2010-180
MPP-2010-173

A recursive formula for n—point SYM tree amplitudes

Carlos R. Mafra?, Oliver Schlotterer®, Stephan Stieberger’, and Dimitrios Tsimpis®

@ Maz—Planck—Institut fir Gravitationsphysik
Albert—FEinstein—Institut
14476 Potsdam, Germany

b Max—Planck-Institut fiir Physik
Werner—Heisenberg—Institut
80805 Miinchen, Germany

¢ Université Lyon 1, Institut de Physique Nucléaire de Lyon,

4 rue Enrico Fermi, 69622 Villeurbanne, France

E-mails: crmafra@aei.mpg.de, olivers@mppmu.mpg.de,

stephan.stieberger@mpp.mpg.de, tsimpis@ipnl.in2p3.fr

Abstract
We propose a recursive formula for super Yang—Mills color—ordered n—point tree am-
plitudes based on the cohomology of pure spinor superspace in ten space-time dimensions.
The amplitudes are organized into BRST covariant building blocks with diagrammatic
interpretation. Manifestly cyclic expressions (no longer than one line each) are explicitly

given up to n = 10 and higher leg generalizations are straightforward.
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1. Introduction

Elementary particle physics relies on the computation of scattering amplitudes in
Yang-Mills theory. Parke and Taylor found compact and simple expressions for maximally
helicity violating (MHV) amplitudes in four space-time dimensions [[[J, which provide an
important milestone in discovering hidden structures underlying the S—matrix. Many
formal as well as phenomenological advances followed since then, see [Bf] for some reviews.

In this letter we use the framework of the pure spinor formalism [f] to reduce the
computation of n—point tree amplitudes in ten-dimensional super-Yang-Mills theory to a
recursive cohomology problem in pure spinor superspace. This admits the compact formula
(2.1) for the supersymmetric color-ordered n—point scattering amplitude at tree level.

Although the pure spinor framework is initially adapted to ten space-time dimensions,
one can still dimensionally reduce the results and extract the physics from any lower
dimensional point of view. At any rate, the striking simplicity of our results is exhibited
without the need of four—dimensional spinor helicity formalism. Moreover, the simplicity is

furnished both for MHV and NMHYV helicity configurations in four space-time dimensions.

2. Pure spinor cohomology formula for A,(1,2,...,n)

The color-ordered tree-level massless super-Yang-Mills amplitudes in ten dimensions

will be argued to be determined by the pure spinor superspace cohomology formulaﬂ,

A = (B i Vi), (2.1)

cebp—1

where the bosonic superfields of ghost-number two E;, . ; are BRST-closed but not BRST-

exact in the momentum phase space of an n—point massless amplitude where s;, . ; , =0,
QF;..i, =0, FEi i, =QM; ., if s; i, #0, (2.2)

as will be further explained in the following subsections. The (...) bracket denotes a zero
mode integration prescription automated in [f] which extracts a certain tensor structure

of order A\305 from the enclosed superfields [H].

L' The n—point color-ordered formule in this letter are all for the ordering 1,2, ..., n.
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2.1. Recursion relations

With the notation where M; = V; and assuming QM;, . ;, = E;,. 4,, Yp <n —1, the

superfields Fj, . can be constructed recursively as

cAn—1

Ei . 4, .= M, .. M,

n—1 ~lp p+1...in_1

(2.3)

p=1

in terms of Grassmann odd superfields M; The latter carry p — 1 inverse powers of

Leipe
Mandelstam invariants s;,. ;, = %(k:l1 +.. .—|—k:ip)2 and can be associated with the collection
of Feynman diagrams entering a color ordered p + 1 point amplitude, see subsection 2.2
for further details. The p sum in (B.3) runs over different partitions of the first n — 1 legs,
so one can interpret (B.0]) as a recursive formula for A,,, factorized into (p + 1)- point and
(n — p)- point subamplitudes. Apart from a diagrammatic method to construct M;, . ;,,

we will give a string-inspired formula in the last section 4.

— N-1 — -1
Ml...p = Q Ap—H v Mp+1...7z—1 — Q An—p
n

Fig. 1 Cohomology factorization of the n—point amplitude

Let us denote the number of kinematic poles configurations in M;, . ;, or E;  ; by

p
P,+1, then it follows from (7)) and (R-3) that the number P, of diagrams with cubic
vertices in the color-ordered n—point amplitude A,, can be computed recursively as

n—1

Pn = Z PiPn—i—l—la P2 = P3 = 1, n > 4. (24)
=2

The explicit solution to (.4]) agrees with the formula P, = 272 (?Z:f))!” of [].
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2.2. Feynman diagrams and BRST building blocks

In this subsection, we give more details about the fermionic superfields M;, . ;, and
in particular explain their pole structure. They are constructed from ghost number one
superfields T, . ;, divided by the p—1 Mandelstam invariants s;, j,, Sj,j,js5 - - - 5 Sj;...j, Which
appear in the BRST variation of T}, .. ; — this makes sure that each term in Q7}, .. ;, cancels
one of the poles and different terms conspire to yield an overall BRST closed amplitude.
We will define the T}, . ; in terms of SYM superfields in the next subsection 2.3; they
will turn out to follow naturally from OPE contractions of the SYM vertex operators. The
X Val)

overall pole M;, ;. S;,..i._, prevents A, from being written as A,, = (Q[M;
because the kinematics for n massless particles implies that s;, . ; _, = 0. Hence, A, =

~Y .
1 21...1n 1etm—1

(E;,. ., Vn) belongs to the BRST cohomology as required.

Let us give explicit lower order examples p = 2,3,4,5 to further specify the M;, ;.
The p = 2 case is governed by QT;,;, = Si i, Vi, Vi, such that M; ;, := T; i, /S, satisfies
QM;,i, = Vi, Vi, =t E;i,. The next examples p > 3 involve P,41 = 2,5,14, ... terms
according to the color ordered (p + 1) point amplitudes A4, A5 and Ag:

1 (Tin  Tins
M. — J IR
Sijk Sij Sjik

1 Tijr Tk Tk Triji Tigij — T
_ J jki jkli ji ij ji
Mijkl = — — -+ —+ (25)
Sijkl \SijSijk  SjkSijk  SjkSjkl  SkiSjkl SijSkl
M 1 [ Tijkim Tkitm Tiktim n Thijim Tkimi
ijklm = — — —
Sijklm LSijSijkSijkl SjkSijkSijkl SikSjklSijkl SkISjklSijkl SjkSjklSjkim
Thijmi n Thimji Timkji n (Tkijim — Thiijm) n (Timjni — Tlmka')]
SkISjklSjkim SkISkImSjkim SimSkimSjkim SijSklSijkl SjkSImSjkim

n 1 [(Tijkzlm + Tjikmt)  (Tikitm + Tijimt) — (Thmaj + Tikmyi) n (Timkij + Tmlkji)]

Sijklm
We have obtained explicit solutions for the system (R.7) and (.3) up to M, .. [
Using the BRST variations of Tj;;, and Tjjx,

SijSimSijk SjkSimSijk SijSklSkim SijSimSkim

QT = sijTij Vi — 5i(Ti; Vi + Tji Vi + Tii V)
QTijki = sijuiLijeVi + sije (TijiVie — Tije Vi + T3 Th)
+5i5 (ViTjr + TitaVy — TijiVie + Tir Tt + TuTji — Ti5Th) (2.6)
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one can check that QM;;, and QM;ji; indeed reproduce the Ejj;, and Fjji; which are
recursively defined by (B.J). Higher order generalizations of (B.0) are straightforward.
Since each Tj,. ;, requires a specific poles structure dictated by QT;, .. ;,, we can
interpret it as the endpiece of a color ordered Feynman diagram made of cubic vertices
only. The s12, s23 and s123 poles in Mjs3 give rise to the dictionary of Figure 2. According

to Ps = 5, there are five diagrams collected in Mj234 and the last one makes use of the

facts that T'o34) = —T34712] and QT'234) cancels poles in s12, 534 and s1234.
3
2 T123 3 T?Ql
5123 5123
512 823
1 2

Fig. 2 The M;23 Feynman diagrams

Th314 4 ) T340 2Thop34

Fig. 3 The M;j234 Feynman diagrams

For consistency with the diagrammatic interpretation, the T2, are required to satisfy

the symmetry properties present in the corresponding Feynman diagrams. These are
Tij = Tiij),  Tijk = Tiijies Thijry =0 (2.7)
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at p = 2,3, in lines with the BRST variations (B.6). The property T1o34) + T34[12) = 0 is
crucial to preserve the reflection symmetry (1,2,3,4) <> (4,3,2,1) of the fifth diagram in
Figure 3. More generally, each T, ;, inherits all the symmetries of Ti,..i,_, in the first
p — 1 labels, so there is one new identity at each rank p (such as Tha34) + T34p12) = O at
p = 4) which cannot be inferred from lower order relatives. It can be determined from the

symmetries of the diagrams described by T;,. ; , e.g.
Tijkim — Tijiemt + Timijk — Timjik — Limkij + Limkji = 0 (2.8)
at p = 5. Higher order generalizations of (B.§) will be listed in [f].

2.3. Superfield realization of BRST building blocks

This subsection completes the definition of the M;, ; constituents of A, by express-
ing their building blocks T;, .. ;, in terms of SYM superfields. They are closely related to
the OPE residues L2131...p1 when p — 1 integrated vertex operators U J (zj) approach their

unintegrated counterpart V(z;):

L L
lim Vl(zl)UQ(ZQ) — ﬂ, lim L2131mp1(21)Up<Zp) — 2131...pl{p+1)1 .
Zo—r21 Z21 Zp—rZ1 Zpl

Using the explicit form of V?, U’ and their OPEs we find
Loy = — A, (\"W?) = V(K" - A?)

Loizi = — Lot (k" + k%) - A%) + (MW [AL (k' - A% + A Fr, — (W, W)

for two and three legs respectively.

The p-leg residues La131.. 1 by themselves do transform BRST covariantly, e.g.
QLji = 5i;ViVy,  QLjiri = sijiLjiVie — 8ij[LijVi — Lri Vi + Liz Vi),

but they do not exhibit any symmetry properties in the labels i, j, k as required for a
diagrammatic interpretation. However, many irreducibles of the symmetric group turn
out to be BRST exact, e.g. Q(A;-A;) = 2L(;;y. Only truly BRST cohomological pieces
are kept,

Tij == Lyji) = Lji — Liy = Lyji — %Q(Ai - Aj)-
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Any higher rank residue Lg;. 1 with p > 3 requires a redefinition in two steps to form the
building blocks T12.., of Mi2. , as follows: Loigi. p1 — Tlggmp — Th23..p. A first step
Tlgg___p = L2131..p1 + ... removes the BRST trivial parts in QTlggmp, e.g.

~ Siq Sii
Tijk = Ljirs + 7j [(Aj cAR)Vi — (A - AV + (A; - Aj)Vk] — éﬂc (A; - Aj)Vy

QT = 5ijiTi;Vee — sij [TjrVi — TieVj + Ti; Vi

rather than L But

there will be BRST exact components in T 123...p Which still have to be subtracted in a

such that the BRST variation of Tlggmp involves T3, i _, i2i1.. iq<piy -

second step. For example, there exist superfields R;;; and O such that [§]
QRijk = 2T(ijyk,  QOuj = —3Tiju)-

The following redefinition yields the hook Young tableau Tj i = Tj;j, with T = 0
5 1 1
Tiji = Tijre — 5@Rije + 5Q0in

suitable to represent the diagrams in Mj;;;. Similarly, one has to remove p—1 BRST trivial
irreducibles from Tio , = Tlgmp + ... where the higher order generalizations of A; - A;,
Rijx and O, superfields are related to z;; double poles in the OPE of U?(z;)U7(z;).

2.4. BRST equivalent expressions for A, and cyclic invariance

It follows from (R.3) that p = n — 2 is the maximum rank of M;, ..;, appearing in
the n-point amplitude cohomology formula (R.J). However, these terms are of the form
(M; M;, ,:,) due to V;V; = E;; = QM;;
and BRST integration by parts

Vi.,_, Vi, ) and can be rewritten as (E;,

1---in72 «««7;n72

(M;, i, Ei,..i,) =(E M;, . .i,)- (2.9)

i1y

The decomposition of E;, . involves at most M;,  ; ., so BRST integration by parts

in o
reduces the maximum rank p of M;, . ;, by one. It turns out that the n—point cohomology
formula (R.1]) allows enough BRST integrations by parts as to reduce the maximum rank
to p = [n/2]. This yields a more economic expression for A,,.

Another benefit of the BRST equivalent A, representation in terms of M;, . ;, with
p < [n/2] lies in the manifest cyclic symmetry. The last leg V;, being singled out in (B.1])
obscures the amplitudes’ cyclicity. Performing k integrations by parts includes V,, into
bigger blocks M;, .

one in the end. We will give examples in the following section 3.

.ins, Such that the n’th leg appears on the same footing as any other
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3. n—point amplitudes up to n =10

The three-point amplitude [[] is trivially reproduced by (B.1)) and (2.3),
As = (E15V3) = (V1 VA V3). (3.1)
Similarly, (B.1) and (R.3) reproduces the results of [@,L0,LT] for the four-point amplitude

1
Ay = (B123Vy) = (ViMa3Vy) + (M12V3Vy) = — (ViTasVy) + £<T12V3V4>. (3.2)

S
523
For n = 5, the formulee (P71) and (£-3) lead to

As = (E1234V5) = (ViMagaVs) + (M12M34Vs) + (Mi23VaVs),

_ (T123VaV5) _ (To34V1 V5) n (T12T34V5) _ (To31VaVs) n (T342V1V5) (3.3)
5154 5985 5183 5954 $385 '

As discussed in the previous section, identifying E;; in (B.3) and using (B.9) leads to a

manifestly cyclic-invariant form proved in [[[T]

(Th2VsTys)

.A5 = <M12‘/3M45> + CyCllC(12345> =
512845

+ cyclic(12345). (3.4)
For n = 6 the formula (P) reads

As = (E12345V6) = (Vi M23asVe) + (M12M345Vs) + (M123MasVs) + (Mi1234V5Ve).  (3.5)
Integrating the BRST-charge by parts in the first and last terms using (£.9) leads to

A = (MiaMsaMsg) + (MagMasMe1) + (Miog(MasVs + VaMse))

+(Maza(VsMer + MseVi)) + (Msas (Ve Mo + Me1 V2)),
_ (T19T54T56) n 1 ( Th23 T531 ) (T45V6 . ViTse

3512534556 2

S45 556

+ cycelic(1. . .6). 3.6
5125123  S235123 )> yelic( ) (3.6)

The amplitude (B-§) was first proposed in [[[J]] by using BRST cohomology arguments and
proved by the field theory limit of the six-point superstring amplitude in [§]. For n =7,

A7 = (ViMagaseV7) + (MioMszaseVr) + (Mi2sMaseVr) + (Mi23aMseVz) + (Mi2sas Ve Vr).
Identifying V;V; = E;; = QM,; and using (B.9) leads to

A7 = (Myo3Mys Mez) 4+ (Mi23MaseVz) + (Moga Mse M) + (Msas Mez M) + (Mase M71 Ma3)
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+(Mi234 (Vs Me7 + MseV7)) + (Mazas (Ve Mz + MezVh)) + (Maase(Ve Mo + M7 Va)),

where the generated factors of E12345 and FEs3456 have been replaced by M’s using the
definition (P-3). The maximum rank M;, ;, only appear in combination with the BRST-
exact superfield E;;, = V; M, + M;;Vi, = QM ;. Using (.9) once again leads to a more

compact expression with manifest cyclic symmetry,
.A7 = <M123M45M67> + <V1M234M567> + CyCliC(l. . 7) (37)

Plugging the solutions (R.5) in (B.7) leads to the Ansatz of [[L1],

A7:(V1< To3a Ty )( T567 Ts7s )

5235234 5345234 8565567 S$675567

T T TysT¢
+<< 123 231 ) 26Ty 4 cyelie(1. ..7). (3.8)

5128123 5235123 ) 545567
It is easy to check that (B.§) is expanded in terms of 42 kinematic poles.

The procedure to obtain manifestly cyclic symmetric higher-point amplitudes using
(1) and (2.3) is straightforward and follows the same steps as above. Increasing the
number of legs allows further BRST integrations by parts to be performed by identifying

and integrating F;;, F;ji, . . . sucessively at each step, leading to

1 .
Asg = (My23Mys56M7s) + §<M1234E5678> + cyclic(1. . .8),

1 .
Ag = §<M123M456M789> + (My934(Msg7Msgg + MsgMrsg + Msg7sVo)) + cyclic(1...9),

1 .
Ajg = (Mi23a(Mse7Mso,10 + MsersMo.10)) + §<M12345E6789;10> + cyclic(1...10). (3.9)

4. Connection to superstring theory

Supersymmetric field theory tree—amplitudes can also be obtained from the low—energy
limit of superstring theory where the dimensionless combinations o’ Siy..ip of Regge slope o’
and Mandelstam bilinears are formally sent to zero. Using the pure spinor formalism [H],

we will argue in [[i] that the full superstring n—point amplitude is given by

n—2 1 —2
String AN ) . _2a/5jk < <T12p Tn—l,p—i—l,,n—Q Vn>
Al = I | e [T Tzl 3
i Jmi ok = (212223 2p—1,p) (Zn—1,p+12p+1 pt2-+-Zn—3,n-2)



+permutations in (2,3, ...,n — 2) (4.1)

in terms of the ubiquitous building blocks Ths. p, with 2z = z; — 2. The o/ — 0 limit
of (I1) reproduces A, = S""2(M;, ; M;

p=1
sums. Therefore considering p = n — 2 = ¢ yields an explicit formula for M;, ; :

p
q
Mis..q= lim [] /
'—0
“ 1=2

Zi—1 ]<k.

V,,) term by term in the individual p

P pt1-in—1

1
/ T,
dz; H ‘ij‘—% Sjk ( 12..q + permutations in (2, 3, ...,q)) )
, 212%223---2q—1,q

(4.2)
It has been checked up to ¢ = 6 that the string inspired computation (£.2) of M. 4 is

consistent with its construction from the Feynman diagrams in A,;.
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